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Abstract

SnJulia is an easy to use software library written in the Julia language to facilitate
harmonic analysis on the symmetric group of degree n, denoted Sn and make it more easily
deployable within statistical machine learning algorithms. Our implementation internally
creates the irreducible matrix representations of Sn (in parallel or in a distributed fashion,
if appropriate), and efficiently computes fast Fourier transforms (FFTs) and inverse fast
Fourier transforms (iFFTs). Advanced users can achieve scalability and promising prac-
tical performance by exploiting various other forms of sparsity. Further, the library also
supports the partial inverse Fourier transforms which utilizes the smoothness properties of
functions by maintaining only the first few Fourier coefficients. Out of the box, SnJulia
currently offers two non-trivial operations for functions defined on Sn, namely convolution
and correlation. While the potential applicability of SnJulia is fairly broad, as an example,
we show how it can be used for clustering ranked data, where each ranking is modeled as
a distribution on Sn.

Keywords: Symmetric group, Ranking data, Clustering, Harmonic analysis, Fourier
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1. Introduction

Over the last few years, there has been a growing interest in the analysis of data given
(or expressed) as a probability distribution over permutations. The set of all possible
permutations of n elements constitutes a group called the symmetric group, denoted Sn.
Several recent solutions to ranking problems, hard combinatorial problems, multi-target
tracking and feature point matching tasks (in computer vision) have used harmonic analysis
on Sn to derive more efficient algorithms (Huang et al., 2009; Kondor, 2010; Pachauri
et al., 2012). While the idea of generalizing the Fourier transform to non-commutative
groups is well established in the Mathematics literature, an easy to use and accessible
software library will facilitate the adoption of such concepts within machine learning. In
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this paper, we describe a Julia based open source library which implements the Fourier
transform (and associated functionality) for harmonic analysis of functions defined on Sn.
The implementation can use a multi-core cluster (when available) without any need for
low-level message passing interface (MPI) programming.

Harmonic analysis on Sn is defined via the notion of representations. A matrix valued
function ρ : Sn → Cdρ×dρ is said to be a dρ dimensional representation of the symmetric
group if ρ(σ2)ρ(σ1) = ρ(σ2σ1) for any pair of permutations σ1, σ2 ∈ Sn. A representation
ρ is said to be reducible if there exists a unitary basis transformation which simultaneously
block diagonalizes each ρ(σ) matrix into a direct sum of lower dimensional representations.
If ρ is not reducible, then it is said to be irreducible. Irreducible representations or irreps are
the elementary building blocks of all of Sn’s representations. A complete set of inequivalent
irreducible representations are denoted by R.

The Fourier transform of a function f : Sn → C is then defined as the sequence of
matrices

f̂(ρ) =
∑
σ∈Sn

f(σ)ρ(σ) ρ ∈ R. (1)

The inverse transform is

f(σ) =
1

n!

∑
ρ∈R

dρ tr
[
f̂(ρ)ρ(σ)−1

]
σ ∈ Sn. (2)

Much of the practical interest in Fourier transform can be attributed to various interesting
properties of irreps, such as conjugacy and unitarity.

1.1 The irreducible representation of Sn
There are several ways to construct irreducible representation of Sn (Sagan, 2001). One such
representation is called Young’s orthogonal representation (YOR). The YOR matrices are
real and unitary and therefore orthogonal. To benefit from the computational advantages
of orthogonal matrices, SnJulia uses YOR internally. In the supplement, we provide a short
review of the background required for constructing YORs.

2. SnJulia Toolkit

SnJulia is implemented in a high-level programming language called Julia (provided un-
der a MIT license). The most important features of the toolkit are accessibility, exten-
sibility, and performance. The toolkit and the required documentation is available at:
https://github.com/GDPlumb/SnJulia.jl/.

Accessibility. We placed a great deal of emphasis on the ease of use of the toolkit. This
will allow a non-specialist (in harmonic analysis) to utilize the functionality of this library
within standard machine learning algorithms, when analyzing data on Sn. In particu-
lar, the fully functionality of SnJulia is available simply by loading the package “SnJulia”
through Julia’s built in package manager. The SnJulia user manual provides many examples
demonstrating the syntax for accessing the various features of SnJulia and gives a high level
overview of the key properties of YOR matrices and the Fourier transform. The minimalist
design and coding consistency makes SnJulia easy to use and modify.
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Extensibility. Interoperability is a key component of Julia — it allows easy access to
various pre-existing high quality and mature libraries written in many other languages with
minimal additional overhead. Therefore, various machine learning libraries can be easily
incorporated into SnJulia projects. For example, C and Fortran functions can be called
directly from SnJulia projects without any “glue” code. SnJulia allows access to external
libraries written in languages such as Python, Java, and R, by easily passing the data to
these libraries. Later, we demonstrate this property of SnJulia for clustering ranked data
by using R’s sparcl library to perform hierarchical clustering. Finally, Julia code can be
called directly from C/C++. As a result, SnJulia can be used seamlessly within existing
machine learning tools as needed.

Parallelism. SnJulia inherits the parallelism offered by the Julia platform. It allows a
multi-processing environment to run a code on multiple processes in separate memory do-
mains concurrently. Julia uses empirically derived rules to determine the trade-off between
synchronization overhead for multithread computation and single thread sequential com-
putation and proceeds with the best option. In our implementation, SnJulia functions are
designed to use all worker processes that a user makes available to Julia. This setup allows
the user to analyze the data on a single process, on multiple processes on a local machine,
or via multiple processes spread across a cluster with essentially no change to the user code
beyond initially making the processes available.

Sparsity. For various practical applications, we encounter problems for n greater than
15. Even storing such data is problematic as n! is ∼ 1 trillion. Unless one exploits the
smoothness/sparsity properties of f , computation will be intractable. But notice that often,
problems exhibit interesting sparsity patterns Kueh et al. (1999); for example, the Fourier
transform of functions on homogeneous spaces of Sn are usually band-limited in the sense
that their Fourier transform is identically zero except for a small set of Fourier matrices.
SnJulia is designed to utilize such patterns, making it very efficient. Specifically, the function
FFT BL() is implemented to offer significant efficiency benefits when the user a priori knows
the band-limited form of f . For problems with unknown sparsity pattern, the special
function FFT SP() first determines the sparsity structure of f and then proceeds to the
actual FFT calculation. Partial inverse Fourier transform is also supported in SnJulia
which is important to induce smoothness in f . In particular, function IFFT P() can be
used to approximate f using just first few Fourier coefficients of the full Fourier transform.

3. Example: Fourier Domain Features for Clustering Ranks

Consider a ranking dataset composed of N examples where ith instance (i = 1, · · · , N), is a
permutation σi ∈ Sn of n items, listed in order of preference. Given such data, we want to
identify groups of examples with similar preferences, which may be helpful for a downstream
preference behavior study or rank prediction applications Crammer et al. (2001). Various
probabilistic models for ranking are popular in the research community such as Mallows
model Murphy and Martin (2003), which nicely capture the variability in the observations
when the observed rankings are noisy or incomplete Busse et al. (2007). Typically, the

ith instance is represented as a function fi(σ) = e−γd(σi,σ)

Zγ
on Sn. Here, γ is the spread

parameter, d(., .) is a valid distance metric on permutations, and Zγ is the normalization

3



SnJulia

constant. The clustering problem seeks to partition the dataset into K clusters to minimize
the following objective:

arg min
C1,...,CK

K∑
k=1

∑
1≤i,j≤N :(i,j)∈Ck

‖fi − fj‖2 . (3)

A geometric view of functions defined on Sn as embedded in the space [0, 1]n! quickly
becomes intractable and hard to interpret. On the other hand, the seminal work of Diaconis
(1988) explains how the Fourier coefficients precisely encode the structural properties of the
distributions on Sn. Following ideas described in Diaconis (1988), recently, Clémençon et al.
(2011) introduced a Fourier space formulation equivalent to (3)

=
1

n!

∑
ρ∈R

dρ

K∑
k=1

∑
1≤i,j≤N :(i,j)∈Ck

‖f̂i(ρ)− f̂j(ρ)‖2HS(dρ) . (4)

Further, they used a specialized feature selection procedure for clustering the induced spec-
tral features as in Witten and Tibshirani (2010) and showed that frequently one only needs
a few spectral features to explain the clustering choices. In SnJulia, only a few lines of code
implement this algorithm,
# Construct Mallow Distribution at for each rank σi with spread parameter γ
fi = MallowsDistribution(σi, γ)
# Create Fourier representation for Sn
RA, PT = YOR(n)

# Calculate Fourier Transforms of fi
f̂i = FFT(n, fi, RA, PT)

# Pass the Fourier coefficient matrix (array of f̂i, i = 1, · · · , N) to R’s sparcl

library. Sparcl treat Fourier coefficient matrix as the feature matrix, and

perform a sparse hierarchical clustering.

# sparcl script.R is a simple script which calls R from SnJulia platform, and

perform clustering. The code to call this script is

R = "R"

CMD = "CMD"

BATCH = "BATCH"

loc = ‘‘path-to-sparcl script.R’’

run(‘$R $CMD $BATCH $loc’)

This example shows that SnJulia is fairly flexible and can be used with advance machine
learning libraries for data analysis on Sn. Further, the SnJulia distribution includes a well
documented example for clustering problems on a synthetic dataset.
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