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LINEAR AND NONLINEAR SEPARATION OF
PATTERNS BY LINEAR PROGRAMMING

0. L. Mangasarian
Shell Development Company, Emeryville, California
(Received September, 1964)

A pattern separation problem is basically a problem of obtaining a criterion
for distinguishing between the elements of two disjoint sets of patterns.
The patterns are usually represented by points in a Euclidean space. One
way to achieve separation is to construct a plane or a nonlinear surface such
that one set of patterns lies on one side of the plane or the surface, and the
other set of patterns on the other side. Recently, it has been shown that
linear and ellipsoidal separation may be achieved by nonlinear program-
ming. In this work it is shown that both linear and nonlinear separation
may be achieved by limear programming.

BASIC problem of pattern separation is this: Given two sets of
patterns A and B, the set A consisting of m patterns, the set B of k
patterns, where each pattern consists of n scalar observations, find a
means of ‘separating’ the sets A and B, i.e., describing quantitatively
whether a pattern belongs to the set A or the set B. An implementable
and efficient solution of this problem is the key to the construction of
pattern recognizing ‘machines.” If the patterns are represented by points
in an n-dimensional Euclidean space the separation problem then is to
find a surface in this n-dimensional space such that all points representing
patterns belonging to the set A be on one side of this surface, and all points
representing patterns belonging to B lie on the other side of the surface.
We shall not, for brevity, distinguish between patterns and the points in
the n-dimensional space representing them.

One way of separating the patterns A and B is to pass a plane in the
n-dimensional space such that the m patterns A lie on one side of this plane
and the k patterns B lie on the other side. Recently,! it has been shown
that a necessary and sufficient condition for such linear separation is that
a certain quadratic programming problem have a solution. In the present
work we show that linear separation is equivalent to solving a linear pro-
gramming problem (Theorem 1). Also, since arbitrary patterns are in
general not linearly separable, it is important to recognize linear insepara-
bility immediately. This can be easily achieved by invoking Theorem 3,
which seems to have been first given by HigHLEYMAN,? and which states
that a necessary and sufficient condition for linear inseparability obtains
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whenever nonnegative solutions of a set of equalities can be found. This
again is equivalent to finding a feasible solution of a linear program.

When the patterns are not linearly separable, one may resort to quad-
ratic or nonlinear separation. In reference 5 it was shown that a certain
unique ellipsoidal separation may be achieved by nonlinear programming.
In the third section we show that a (nonunique) quadratic separation or a
more general (nonunique) nonlinear separation may be achieved by linear
programming.

LINEAR SEPARABILITY AND INSEPARABILITY OF SETS OF PATTERNS

WE DEFINE a set of patterns by a nonempty pattern matriz of real numbers,
each row of which defines a single patlern (or simply pattern) and is called
a paltern vector. A single pattern is composed of n real numbers that are
called observations and each of which is represented by a pattern element
of the row vectors of the pattern matrix. We shall denote a pattern matrix
by a capital letter A, single patterns by the row vectors 4;, and the jth
observation of the sth pattern by the scalar A,;. The basic problem
confronting us now may be stated thus. Given two sets of patterns,
defined by the mXn pattern matrix A and the kXn pattern matrix B,
determine a plane in the n-dimensional Euclidean space E”, such that if
the m rows of A and the & rows of B are taken as points in this space, then
they must fall on opposite sides of this plane. Let 2 be an n-dimensional
row vector representing a point in this n-dimensional Euclidean space.
The problem then is to determine a single plane

xd—vy=0, (1)

where d is an n-dimensional column vector of constants and v is a scalar
constant such that
Ad—ey>0, (2)

and Bd—1ly<0, (3)

where e and [ are respectively m- and k-dimensional column vectors of ones.
The two sets of patterns A and B are linearly separable if and only if there
exist some d,y such that (2) and (3) are satisfied.* If no such d,y exist,
then A and B are linearly inseparable. 1t is convenient now to establish
the following

Levma 1. The two sets of patlerns A and B are linearly separable if and
only if there exists an n-dimensional column vector of constants ¢ and constant

* This definition of linear separability is equivalent to the more commonly used
one,*9 which states that the sets of patterns A and B are linearly separable if the
convex hulls of 4 and B in E» do not intersect. Also see remark under Theorem 3.
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scalars o and B8 such that

Ac—eaz0, @
—Bc+18=0, (5)
a—B3>0, (6)
fzez—f, (")

where f 1s an n-dimensional column vector of ones.

Proof. 1If ¢, a, B exist satisfying (4) to (7) then d=¢, y=14 (a+8)
satisfy (2) and (3), and hence A and B are linearly separable. Conversely
if A and B are linearly separable then there exist d,y satisfying (2) and (3).
Now at least one component of d must be different from zero, otherwise
(2) and (3) lead to —y>0 and —y<0. Denote the largest absolute value
of any component of d by 6. Dividing (2) and (3) by & gives

(Ad/8)—ey/6>0, (8)
(Bd/8)—lv/6<0. 9)
Observe that
fzd/éz=—f. (10)
Now define ‘
aEminm, e, mZ;:i‘ (Aijdj/ﬁ), (11)
B=maXie, ..., s 2 iny (Bid;i/b), (12)
c=d/s. (13)
It follows from (11), (12), (8), and (9) that
a—pB>0, (14)
and from (8) through (13) that
Ac—ea=(Ad/8)—eming, ..., m 2= (A:d;/8)=0, (16)
and Bc—18=(Bd/8) —Imaxia, ..., s 0 imr (Bi;d;/8) <0. (17)

Therefore, conditions (16), (17), (14), and (15) are precisely conditions (4)
through (7).

Observe that the presence of a strict inequality (6) among the inequal-
ities (4) to (7) prevents a routine application of the linear programming
algorithm™ in order to obtain a feasible solution ¢, a, 8 to the system (4)
to (7). However by considering («—p) as the objective function of a
linear programming problem with constraints (4), (5), and (7), the fol-
lowing linear-programming criterion for linear separability may be ob-
tained.
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TareorEM 1 (Linear Separability). A necessary and sufficient condition for
linear separability of the pattern sets A and B s

6(A, B)>0, (18)
where 8(A, B) is the solution of the linear programming problem
8(A, B)=max. .p{(ea—pB)|Ac—ea=0, —Bc+Ii8=0, fzc=—f}. (19)

Proof. If 6(A, B)>0, then (4) to (7) are obviously satisfied by the
solution of (19) and hence A and B are linearly separable. Conversely, if
A and B are linearly separable, then some ¢, a, 8 must satisfy (4) to (7).
The same ¢, a, 8 is a feasible point for the linear programming problem
and renders «—g8>0. Hence §(4, B)>0.

CoRrOLLARY 1. (Linear Inseparability). A mecessary and suffictent con-
dition for linear inseparability of the patiern sets A and B s that (A, B)=0.

Proof. The proof follows immediately from Theorem 1 by observing
that ¢=0, a=0, 3=0 is a feasible point and hence §(4, B) =0.

It should be remarked that the linear programming problem (19) is
a very well behaved problem because of the two following aspects: (1)
It always has a feasible solution, ¢=0, =0, 3=0. (2) Its solution is
bounded from above by

(max;a, ..., mD ey Al +maxia, ..., 1 2 ooy |Bil}. (20)

When the sets A and B are linearly inseparable, (4, B)=0 and the
maximizing ¢ will vanish in general. If such is the case it may be desirable
to determine which patterns of either of the sets A and B are precluding
a linear separation. These points cannot be determined from the solution
6(A, B)=0 of (19). One way to determine them is the following. Aug-
ment the constraints of (19) by the constraint ¢;=1,* and denote the solu-
tion of (19) with the augmented constraint by ¢, & 8. The deletion of the
points in the pattern set A (i.e., the rows of A) that satisfy

Zl Aic =

or the deletion of the points in the pattern set B (i.e., the rows of B) that

satisfy
Z:=1 Bijciza

will render the pattern sets A and B linearly separable. If one is interested
in deleting the least number of such points, one may solve 2n linear program-
ming problems (19) each with a different component of ¢; (=1, 2, - - -, n)
set equal to plus and minus one. The least number of points to be deleted

* The choice of this constraint is arbitrary. Any other constraint of the type

¢;=1 or ¢;=—1 would work to prevent the identical vanishing of all the components
of c.
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is obtained from the solution with the least number of points satisfying
either of the last two relations.

A variation of the procedure described in the previous paragraph may
also be used to separate two linearly inseparable sets of patterns by a
finite number of planes. This is done as follows: After ¢, &, 8 are obtained,
by setting some ¢; equal to 1 or —1 and solving (19), we obtain two planes,
x¢=& and 2=, which leave parts of the pattern sets A and B unseparated.
We take the unseparated parts only of the sets A and B and obtain two
other planes that will again leave parts of A and B unseparated. This
process is repeated until the remaining unseparated parts can be separated
by one piane only. It is easy to see that this process is finite (i.e., it will
terminate after a finite number of linear programs), and that it will sepa-
rate the originally linearly inseparable pattern sets A and B into two sets
that are separable by a finite number of planes.

By invoking the duality principles of linear programs, reference 2,
pp. 71-74, it is possible to obtain immediately the following dual theorem
to Theorem 1.

TureoreMm 2 (Dual Linear Separability). A mnecessary and suffictent con-
dition for the linear separability of the pattern sets A and B is that

(4, B)>0, (21)
where (A, B) 1s the solution of the linear programmaing problem
(A, B)=min, . {/"pleu=1, l'v=1, —A'u+B'v+p=0,
A'w—B'v+p=0, u=0, v=0},

where u, v, and p are m-, k-, and n-dimensional column vectors, and the prime
denotes the transpose.*
CoroLLARY 2 (Dual Linear Inseparability). A necessary and sufficient
condition for the linear inseparability of the pattern sets A and B is that
¢(A, B)=0. Corollary 2 follows from Theorem 2 by observing that from
the constraints of (22), p=0, hence f/p=0 and (4, B)=0.

We are now in a position to derive the final main result of this section,
a necessary and sufficient condition for linear inseparability that is equiva-
lent to finding a nonnegative solution of linear equalities. This condition
is similar to a condition of Highleyman"™ and NiLsson."

(22)

* Problem (22) is equivalent to
Y(A,B)=minu,e,r:{f' (r+s) |[A'u—Bv+r—s=0, eu=1, l'v=1,

(22%)
=0, v=20, r=0, s=0},

where r and s are n-dimensional vectors. Problem (22*) is in the exact format re-
quired by the primal simplex algorithm, and hence is the best candidate for solution
by that method. The shadow prices associated with the first three sets of constraints
of (22*) are precisely ¢, —a, B.
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TarEorREM 3 (Dual Inseparability Criterion). A necessary and sufficient
condition that the sets of palterns A and B be linearly inseparable s that the
system

A'u—B'v=0, (23)
eu=1, (24)
l'v=1, (25)

uz0, (26)
v=0, 27)

has a solution.*
Remark. Conditions (23) to (27) are nothing more than a mathematical
statement of the fact that the convex hulls of A and B intersect.

Proof. If the sets A and B are inseparable, then by Corollary 2,
¢(A,B)=0 and hence p=0. This immediately implies that the solution
of (22) satisfies (23) through (27). Conversely, if (23) through (27) are
satisfied by w, v, then this implies that u, v, p=0, satisfy the constraints
of (22) and hence ¢(4,B)=0. By Corollary 2, then we conclude that A
and B are inseparable.

NONLINEAR SEPARATION OF SETS OF PATTERNS BY LINEAR
PROGRAMMING

SoMETIMES it may not be possible to separate two sets of patterns by a
plane. One may then resort to a separating surface that is nonlinear.
In reference 5 it was shown that given one set of patterns it may be possible
to determine a wunique ellipsoid enclosing the set of patterns by solving a
nonlinear programming problem. In the present work we drop the unique-
ness requirement, and show that a quadratic separation or a more general
nonlinear separation may be achieved by linear programming. For the
sake of simplicity we will confine ourselves to quadratic separation here
with the understanding that a more complicated nonlinear separation
can be achieved analogously by the linear programming technique of this
section.

Again let z be an n-dimensional row vector representing a point in an
n-dimensional Euclidean space. The quadratic separation problem of the
pattern sets A and B consists of determining a single quadratic surface

z Bx'+axd—vy=0, (28)

* The conditions (4) to (7) of the original Lemma 1 can be recovered directly
from the conditions (23) to (27) of Theorem 3 by invoking Theorem 1 of Gare.(
Conversely, Theorem 3 may be derived directly from the Lemma by invoking the
same Theorem.
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where F is an nXn matrix of constants, d an n-dimensional column vector
of constants, and v a scalar constant, such that

A£A1,+A1d*7>0, (Z=17 R m) (29)
and B;EB;+B;d—v<0. (=1, ---, k) (30)

The two sets of patterns A and B are quadratically separable if and only if
there exist some E, d, v such that (29) and (30) are satisfied. If no such
E, d, v exist, then A and B are guadratically inseparable. It is obvious
that linear separability implies quadratic separability and that quadratic
inseparability implies linear inseparability.

It is possible now to establish results for nonlinear separability analogous
to those of the preceding section for linear separability. This is possible
because of the linearity of (29) and (30) in E, d, and v. We will confine
ourselves here to a mere statement of the simpler results for quadratic
separability, the proofs of which are essentially identical to the corre-
sponding theorems of the preceding section.

LemMA 1A. The two sets of patterns A and B are quadratically separable if
and only if there exists an nXn matrix D of constants, an n-dimensional
column vector ¢ of constants, and constant scalars a and B8 such that

A;DA/—l—Aw—a;O, (‘I:=1, ---,m) (31)
_BJ'DBJ‘I_BJ'C_I_BzO) (.7=1; "'7k) (32)

a—pB>0, (33)
f%cg:_ ) (34)
KzDz—K, (35)

where K s an nXn matriz of ones.
TureorEM 1A (Quadratic Separability). A mnecessary and sufficient con-
dition for the quadratic separability of the pattern sets A and B s that
¥(4, B)>0 (36)
where Y(A,B) s the solution of the linear programming problem
Y(A,B)=maxp c,ap

{(a—B)!AzDA,’+Azc~a§O, 1= 1, s, M, —BjDBj’—BjC (37)

+B§O;j=17 T k)fgcg _f7 KzD=z —K}

CororLLARY 1A (Quadratic Inseparability). A mnecessary and sufficient
condition for quadratic inseparability of the pattern sets A and B is that
¥(4,B)=0.

We observe again here that the linear programming problem (37)
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always has a feasible solution D=0, ¢=0, =0, =0, and is bounded from
above by

{max;,a, ..., m[( 22377 144"+ 2250 |4 4]
+maxia, .., Jl( 225 1Bul)™+ 22571 1Bull)
Further results analogous to Theorems 2, and 3, and Corollary 2 may
also be stated for quadratic and more general nonlinear separability prob-
lems. They are somewhat more complicated and hence will not be given

here. Suffice it to say that a nonlinear separation problem may be viewed
as a linear programming problem.

(38)

REMARKS

TaE MosT widely used method for nonparametric pattern separation is
RosENBLATT’S error correction procedurel® 7 for linear separation. Re-
cently, GREENBERG AND KonuEmMP®! have extended this to nonlinear
separation. Rosenblatt’s method and various modifications thereof!
are based on a very simple iterative procedure. In the present work we
have presented a linear and nonlinear separation method based on linear
programming. It is difficult to assess the relative advantages of the two
methods without an extensive series of test problems. However, the
obvious advantage of the error correction procedure is its simplicity. Its
main disadvantage seems to be its inability to determine inseparability
of pattern sets when it occurs. This is a consequence of the fact that the
error correction procedure converges only when the pattern sets are indeed
separable, a fact that is not known a priori. In the linear programming
method however, inseparability is immediately detected by either
6(4,B)=0 or ¢(4,B)=0. Since it is possible to construct some simple
examples for which the error correction procedure converges very slowly,
the problem of distinguishing between slow convergence and noncon-
vergence may be a difficult one. Another advantage of the linear pro-
gramming method is that it can be readily extended in order to separate
two sets by more than one plane or surface as described in the second
section.

SiNGLETONUI®* has described a linear programming method similar
to that of Minnick™ that, however, differs from the present one in that
it involves the use of a relatively large matrix essentially made up of 4,
—B, —A and B. More recently, CHARNEs!?! has described a linear pro-
gramming method for lénear separability that is equivalent to (22%).
Our manner of derivation is different here and extends directly to nonlinear
separability.

* I am indebted to a referee for this reference.
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