Inference and Prolog

cs540 section 2
Louis Oliphant
oliphant@cs.wisc.edu

(some slides borrowed from Burr Settles)

Announcements

HW 1
- grading is done
- If you have questions on grading please see the TA
- Solution is on-line
HW?2 due today
HW3
- assigned today. Due next Thursday, 27" October
- It has been shortened. No programming portion :-(
Today's lecture is last used for the midterm

Reasoning in Subsets of FOL

¢ Subsets of FOL
- First Order Definite Clauses
- Datalog

* Reasoning in these Subsets
- Forward Chaining

- Backward Chaining

* Prolog

Subsets of FOL

* Definite Clauses
- Disjunction of Literals with exactly one positive, where
variables are always universally quantified.
- Ex.
-King(x) 0-Greedy(x) [Evil(x).
King(Father(John)).
Greedy(y).
- Usually written as a rule:
King(x) 0 Greedy(x) O Evil(x).
* Datalog
- first-order definite clauses with no function symbols

Definite Clause Knowledge Base

“The law says that it is a crime for an American to sell weapons
to hostile nations. The country, Nono, an enemy of America,
has some missiles, and all of its missiles were sold to it by
Colonel West, who is American.”

American(x)OWeapon(y)sells(x,y,z)(Hostile(z) O Criminal(x)
Owns(Nono,M)

Missile(M,)

Missile(x)0Owns(Nono,x) O Sells(West,x,Nono)

Missile(x) O Weapon(x)

Enemy(x,America) 0 Hostile(x)

American(West)
Enemy(Nono,America)

Forward Chaining Algorithm

function FOL-FC-ASK(KB, o) returns a substitution or false

repeat until new is empty
news{ }
for each sentence rin KB do
(pyA..oA pu = q) & STANDARDIZE- APART(r)
for each # such that (p1 A ... A p)f = (p] A ... A pL)6
for some pl,...,p) in KB
¢+ SuBsT(6, q)
if ¢’ is not a renaming of a sentence already in KB or new then do
add ¢' to new
¢+ UNIFY(q', @)
if ¢ is not fail then return ¢
add new to KB
return false

Generalized Modus Ponens

¢ Modus Ponens
ald B,a
B
¢ Generalized Modus Ponens

Pir P2 - Puy (p, Op, 0..0p, 0 q)
SUBST(6,q)

(where SUBST(0,p,) = SUBST(0,p, for all i)

* Example

King(John), Greedy(y), King(x) 0 Greedy(x) O Evil(x)
Subst({x/John, y/John}, Evil(John))

Forward Chaining Example

American(x)[OWeapon(y)Csells(x,y.z) Hostile(z) O Criminal(x)|
Missile(x)dOwns(Nono,x) [Sells(West,x,Nono)
Missile(x) 0 Weapon(x)

Enemy(x,America) [J Hostile(x)

|American(West)| IMissile(Ml) | pwns(Nono,Ml)| Enemx(Nono,Americaﬂ

Forward Chaining Example

American(x)[OWeapon(y)Csells(x,y.z) (Hostile(z) O Criminal(x)|
Missile(x)dOwns(Nono,x) [Sells(West,x,Nono)

Missile(x) 0 Weapon(x)

Enemy(x,America) [J Hostile(x)

riminal(West)

IAmerican(West)I IMissile(Ml) | |Owns(Nono,Ml)| Enemx(Nono,Americaﬂ

Forward Chaining Example

American(x)[OWeapon(y)Csells(x,y.z) (Hostile(z) O Criminal(x)|
Missile(x)dJOwns(Nono,x) [Sells(West,x,Nono)

Missile(x) 0 Weapon(x)

Enemy(x,America) [J Hostile(x)

|American(West)| IMissile(Ml) | pwns(Nono,Ml)| Enemx(Nono,Americaﬂ

Forward Chaining Example
American(x)[OWeapon(y)Csells(x,y.z) Hostile(z) O Criminal(x)|
Missile(x)dOwns(Nono,x) [Sells(West,x,Nono)
Missile(x) 0 Weapon(x)
Enemy(x,America) [J Hostile(x)

riminal(West)

Eells(West,M1 ,Nono)

IAmerican(West)I IMissile(Ml) | |Owns(Nono,Ml)| Enemx(Nono,Americaﬂ

Forward Chaining Example
American(x)[OWeapon(y)Csells(x,y.z) Hostile(z) O Criminal(x)|
Missile(x)dOwns(Nono,x) [Sells(West,x,Nono)
Missile(x) 0 Weapon(x)
Enemy(x,America) [J Hostile(x)

Eells(West,M1 ,Nono)|

|American(West)| IMissile(Ml) | pwns(Nono,Ml)| Enemx(Nono,Americaﬂ

Forward Chaining Example

American(x)[OWeapon(y)Csells(x,y.z) (Hostile(z) O Criminal(x)|
Missile(x)dOwns(Nono,x) [Sells(West,x,Nono)

Missile(x) 0 Weapon(x)

Enemy(x,America) [J Hostile(x)

riminal(West)

lWeapon(Ml)l |Sells(West,Ml,Nono)|

IAmerican(West)I IMissile(Ml) | |Owns(Nono,Ml)| Enemx(Nono,Americaﬂ

Forward Chaining Example

American(x)[OWeapon(y)Csells(x,y.z) (Hostile(z) O Criminal(x)|
Missile(x)dJOwns(Nono,x) [Sells(West,x,Nono)

Missile(x) 0 Weapon(x)

Enemy(x,America) [J Hostile(x)

lWeapon(Ml)| |Sells(West,Ml,Nono)|

|American(West)| IMissile(Ml) | pwns(Nono,Ml)| Enemx(Nono,Americaﬂ

Forward Chaining Example

American(x)[OWeapon(y)Csells(x,y.z) Hostile(z) O Criminal(x)|
Missile(x)dOwns(Nono,x) [Sells(West,x,Nono)

Missile(x) 0 Weapon(x)

Enemy(x,America) [J Hostile(x)

riminal(West)

lWeapon(Ml)l |Sells(West,M1 ,Nono)|

IAmerican(West)I IMissile(Ml) | |Owns(Nono,Ml)| Enemx(Nono,Americaﬂ

Forward Chaining Example

American(x)[OWeapon(y)Csells(x,y.z) Hostile(z) O Criminal(x)|
Missile(x)dOwns(Nono,x) [Sells(West,x,Nono)

Missile(x) 0 Weapon(x)

Enemy(x,America) [J Hostile(x)

lWeapon(Ml)| |Sells(West,Ml,Nono)|

|American(West)| IMissile(Ml) | pwns(Nono,Ml)| Enemx(Nono,Americaﬂ

Forward Chaining Example

American(x)[OWeapon(y)Csells(x,y.z) (Hostile(z) O Criminal(x)|
Missile(x)dOwns(Nono,x) [Sells(West,x,Nono)

Missile(x) 0 Weapon(x)

Enemy(x,America) [J Hostile(x)

riminal(West)

lWeapon(M 1)| |Sells(West,M1 ,Nono)| ostile(Nono

IAmerican(West)I IMissile(Ml) | |Owns(Nono,Ml)| Enemx(Nono,Americaﬂ

Backward Chaining Algorithm

function FOL-BC-Ask(KB, goals, #) returns a set of substitutions
inputs: KB, a knowledge base
goals, a list of conjuncts forming a query
4, the current substitution, initially the empty substitution { }
local variables: ans, a set of substitutions, initially empty

if goals is empty then return {6}
q' < SuBsT(f, FIRST(goals))
for each rin KB where STANDARDIZE-APART(r) = (p1 A ... A p, = q)
and §' + UNIFY(g, ¢') succeeds
ans ¢ FOL-BC-ASK(KB, [py,.... pa| REST(g0als)], ComPOSE(6, #')) U ans
return ans

Analysis of Forward Chaining

* “inner loop” involves finding all possible unifiers
- Pattern Matching problem
- NP-hard
- Good heuristics exist
* Recheck each rule on each iteration
- Instead, Every new fact inferred on iteration t must be
derived from at least one new fact from iteration t-1.
* Generates many facts that are irrelevant to goal
- Use Backward chaining instead

- Use Magic sets
* From Database community
* Change rules to take into consideration the goal

Backward chaining example

Criminalf West]

American(x)[OWeapon(y)Csells(x,y.z) (Hostile(z) O Criminal(x)
Owns(Nono,M)

Missile(M,)

Missile(x)dOwns(Nono,x) [Sells(West,x,Nono)

Missile(x) 0 Weapon(x)

Enemy(x,America) [J Hostile(x)

American(West)

Enemy(Nono, America)

Backward chaining example

Criminall West)

{x/West/

[Americanxy] [Weaponiy) | [setisixy.z

Hostile(z)

American(x)[OWeapon(y)Csells(x,y.z) (Hostile(z) O Criminal(x)
Owns(Nono,M\)

Missile(M\)

Missile(x)dOwns(Nono,x) [Sells(West,x,Nono)

Missile(x) 0 Weapon(x)

Enemy(x,America) [J Hostile(x)

American(West)

Enemy(Nono,America)

Backward chaining example

powes

[Americanwesyy| [Weapontyy | [Selistxy.z) | Hostile(z)

I

American(x)[OWeapon(y)Csells(x,y.z) (Hostile(z) O Criminal(x)
Owns(Nono,M\)

Missile(M\)

Missile(x)dOwns(Nono,x) [Sells(West,x,Nono)

Missile(x) 0 Weapon(x)

Enemy(x,America) [J Hostile(x)

American(West)

Enemy(Nono,America)

Backward chaining example

{x/West/

Criminall West)

[Americaniwesn |

I

[weaponty] [setisixy.z

Hostile(z)

Missile(y)

American(x)[OWeapon(y)Csells(x,y.z) (Hostile(z) O Criminal(x)
Owns(Nono,M)

Missile(M\)

Missile(x)Owns(Nono,x) O Sells(West,x,Nono)

Missile(x) 0 Weapon(x)

Enemy(x,America) [J Hostile(x)

American(West)

Enemy(Nono,America)

Backward chaining example

{x/West, M1 |

[Americanwesyy| [Weapontyy | [Selistxyz) | Hostile(z)

I

Missile(y)

[it}

American(x)[OWeapon(y)Csells(x,y.z) (Hostile(z) O Criminal(x)
Owns(Nono,M)

Miwile(M\)

Missile(x)dOwns(Nono,x) [Sells(West,x,Nono)

Missile(x) 0 Weapon(x)

Enemy(x,America) [J Hostile(x)

American(West)

Enemy(Nono, America)

Backward chaining example

Criminall West)

{x/West, w/MI, /Nonof

[Americaniwesn | [settstwestmiz)]
0] | wona |

[weaponty]

Hostile(z)

[Missitecys][Missite(std) | [ovensiveno,miy]
| w1}

American(x)[OWeapon(y)Csells(x,y.z) (Hostile(z) O Criminal(x)
Owns(Nono,M\)

Missile(M\)

Missile(x)dOwns(Nono,x) [Sells(West,x,Nono)

Missile(x) 0 Weapon(x)

Enemy(x,America) [J Hostile(x)

American(West)

Enemy(Nono,America)

Backward chaining example

{x/West, /M, o/Nono]

[Americanwesny | [Weaponty) | [setistwestmlz) | Hostile(Nono)
0] | #ano |

[Missitery) | [Missitecul) | [ownsinono, i)] [EnemyiNana,America)

[wml]] L} !
American(x)[OWeapon(y)Csells(x,y.z) (Hostile(z) O Criminal(x)
Owns(Nono,M\)

Missile(M\)

Missile(x)dOwns(Nono,x) [Sells(West,x,Nono)
Missile(x) 0 Weapon(x)

Enemy(x,America) [J Hostile(x)
American(West)

Enemy(Nono,America)

Backward chaining example

Criminall West)

{x/West, w/MI, /Nonof

[Americaniwesn | [settstwestmiz)]
0] | wona |

[weaponty] Hostile{ Noro |

[Missiteqy)] [Missiterptl) | [Ownsivona,mi}| [EnemytNano, America)

Lwmi} I 1l .
American(x)[OWeapon(y)Csells(x,y.z) (Hostile(z) O Criminal(x)
Owns(Nono,M\)

Missile(M\)

Missile(x)dJOwns(Nono,x) [Sells(West,x,Nono)
Missile(x) 0 Weapon(x)

Enemy(x,America) [J Hostile(x)
American(West)

Enemy(Nono,America)

Prolog

* Programming = Logic + Control

* Prolog is an implementation of First Order
Definite Clauses (plus some control)

* Queries are answered by Back Chaining

Characteristics of Prolog

* Descriptive Languages vs. Procedural Languages
- Nouns vs. Verbs
- Definitions vs. Actions
* Definite FOL clauses
- All “procedures” are if-then rules
- Additional non-logical pieces added (cuts, negation by
failure)
* Prolog is an interpreted language (not compiled)
* We will be using the yap interpreter

Syntax of Prolog

* All clauses have the following form:
head(args) :- bodyl(args) , body2(args), ... , bodyn(args).

:- means “if”
, means “and”
ends a clause

* It is a rule in reverse
* Think of the clause as a “procedure” in procedural
languages (like java or c)

Syntax of Prolog

* Variables Begin With Upper-Case Letters
- All variables are universally quantified (V)

* procedures, constants, and functions begin with
lower case letters.

some example clauses:

male(john).
female(mary).
childOf(mary,john).

parentOf(X,Y):-childOf(Y,X).
fatherOf(X,Y):-male(X),childOf(Y,X).

A Simple Program
hello world.pl

hello_world:-write('hello world'), nl.

To execute the program run:
Yoyap

?- [hello_world.pl].

yes

?- hello_world.

hello world

yes

?- halt.

%

Prolog Example

Example prolog DB that encodes our “criminal” example
(note that variables are capitalized, and constants in lower-
case):

missile (m) .

owns (nono,m) .

enemy (nono,america) .
american (west) .

weapon (X) :- missile(X).
sells(west,X,nono) :- missile (X), owns(nono,X).
hostile (X) :- enemy (X,america).

criminal (X) :-
american(X), weapon(Y),
sells(X,Y,Z2), hostile(Z).

Prolog Example

¢ The implementation of prolog that we’ll use on the TUX
machines is called YAP
- “Yet Another Prolog”

- Freeware implementation, downloadable from
www.ncc.up.pt/~vse/Yap/

* To run prolog on a TUX machine, type: % yap
* To end prolog, type: ?- halt.
* To load a file, type: ?- [file].
* The prolog extension is *.pl
- Try not to confuse it with perl programs

- Note that you don’t need the extension when loading a program into
prolog, it knows to look for the file with a * . p1 extension

Prolog Example

* Once YAP is running and the criminal KB is loaded, we

can start by asking simple queries we clearly already
know:

?- missile(m) . ?- american (west) .
¢ Then we can move on to more complex queries:
?- weapon (X) . ?- owns (X,m) .

?- criminal (west) .
¢ To view the entire BC search, YAP has a debugging
feature called “spy”:
- Type spy (predicate) . to turn it on
- And nospy (predicate) . to turn it off

Another Prolog Example

* Let’s consider a simple KB that expresses facts about a
certain family:

father (tom,dick) . mother (tom, judy) .
father (dick, harry) . mother (dick,mary) .
father (jane, harry) . mother (jane,mary) .

* Now let’s also think about creating some FOL rules for
defining family relations:

- Parent?
parent (X,P) :- mother(X,P).
parent (X,P) :- father(X,P).
- Grandmother?

granny (X,G) :- parent(X,Y), mother(Y,G).

Another Prolog Example

* How should we define the relation sibling?
- Two people are siblings if they have the same mother and the
same father (ignoring half-siblings, step-siblings, etc.)
* How about this:

sibling(X,Y) :- mother (X,M), mother(Y,M),
father (X,F), father(Y,F).

¢ Let’s run this and see what happens!

= Oops! Need to make sure X # Y/

sibling2 (X,Y) :- mother(X,M), mother(Y,M),
father (X,F), father(Y,F), X\=Y.

More Prolog Syntax

* Prolog has built-in operators (predicates) for mathematical
functions and equalities:

- Xx= 2X(y+]) X is 2% (Y+1). (y must already have a value)
- d<20 D < 20.

- 1<2 1 @=< 2.

- x=y X =Y.

- X%y X \=Y.

* The major data structure for Prolog is the /ist
- [denotes an empty list
- [H|T] denotes a list with a head (H) and tail (T)
¢ The head is the first element of the list
 The tail is the entire sublist after it
¢ e.g. for the list [a,b,c,d]... H=[a] and T=[b,c,d]

List Processing in Prolog

* Suppose we want to define an “append” operator for lists... that is
to take two lists L/ and L2, and merges their elements together
into a new list L3

- Inprocedural languages this is done with a function
* eg L3 = append(Ll,L2)

- Create make-shift functions by defining predicates with the return value included as
a parameter

* e.g append(Ll,L2,L3)
* How about defining a simple predicate that takes the first two L1
and L2, and returns a new list [L1]|L2]?
- eg append(Ll,L2,[L1|L2]).
- Nope! Let’s try again...

List Processing in Prolog

* What we need to do is take one list and recursively add
one element at a time from the other list, until we’ve
added them all

* Let’s assume that we start with L2 and want to add the
elements from L/ one at a time to the front
- Makes things easier: with [H|T], H is the front element

- What is our base case?
* append([],L2,L2).

- Now how do we deal with the recursive aspect?
« append([H|T],L2, [H|L3]) :- append(T,L2,L3).

List Processing in Prolog

* Now we can ask the queries:
?- append([1,2,3], [a,b,c], [1,2,3,a,b,c]).
* Result: yes
?- append([1,2,3], [a,b,c], X).
* Result: x = [1,2,3,a,b,c]
?- append (A, B, [1,2]).

e Result: A=[] B=[1,2]
A=[1] B=[2]
A=[1,2] B=[]

* Recall that, since prolog uses BC, we can try to find any
single solution, or find all solutions

[T3RE)

- After each result, type “;” to view another

Partitioning Lists

* Another useful application might be how to recursively
sort prolog lists

* Most sorting algorithms utilize some partitioning
method, where the list L is split into two sublists L/ and
L2 based on a particular element £

- e.g. splitting list [1,5,3,9,7,4,1] on element [5] would yield the
lists [1,3,4,1] and [5,9,7]
* This would be a useful method to define first
partition(E, L, L1, L2).

Partitioning Lists

* First, let’s think of the base case for our partitioning
predicate
partition(E, [1,[]1,[]).
* That is, an empty list gets split into two empty lists
¢ Second, we must consider the recursive aspect:
- Upon considering a new element / at the head of the list,
what conditions must we account for?
* If H<E, orif H= E (to determine which sublist)

- Since we have two different cases, each with a different
desired result, we need two recursive definitions

Partitioning Lists

e If H<E, then we want to add H to the first list L1:
partition(E, [H|T], [H|T1],L2) :-
H<E,
partition(E,T,T1,L2) .
* However, if H = E then we’ll add it to the second list L2:
partition(E, [H|T],L1, [H|T2]) :-
H @>= E,
partition(E,T,L1,T2).
* These predicates, together with the base case, will partition all the
list items less than £ in the first list, and all greater or equal in the
second list

Sorting in Prolog

* Now that we know how to partition one list into two,
and also how to append two lists together, we have all
the tools we need to sort a list!

* Let’s consider insertion sort:
- Walk through each position of the list
- For each position, insert the list item i that belongs in that
position, relative to other items in the list
- Recursively, we can achieve the same effect by walking
through each i, partitioning a pre-sorted list on 7, and then
appending the partitions on either side

Sorting in Prolog

* As always, we will need a base case for insertion sort (assume
that an empty list is sorted):

isort([]1,[]1).

* For the recursive aspect, we can walk through the whole list, and
backtrack, inserting each element where it belongs in the pre-
sorted list:

isort([H|T], F) :-
isort(T,L),
partition(H,L,L1,L2),
append (L1, [H|L2] ,F) .

* We can do something similar to implement quicksort, but I’ll
leave that up to you to work out on your own!

Ordering Prolog Rules

* The rules in a prolog program are searched depth-first,
exploring the potential rules from top down

* So The order of your rules is very important:
- Place base cases first
- Place recursive cases last

Example — Segmentation Problem

* Remember the Segmentation problem from

homework 1?
- Given a string:
“inwhichweseehowanagentcanfindasequenceofactionsthatachie
vesitsgoalswhennosingleactionwilldo”
- Output string with spaces where each “word” is in the
dictionary:
“in which we see how an agent can find a sequence of actions
that achieves its goals when no single action will do”

* Let's write this in prolog!

Segmentation Problem Helper Predicates

split_list _at element n(N,List,FirstN,Remainder)

* Designing The Program:
N — the number of elements from List that should be in

add_spaces(InputList,OutputList).

where InputList is a list of characters with no spaces FirstN
and OutputList is a list of characters with spaces such that List — the list to be split
each set of characters between spaces is in the dictionary FirstN — the first N elements of List

Remainder — the rest of List after the first N elements

* Methodology:
Take the smallest “word” from the left of InputList
Recursively call add_spaces on the remainder of the

InplltLiSt) split_list_at_element_n(0,Rest,[],Rest).
Put the smallest “word” back together with the result of split_list_at_element_n(Num,[HeadTail],[Head|Tail2],Rest):-
the recursive call, with a space in-between. Num? is Num -1,
* So, first we will need some helper predicates split_list_at_element_n(Numz2, Tail, Tail2,Rest).

Helper Predicates Helper Predicate

run_add_spaces(Num,AsciiList,Asciilist2)

. . . . Num — The next “word” to try from AsciiList

merge(List1,List2,CombinedList) AsciiList — The list of characters without spaces
Listl — a list of characters AsciiList2 — The list of characters with spaces added
List2 — another list of characters (this predicate will do almost all of the work)

CombinedList — The concatination of Listland List2
A . A run_add_spaces(_,[],[]).
(just another implementation of append) run_add_spaces(Num,AsciiList, AsciiList2):-
split_list_at_element_n(Num,AsciiList,FirstN,Rest),
is_word(FirstN),
run_add_spaces(1,Rest,RestWithSpaces),
merge(FirstN,[32IRestWithSpaces],AsciiList2). %32 is a space in ascii

merge([],LlSt,Ll?t). . . run_add_spaces(Num,AsciiList,AsciiList2):-
merge([Head|Tail],List,[HeadlIList2]):- Num2 is Num + 1,
merge(Tail,List,List2). length(AsciiList,Length),
Num?2 @=< Length,

run_add_spaces(Num?2,Asciilist,Asciilist2).

Final Predicate

add_spaces(AsciiList,AsciiList2):-
run_add_spaces(1,AsciiList,AsciiList2),
name(S2,AsciiList2),
name(S,Asciil.ist),
format("

~p'~nwith spaces added is~n'~p'~n",[S,S2]).

Conclusion

First Order Definite Clauses, Datalog
Generalized Modus Ponens
Forward Chaining and Backward Chaining
Yap is an implementation of Prolog

- handles first order definite clauses

- plus a few “non-logical” extensions

* cuts, negation by failure

Syntax symbols include :- , . [] |
Order of clauses in file is important

- place base cases first followed by recursive cases
The web-site for yap prolog is:

http://www.ncc.up.pt/~vsc/Yap/
You can download yap for linux or windows
It has an on-line users manual

