
SIMD-Based Decoding of Posting Lists

Alexander A. Stepanov, Anil R. Gangolli, Daniel E. Rose
Ryan J. Ernst, Paramjit S. Oberoi

A9.com
130 Lytton Ave.

Palo Alto, CA 94303

{stepanov,gangolli,danrose,rjernst,paramjit}@a9.com

ABSTRACT
Powerful SIMD instructions in modern processors offer an
opportunity for greater search performance. In this paper,
we apply these instructions to decoding search engine post-
ing lists. We start by exploring variable-length integer en-
coding formats used to represent postings. We define two
properties, byte-oriented and byte-preserving, that charac-
terize many formats of interest. Based on their common
structure, we define a taxonomy that classifies encodings
along three dimensions, representing the way in which data
bits are stored and additional bits are used to describe the
data. Using this taxonomy, we discover new encoding for-
mats, some of which are particularly amenable to SIMD-
based decoding. We present generic SIMD algorithms for
decoding these formats. We also extend these algorithms to
the most common traditional encoding format. Our exper-
iments demonstrate that SIMD-based decoding algorithms
are up to 3 times faster than non-SIMD algorithms.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Data Compaction
and Compression; H.3.1 [Information Storage and Re-
trieval]: Content Analysis and Indexing—indexing meth-
ods; C.1.2 [Processor Architectures]: [Single-instruction-
stream, multiple-data-stream processors (SIMD)]

General Terms
Algorithms, Performance, Measurement, Experimentation

Keywords
variable-length integer encoding, SIMD

1. INTRODUCTION
The central data structure in search engines is the inverted

index, a mapping from index terms to the documents that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

contain them. The set of documents containing a given word
is known as a posting list. Documents in posting lists are typ-
ically represented by unique nonnegative integer identifiers.
Posting lists are generally kept in sorted order to enable fast
set operations which are required for query processing.

Because posting lists typically account for a large fraction
of storage used by the search engine, it is desirable to com-
press the lists. Smaller lists mean less memory usage, and
in the case of disk-based indices, smaller lists reduce I/O
and therefore provide faster access. A common way to com-
press posting lists is to replace document IDs in the list with
differences between successive document IDs, known as ∆-
gaps (sometimes just gaps or d-gaps). Since ∆-gaps are on
average necessarily smaller than raw document IDs, we can
use a variable-length unsigned integer encoding method in
which smaller values occupy less space. In a sorted list the
∆-gaps are always non-negative, so we are only concerned
with encoding nonnegative integers; for the remainder of the
paper “integer” means unsigned integer.

The integer encoding for a posting list is performed in-
frequently, at indexing time. The decoding, however, must
be performed for every uncached query. For this reason,
efficient integer decoding algorithms are essential, as are en-
coding formats that support such efficient decoding.

We started by exploring several commonly-used variable-
length integer encodings and their associated decoding al-
gorithms. Based on their common structure, we defined a
taxonomy that encompassed these existing encodings and
suggested some novel ones. Our investigation was moti-
vated by the desire to incorporate fine-grained parallelism
to speed up integer decoding. We were able to develop
decoding methods that use SIMD instructions available on
many general-purpose processors, in particular current Intel
and forthcoming AMD processors. In this paper, we present
these methods and evaluate them against traditional tech-
niques. Our results indicate significant performance benefit
from applying SIMD to these new formats.

The remainder of the paper is organized as follows. We
review some related work on encoding formats and decoding
algorithms in Section 2. Section 3 presents our taxonomy of
byte-oriented encodings. Section 4 describes three particular
encoding formats which are well suited to SIMD parallelism
in more detail. Section 5 gives an overview of our use of
SIMD on Intel-compatible processors. In Section 6 we pro-
vide SIMD algorithms for decoding the formats introduced
in Section 4. Section 7 contains an evaluation of the results,
followed by our conclusions in Section 8.

MSB LSB

1 descriptor bit 7 data bits

Figure 1: Format known in the literature as “vbyte”,
“vint”, etc. Called varint-SU in the taxonomy of
Section 3.

0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0

increasing byte addresses

Figure 2: Storing the integer 123456 in varint-SU
format.

2. RELATED WORK
The problem of integer encoding has been studied for sev-

eral decades. General compression techniques such as Huff-
man coding often utilize analysis of the data to choose opti-
mal representations for each codeword. Many applications,
however, use techniques that do not depend on data distri-
bution. These are called nonparametric codes [4].

Encoded representations of data may also be classified as
byte- or bit-aligned, depending on whether codewords are re-
quired to end on byte boundaries. In addition, Anh [1, 2] in-
troduced an interesting class of word-aligned encodings (e.g.
Simple-9). These encodings occupy an intermediate place
between bit-aligned and byte-aligned encodings by allowing
codewords to end at an arbitrary bit position as long as they
do not cross the machine word boundary.

While there are multiple choices for encoding posting lists
in information retrieval applications, in this paper we con-
centrate exclusively on non-parametric, byte-oriented encod-
ings.

The most common such encoding format uses 7 bits of
each byte to represent data, and one bit to represent whether
the encoded representation of the integer continues into the
next byte (see Figure 1). This format has a long history,
dating back at least to the MIDI specification in the early
1980s [14], and foreshadowed by earlier work on byte-based
vocabulary compression by H.S. Heaps [11]. As early as
1990, Cutting and Pedersen [7] used this format to encode
∆-gaps in an inverted index. The information retrieval lit-
erature refers to the format by many different names, in-
cluding vbyte, vint, and VB. Different authors give slightly
different versions that vary on endianness, location of the
continuation bit (most significant vs. least significant), and
whether 0 or 1 indicates continuation. Figure 2 illustrates
this encoding for the integer 123456 with little-endian, most
significant bit and 1 for continuation.

Another format BA, introduced by Grossman in 1995 [10]
uses 2 bits of the first byte to indicate the length of the
encoded integer in binary. In his 2009 WSDM keynote,
Dean [8] described a format he calls group varint that ex-

tends the BA format (which he calls varint-30) and reported
significant performance gains obtained at Google by adopt-
ing it. A similar but more general format was described
by Westmann et al. [19] in the database context. Schlegel
et al. [17] applied SIMD-based decompression algorithms to
a specialized version of Westmann’s format that coincides
exactly with group varint, but under the name k-wise null
suppression. While they do not precisely describe the decod-
ing and table generation, we believe that their algorithms
are special cases of the generalized algorithms we describe
in Section 6. All of these encodings fall into the taxonomy
defined in this paper.

Büttcher et al. [4] have compared performance of several
encoding techniques using posting lists from the GOV2 cor-
pus on a particular query sample. They originally reported
vbyte being the fastest at decoding, with Simple-9 being
second. They recently updated their analysis [5] to include
the group varint format, reporting that it outperforms both
vbyte and Simple-9. Our experiments (presented in Sec-
tion 7) show that the SIMD techniques described in this pa-
per significantly outperform all of these in decoding speed.

3. BYTE-ORIENTED ENCODINGS
Encoding formats are generally distinguished by the gran-

ularity of their representation. We focus on encodings sat-
isfying the following definition.

Definition 1. We call an encoding byte-oriented if it
satisfies the following conditions:

1. All significant bits of the natural binary representation
are preserved.

2. Each byte contains bits from only one integer.

3. Data bits within a single byte of the encoding preserve
the ordering they had in the original integer.

4. All bits from a single integer precede all bits from the
next integer.

A byte-oriented encoding is fixed-length if every integer is
encoded using the same number of bytes. Otherwise it is
variable-length.

Since variable-length byte-oriented formats must encode the
length of the encoded data, they vary along the following
three dimensions:

• The length can be expressed in binary or unary.

• The bits representing the length can be stored adjacent
to the data bits of the corresponding integer so that
some data bytes contain both data and length infor-
mation; alternatively, lengths of several integers can
be grouped together into one or more bytes distinct
from the bytes containing data bits.

• If the length is represented in unary, the bits of the
unary representation may be packed contiguously, or
split across the bytes of the encoded integer.

It is evident that for byte-oriented formats, the natural unit
of length is a byte. We call the set of bits used to represent
the length the descriptor, since it describes how the data
bits are organized.

Table 1: Nomenclature of Byte-Oriented Integer Encoding Formats
Descriptor Descriptor
Arrangement Length Encoding Abbreviation Names in the Literature
split unary varint-SU v-byte [6], vbyte [4], varint [8], VInt [3], VB [13]

(earlier references [14], [7] do not name the format)
packed unary varint-PU none (format introduced in this paper)
group unary varint-GU none (format introduced in this paper)
split binary varint-SB none
packed binary varint-PB BA [10], varint30 [8]
group binary varint-GB group varint [8], k-wise (k=4) null suppression [17]

We assume that each encoded integer requires at least one
byte, so both binary and unary descriptors can represent
the length n by recording the value n− 1. This reduces the
number of bits required to represent a given length.1

The dimensions listed above provide the basis of a tax-
onomy of byte-oriented encoding formats for integers that
can be encoded in four bytes or less. Selecting one of the
possible options for each dimension determines a position in
the taxonomy. This taxonomy, shown in Table 1, provides a
unifying nomenclature for the encoding formats, several of
which have been described previously under various names.

For example, Grossman’s BA format becomes varint-PB
in our taxonomy, since it is a variable-length encoding of in-
tegers with descriptor bits packed together and representing
the length in binary.

For the unary formats, we follow the natural convention
where the quantity is represented by the number of consec-
utive 1 bits, followed by a terminating 0. We start from the
least significant bit. Thus 0111 represents the number 3.

Accordingly, the vbyte encoding may be viewed as repre-
senting the length − 1 of the encoded representation in the
sequence of continuation bits. For example, a three-byte
integer encoding would look like this:

1xxxxxxx

1xxxxxxx

0xxxxxxx

Notice that the leading bits form the unary number 2, rep-
resenting the length 3. Thus we call this representation
varint-SU, since it is a variable-length representation of in-
tegers with length information split across several bytes and
represented in unary. While unary length representation has
been widely used in bit-oriented encodings, for byte-oriented
encodings the concept of continuation bits obscured their in-
terpretation as unary lengths.

If binary length descriptors are used, the descriptor length
must be fixed in advance, or additional metadata would be
required to store the length of the descriptor itself. For this
reason, all binary formats in the taxonomy use fixed-length
descriptors of 2 bits per integer. Furthermore, since split-
ting a fixed-length k-bit binary descriptor (one bit per byte)
results in a byte-oriented integer encoding that requires at
least k bytes, the split binary encoding format does not of-
fer a competitive compression rate and we do not consider
it further.

1Storing length as n would allow the length zero to represent
an arbitrary constant with zero data bytes. Such an encod-
ing, however, does not in general satisfy the first property
of Definition 1.

There are also additional variations of some of these for-
mats. Bytes of the encoded data may be stored in little-
endian or big-endian order; descriptor bits may be stored
in the least significant or most significant bits. While these
choices are sometimes described as arbitrary conventions, in
practice there are efficiency considerations that make certain
variants attractive for certain machine architectures. For
example, in varint-SU, representing termination as 0 in the
most significant bit allows the common case of a one-byte
integer to be decoded without any shifts or masks. While
traditional decoding algorithms run more efficiently when
the representation preserves native byte ordering, the per-
formance of the SIMD algorithms presented in Section 6
does not depend on the ordering. Without loss of general-
ity, for the remainder of the paper we restrict our attention
to little-endian encodings.

The byte-oriented encoding taxonomy suggests two en-
codings, varint-PU and varint-GU, that, to our knowledge,
have not been previously described.

Varint-PU is similar to varint-SU, but with the descrip-
tor bits packed together in the low-order bits of the first
byte rather than being split across all bytes. (The choice
of low-order bits to hold the descriptor is appropriate for
little-endian encodings on little-endian architectures so that
all data bits for one integer are contiguous. For the same
reason, on big-endian architectures placing the descriptor in
the high-order bits and using big-endian encoding is more
efficient to decode.) The compression rate of varint-PU is
the same as that of varint-SU, since the bits in each encoded
integer are identical but rearranged. The decoding perfor-
mance of varint-PU using unaligned reads, masks, and shifts
in a table-driven algorithm similar to that for varint-PB
is faster than traditional varint-SU, but significantly slower
than the group formats such as varint-GU, described in de-
tail in the next section.

4. THE GROUP ENCODING FORMATS
Within our taxonomy, encoding formats that group sev-

eral integers together provide opportunities for exploiting
SIMD parallelism. These encodings satisfy the following im-
portant property.

Definition 2. We call a byte-oriented encoding byte-
preserving if each byte containing significant bits in the
original (unencoded) integer appears without modification in
the encoded form.

Neither split nor packed formats satisfy this property,
since the descriptor bits are intermingled with data bits in
some bytes. The separation of descriptor bytes from data

descriptor: 
4 fields, 

2 bits each"

1-4 data bytes" 1-4 data bytes" 1-4 data bytes"1-4 data bytes"

integer 0"integer 1"integer 2"integer 3"

increasing byte addresses"

Figure 3: The varint-GB format.

0xDDDDDDDD! 0xCC! 0xAAAA!0xBBBBBB!

increasing byte addresses!

11 00 10 01!

Figure 4: Storing the four integers 0xAAAA, 0xBBBBBB,
0xCC, 0xDDDDDDDD in varint-GB format. The value of
each pair of bits in the descriptor is one less than the
length of the corresponding integer. Byte addresses
increase from right to left, matching the order of
increasing bit significance. The order of pairs of bits
in the descriptor matches the order of the integers.

bytes in group formats allows for more efficient decoding. It
facilitates the use of tables to simplify the decoding process
and avoids bitwise manipulations that are required to elimi-
nate interspersed descriptor bits. In particular, we shall see
in Section 6 that byte-preserving encodings are especially
amenable to decoding with the SIMD techniques described
in this paper.2

There are two classes of group formats, group binary (varint-
GB) and group unary (varint-GU).

In the varint-GB format (called group varint in [8] and
k-wise null supression (with k = 4) in [17]) a group of four
integers is preceded by a descriptor byte containing four 2-
bit binary numbers representing the lengths of the corre-
sponding integers. Figure 3 illustrates this format for one
such group. The actual number of bytes in a group may
vary from 4 to 16. Figure 4 shows how the four hexadec-
imal numbers 0xAAAA, 0xBBBBBB, 0xCC, 0xDDDDDDDD would
be represented. The four integers require, correspondingly,
2 bytes, 3 bytes, 1 byte, and 4 bytes. For each integer, its
length n is represented in the descriptor by the 2-bit binary
value n− 1. Therefore, the descriptor byte contains the val-
ues 01, 10, 00, and 11 respectively. To maintain a consistent
order between descriptor bits and data bytes, we store the
first binary length in the least significant bits, and so on.
Thus the descriptor byte for these four integers is 11001001.

Varint-GB operates on a fixed number of integers occu-
pying a variable number of bytes, storing their lengths in
binary. In contrast, the varint-GU format operates on a
fixed number of bytes encoding a variable number of inte-
gers, storing their lengths in unary.

Varint-GU groups 8 data bytes together along with one
descriptor byte containing the unary representations of the
lengths of each encoded integer. The 8 data bytes may en-
code as few as 2 and as many as 8 integers, depending on
their size. The number of zeros in the descriptor indicates
the number of integers encoded. This format is shown in

2Note that what Anh [1] calls word-aligned is neither byte-
oriented nor byte-preserving as defined in this paper.

increasing byte addresses

8 data bytes
1 descriptor

byte

Figure 5: The varint-GU format.

11001101
increasing	 byte	 addresses	

0xAA 0x00 0x00 0xCC 0xBB 0xBB 0xBB 0xAA

Figure 6: Storing the three integers (0xAAAA,
0xBBBBBB, 0xCC) in varint-G8IU format. The descrip-
tor bits express the unary lengths of the integers.
Since the next integer 0xDDDDDDDD in our example
does not fit in the data block, the block is left in-
complete and padded with 0s, while the descriptor
is padded with 1s.

Figure 5. The block size of 8 is the minimal size that can
use every bit of the descriptor byte; larger multiples of 8
are possible, but did not improve performance in our exper-
iments.

Since not every group of encoded integers fits evenly into
an 8-byte block, we have two variations of the encoding:
incomplete and complete.

In the incomplete block variation, which we call varint-
G8IU, we store only as many integers as fit in 8 bytes, leav-
ing the data block incomplete if necessary.3 The remaining
space is padded with zeros, but is ignored on decoding.4

When there is no additional integer to decode, the final
(most significant) bits of the descriptor will be an unter-
minated sequence of 1 bits.

An example is shown in Figure 6. We use the same four
integers 0xAAAA, 0xBBBBBB, 0xCC and 0xDDDDDDDD to illus-
trate. Encoding these values requires 10 bytes, but we have
only 8 bytes in the block. The first three integers fit into the
block using 6 bytes, leaving 2 bytes of padding. The final
integer 0xDDDDDDDD is left for the next block (not shown).
The descriptor contains the three unary values 01, 011, and
0, and two padding bits 11. These are arranged in the same
order as the integers, giving the descriptor a binary value of
11001101.

In the complete block variation, which we call varint-
G8CU, we always fill all eight bytes in a data block.5 As
before, the number of zero bits in the descriptor indicates the
number of complete integers encoded. In situations where
an integer exceeds the remaining space in the current block,
as much of that integer as fits is placed in the current block.
The remaining bytes of that integer are carried over into the

3In our notations for the encoding, the number 8 represents
the size of the data block.
4There is also a variation of this encoding format that uses
variable size data blocks and avoids padding. Its perfor-
mance characteristics are between those of varint-G8IU and
varint-G8CU described later.
5As before, the number 8 represents the size of the data
block.

increasing byte addresses!

DDDDCCBBBBBBAAAA!…DDDD! 11001101!…01!

Figure 7: Storing four integers (0xAAAA, 0xBBBBBB,
0xCC and 0xDDDDDDDD) in varint-G8CU format. The
last two bytes of the fourth integer carry over to the
subsequent data block, and its descriptor bits carry
over to the subsequent descriptor byte.

15	 14	 13	 12	 11	 10	 	 9	 	 8	 	 7	 	 6	 	 5	 	 4	 	 3	 	 2	 	 1	 	 0	
	
12	 13	 14	 15	 	 8	 	 9	 10	 11	 	 4	 	 5	 	 6	 	 7	 	 0	 	 1	 	 2	 	 3	
	
	 a	 	 b	 	 c	 	 d	 	 e	 	 f	 	 g	 	 h	 	 i	 	 j	 	 k	 	 l	 	 m	 	 n	 	 o	 	 p	
	
	
	 d	 	 c	 	 b	 	 a	 	 h	 	 g	 	 f	 	 e	 	 l	 	 k	 	 j	 	 i	 	 p	 	 o	 	 n	 	 m	
	

src	

dst	

shf	

i	

Figure 8: Using the PSHUFB instruction to reverse the
byte order of four integers in parallel. The shf vector
determines the shuffle sequence used to transform
src to dst.

next data block. Similarly, the corresponding descriptor bits
are carried over to the next block’s descriptor byte.

An example is shown in Figure 7. Again we use the same
four integers 0xAAAA, 0xBBBBBB, 0xCC and 0xDDDDDDDD. The
first three integers and the corresponding descriptor bits
are stored exactly as in varint-G8IU. However, varint-G8CU
handles the fourth integer differently. Its first two bytes are
placed in the first data block, filling it entirely, and the re-
maining two bytes go into the following block. The two
descriptor bits corresponding to these last two bytes go into
the next block’s descriptor byte. Although spread across
two descriptor bytes, the unary value of the descriptor bits
for this fourth integer still equals n−1, where n is the length
of the encoded integer.

5. SIMD ON INTEL/AMD
Facilities for fine-grained parallelism in the SIMD (Single

Instruction, Multiple Data) paradigm are widely available
on modern processors. They were originally introduced into
general-purpose processors to provide vector processing ca-
pability for multimedia and graphics applications. Although
SIMD instructions are available on multiple platforms, we
restricted our focus to Intel-compatible architectures [12]
implemented in current Intel processors in extensive use in
many data centers, as well as forthcoming AMD processors.

In these architectures, a series of SIMD enhancements
have been added over time. Among the current SIMD capa-
bilities are 16-byte vector registers and parallel instructions
for operating on them.

The PSHUFB instruction, introduced with SSSE3 in 2006,
is particularly useful.6 It performs a permutation (“shuffle”)
of bytes in a vector register, allowing the insertion of zeros in

6A similar instruction, vperm, is part of the AltiVec/VMX
instruction set for the PowerPC processor family.

specified positions. PSHUFB has two operands, a location con-
taining the data and a register containing a shuffle sequence.
If we preserve the original value of the data operand, we can
view PSHUFB as transforming a source sequence of bytes src
to a destination sequence dst according to the shuffle se-
quence shf, implementing the following algorithm:

for 0 ≤ i < 16 parallel do
if shf [i] ≥ 0 then

dst [i]← src[shf [i] mod 16]
else

dst [i]← 0
end

In other words, the ith value in the shuffle sequence indi-
cates which source byte to place in the ith destination byte.
If the ith value in the shuffle sequence is negative, a zero is
placed in the corresponding destination byte.

The example illustrated in Figure 8 shows how PSHUFB can
be used to reverse the byte order of four 32-bit integers at
once.

6. SIMD DECODING
Since byte-preserving formats remove leading zero bytes

while retaining the significant bytes intact, the essence of
decoding is reinserting the zero bytes in the right places.
Our discovery is that we can make PSHUFB do virtually all of
the work for many formats. We construct a shuffle sequence
by inserting −1s in a sequence {0, 1, 2, 3, ...}. With this
sequence, the PSHUFB instruction will copy the significant
data bytes while inserting the missing zeros.

An example of using PSHUFB to decode varint-G8IU is
shown in Figure 9. This is the same data represented in
Figure 6.

For a given format, we can precompute what the correct
shuffle sequence is for a particular data block and its cor-
responding descriptor byte. For all possible values of the
descriptor (and sometimes additional state) we build a ta-
ble of any shuffle sequence that might be needed at decode
time.

The table entries also contain a precomputed offset. For
the varint-GB format, the offset indicates how many bytes
were consumed to decode 4 integers; it always outputs 16
bytes. For the varint-GU formats, the offset indicates how
many integers were decoded; it always consumes 8 bytes.

Table construction occurs only once, while table lookup
occurs every time a group is decoded.

15	 14	 13	 12	 11	 10	 	 9	 	 8	 	 7	 	 6	 	 5	 	 4	 	 3	 	 2	 	 1	 	 0	
	
-‐1	 -‐1	 -‐1	 -‐1	 -‐1	 -‐1	 -‐1	 	 5	 -‐1	 	 4	 	 3	 	 2	 -‐1	 -‐1	 	 1	 	 0	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 00	 00	 CC	 BB	 BB	 BB	 AA	 AA	
	
	 	
00	 00	 00	 00	 00	 00	 00	 CC	 00	 BB	 BB	 BB	 00	 00	 AA	 AA	
	

src	

dst	

shf	

i	

Output	 offset	 is	 3	
Figure 9: Using the PSHUFB instruction to decode the
varint-G8IU format.

Given the availability of these tables, the general strategy
of all the decodings is:

1. read a chunk of data and its corresponding descriptor;

2. look up the appropriate shuffle sequence and offset
from the table;

3. perform the shuffle;

4. write the result;

5. advance the input and output pointers.

This approach allows us to decode several integers simul-
taneously with very few instructions. It requires no condi-
tionals, and thus avoids performance penalties due to branch
misprediction. Two techniques make this possible. First,
the logical complexity has been shifted from the code to the
table. Second, the algorithm always reads and writes a fixed
amount and then relies on the table to determine how much
input data or output data it has actually processed.7

Data blocks are not aligned on any fixed boundary. We
depend on the ability of the CPU to perform unaligned reads
and writes efficiently, and we have observed this to be true
on modern Intel processors.

6.1 Details of the Decoding Algorithm
All of the group formats can be decoded using the gener-

alized algorithm shown in Algorithm 1.

Algorithm 1: decodeBlock

Decodes a block of data using SIMD shuffle.
input : src, dst , state
output: src, dst , state

begin
data ← read(src + 1, 16)
entry ← table format [desc, state]
shf ← shuffleSequence(entry)
shuffleAndWrite(data, shf , dst)
src ← src + inputOffset(entry)
dst← dst+ outputOffset(entry)
return src, dst , nextState(entry)

end

Because this algorithm constitutes the inner loop of the
decoding process, it is essential to inline the implementation
to avoid function call overhead. The algorithm takes three
inputs:

• src – a pointer to the input byte stream of encoded
values

• dst – a pointer to the output stream of integers in case
of varint-GB, and varint-G8IU; in the case of varint-
G8CU, dst is a pointer to an output stream of bytes,
since decoding a block of varint-G8CU may result in
writing a portion of a decoded integer.

• state – auxiliary state. This is required only for varint-
G8CU, where it is an integer i, with 0 ≤ i < 4 indicat-
ing the number of bytes modulo 4 of the last integer
written.

7This requires that the input and output buffers always have
at least this amount available to read or write.

The algorithm reads encoded values from the input stream,
outputs decoded integers to the output stream and returns
as its result the new positions of src, dst, and the updated
state.

We always read 16 bytes, the size of the vector register
used by the PSHUFB operation. The number of bytes cor-
responding to a single byte descriptor is 8 for the unary
formats and at most 16 for the binary format. While it is
possible to read only 8 bytes for the unary formats, in our
evaluation we found that doing so did not improve perfor-
mance, and in fact made the implementation slightly slower.

A different table is used for each format. There is a table
entry corresponding to each possible descriptor value and
state value. The table has 256 entries for the varint-GB and
varint-G8IU formats. For varint-G8CU format, the table
has 4 × 256 = 1024 entries, because we have an entry for
each descriptor and state pair, and the state is an integer i,
with 0 ≤ i < 4.

Each table entry logically contains four things:

• a shuffle sequence

• an input offset

• an output offset

• the state value to use for the subsequent block

The shuffleSequence, inputOffset, outputOffset, and nextState
functions are accessors for these fields. For some of the for-
mats, some of these values are constant over all entries in
the table, and are not stored explicitly; the accessors simply
return constant values.

The shuffleAndWrite operation uses the PSHUFB operation
with the provided shuffle sequence to expand the 16 bytes
of data, inserting zeros into the correct positions. It then
writes its result to the destination.

In the varint-GB case, the shuffle sequence is a 16-byte
sequence describing a single PSHUFB operation. A single
PSHUFB is sufficient because the group always contains four
encoded integers, and thus the output never exceeds 16
bytes.

For decoding the varint-GU formats, the shuffle sequence
is a 32-byte sequence specifying two PSHUFB operations. The
second PSHUFB is required for the unary formats because
an 8-byte data block may encode up to 8 integers, which
can expand to 32 bytes. The output of the first PSHUFB is
written to locations beginning at dst, and the output of the
second PSHUFB to locations beginning at dst + 16. To avoid
conditionals, the second shuffle is always performed, even
when the output does not exceed 16 bytes. Since PSHUFB

rearranges the register in place, the corresponding register
needs to be reloaded with the original data before the second
PSHUFB.

For unary formats, the input offset, by which we increment
the src, is always 8 bytes. For varint-G8IU, the output offset
measured in units of decoded integers varies between 2 and
8, except for the last block of a sequence, which may contain
only 1 integer. For varint-G8CU, decoding one block may
result in writing a portion of a decoded integer, so the output
is a byte stream and the offset is measured in byte units. It
varies between 8 and 32 bytes, except for the last block of
the sequence which may output only 1 byte.

In the case of varint-GB, the output offset is always a

constant 4 integers.8 The input offset varies between 4 and
16 bytes.

For all of the encodings, the input offset needs to account
for the additional one byte of the descriptor as well. All
variable offsets are precomputed and stored in the format
table.

For the varint-G8CU format, the table also contains the
new state information indicating the number of bytes in the
last integer to be used to decode the subsequent block.

6.2 Building the Tables
For each of the group formats, the decoding table used

by Algorithm 1 is constructed in advance. The construction
process takes as input a descriptor byte value and a state
value. It builds the shuffle sequence for the entry and com-
putes the input offset, output offset, and next state (unless
they are constant for the format).

We assume we deal only with valid descriptor values, those
which could actually arise from encoding. For varint-GB, all
possible byte values are valid. For the group unary formats,
a descriptor is valid if and only if the distance between con-
secutive zero bits does not exceed 4.

The algorithms for constructing shuffle sequences, offset
values, and the next state value depend on the following
abstract functions:

• num(desc) gives the number of integers whose encod-
ing is completed in the group described by the descrip-
tor value desc. For varint-GB this is always 4. For the
group unary formats, this value is the number of 0
(termination) bits in desc.

• len(desc, i) gives the length of the ith integer in the
group, for each i, 0 ≤ i < num(desc). This is the
length determined by the ith individual bit pair in desc
for varint-GB, or the ith unary value in desc for the
unary formats.

• rem(desc) gives the number of bytes modulo 4 in the
last encoded integer in the group. This is needed only
for varint-G8CU, where it is equal to the number of
leading 1s in the descriptor desc. For the other formats
it is always zero.

Again, the basic idea in constructing a shuffle sequence
is to insert −1s in a sequence {0, 1, 2, 3, ...} representing
the byte positions in one block of the source data being de-
coded. The resulting shuffle sequence is used by the PSHUFB

instruction to copy the significant data bytes while inserting
the missing leading zeros. The details of the construction
are shown in Algorithm 2. The algorithm takes two inputs:

• desc the descriptor value

• state the number of bytes modulo 4 written from the
last integer in the prior group.9

8The varint-GB format requires auxiliary information to
deal with sequences of length not divisible by 4. This may
be done using length information stored separately or the
convention that zero values do not appear in the sequence,
so terminal zeros can be ignored.
9For varint-GB and varint-G8IU, the value of state is always
zero, since only complete integers are written in a given data
block in these formats.

The algorithm produces one output, shf, the shuffle sequence
to be used for the given descriptor and state. The first loop
iterates over every completed integer in the group corre-
sponding to the given descriptor. For each completed in-
teger in the group, the inner loop sets the shuffle sequence
to move the encoded bytes from the source of the shuffle
operation, inserting −1s to produce the leading zeros nec-
essary to complete the decoded integer. Here the variable j
advances over the source data positions in the data block,
while the variable k advances over the positions in the shuffle
sequence, which correspond to destination positions of the
shuffle operation.

The concluding loop only executes for varint-G8CU. It
sets the remainder of the shuffle sequence to transfer encoded
bytes from the source for the last incomplete integer in the
group.

Algorithm 2: constructShuffleSequence

input : desc, state
output: shf
begin

j, k ← 0
s← 4− state
for 0 ≤ i < num(desc) do

for 0 ≤ n < s do
if n < len(desc, i) then

shf [k]← j
j ← j + 1

else
shf [k]← −1

end
k ← k + 1

end
s← 4

end
for 0 ≤ n < rem(desc) do

shf [k]← j
j ← j + 1
k ← k + 1

end
return shf

end

Computing input offsets is easy. For the unary formats
the input offset is always 9; we always consume a block of
8 bytes of data and 1 descriptor byte. For the group binary
format varint-GB, the input offset for a given descriptor desc
is

1 +

3∑
i=0

len(desc, i)

which is the sum of the lengths of the integers in the group
plus 1 for the descriptor byte.

The output offset for varint-GB and varint-G8IU is equal
to num(desc) integers (which is always 4 for varint-GB). The
output offset is

4 · num(desc)− state+ rem(desc)

for the varint-G8CU format.
The state value for the subsequent block is always 0 for

varint-GB and varint-G8IU (and the state can be ignored
for these formats). For varint-G8CU it is rem(desc).

Table 2: Decoding rates in millions of integers per second; larger is better
encoding algorithm Wikipedia Reuters GOV2
varint-SU traditional 424 516 491
varint-SU SIMD 547 640 477
varint-GB mask table 766 831 763
varint-GB SIMD 1159 1276 1024
varint-G8IU SIMD 1321 1518 1059
varint-G8CU SIMD 1231 1398 1033

Table 3: Compression ratios; smaller is better
encoding Wikipedia Reuters GOV2
varint-SU 0.34 0.30 0.32
varint-GB 0.38 0.35 0.37
varint-G8IU 0.37 0.33 0.35
varint-G8CU 0.36 0.33 0.34

6.3 Applying SIMD to varint-SU
Although varint-SU is not a byte-preserving encoding, Al-

gorithm 1 can be applied as a component for decoding it.
By efficiently gathering the descriptor bits from each byte
into a single value for a table lookup, we can treat a se-
quence of 8 consecutive varint-SU-encoded bytes almost as
if they were a varint-GU-encoded block. The Intel instruc-
tion PMOVMSKB, which gathers the most-significant bits from
8 bytes into a single byte, provides the needed functionality.
After applying a shuffle as in Algorithm 1, the descriptor
bits must be “squeezed out” to finish the decoding; this re-
moval of the interspersed descriptor bits requires masks and
shifts. Despite this additional step, the SIMD implementa-
tion still outperforms the traditional method in most cases
as shown in Section 7.

7. EVALUATION
We used three corpora in our evaluation: Wikipedia [20]

(6M documents10, 27 GB), Reuters RCV1 [16] (0.8M docu-
ments, 2.5 GB), and GOV2 [15] (25M documents, 426 GB).
To satisfy the resource constraints of our test environment,
we randomly sampled 50% of the Wikipedia documents and
15% of GOV2. We removed all XML/HTML markup and
five common stopwords (a, an, and, of, the) and applied
stemming to conflate singular and plural nouns.

The C++ implementation was compiled using gcc 4.5.1.11

Measurements were done using a single-threaded process on
an Intel Xeon X5680 processor (3.3GHz, 6 cores, 12 MB Intel
Smart Cache shared across all cores), with 24 GB DDR3
1333 MHz RAM. Measurements are done with all of the
input and output data in main memory.

Decoding speed results are shown in Table 2. For each
corpus, this table shows the decoding speed measured in
millions of integers per second; the fastest result is shown
in boldface. In every case, a SIMD algorithm strongly out-
performed a conventional algorithm; in all cases, the imple-

10This counts all documents from the English Wikipedia
dump except empty documents and redirect pages.

11It uses the GCC intrinsics __builtin_ia32_pshufb128,
__builtin_ia32_loaddqu, and __builtin_ia32_storedqu
to invoke the PSHUFB and unaligned load and store
instructions.

mentation of our varint-G8IU format was fastest. The “tra-
ditional” implementation of varint-SU shown in the table is
our best implementation for this encoding using traditional
techniques. The “mask table” implementation of varint-GB
is our implementation of the technique described in Dean [8].

Compression ratios are shown in Table 3. Here the com-
pression ratio indicates the ratio between the bytes required
for the integers encoded in the format and their original size
of 4 bytes each. Compression ratios depend only on the
encoding and not on the implementation.

7.1 Comparison with Other Evaluations
There seems to be no standard benchmark for measur-

ing integer decoding implementations in the information re-
trieval field. Even with conventional test corpora, there
are many variations possible in producing the posting lists.
Evaluation methods are also not standardized. Some re-
search on compression only reports compression rate but not
speed. Speed is reported using different metrics and data.

Büttcher et al. [4] start with the GOV2 corpus and the
10000 queries from the efficiency task of the TREC Terabyte
Track 2006. They indicate they used components of the
Wumpus search engine to index the GOV2 corpus, and then
decoded the posting lists for non-stopword terms contained
in the query set. They do in-memory measurements, but
also compute a “cumulative overhead” for decoding and disk
I/O by estimating the I/O time based on compression rate.

Schlegel et al. [17] use 32MB synthetic data sets con-
structed by sampling positive 32-bit integers from the Zipf
distribution with different parameter values. They measure
the amount of uncompressed data that can be processed per
second.

Dean [8] uses millions of integers decoded per second as
a performance metric (as we do), but he does not provide
details on the data or evaluation method used in his mea-
surements.

We measured performance on standard corpora decoding
every posting list once, repeating the test to achieve stable
timing. While it is easy to reproduce, this method does
not account for different term distributions in queries. To
account for different frequencies of terms in real queries, one
needs a representative query mix. Since GOV2 and Reuters

RCV1 are not used in real world search tasks, such a mix is
not available.

Creation of a standard benchmark containing several se-
quences of integers with distinct but representative statis-
tical characteristics would allow meaningful comparisons of
different implementations.

8. CONCLUSIONS AND FUTURE WORK
We discovered a taxonomy for variable-length integer en-

coding formats. This led us to identify some new encodings
that offer advantages over previously known formats. We
identified the byte-preserving property of encoding formats
which makes them particularly amenable to parallel decod-
ing with SIMD instructions. The SIMD-based algorithms
that we developed outperformed the traditional methods by
300%, and the best previously published methods by over
50%. Furthermore the new group unary formats offer bet-
ter compression than the group binary format on all of the
corpora tested.

Schlegel et al. [17] also reported success applying SIMD
to Elias γ [9], which is not aligned on byte boundaries at
all. Further investigations are needed to see whether SIMD
techniques can be similarly applied to other encodings which
are not aligned on byte boundaries, such as Simple-9 [2],
PForDelta [21] and VSEncoding [18].

We restricted our investigation to integers that can be
encoded in four bytes or less. We believe, however, that
some of the encodings that we introduced could be easily
extended to larger values.

SIMD instructions, a powerful but under-utilized resource,
offer the opportunity for significant performance improve-
ments in modern search engines.

Acknowledgments
We thank Thomas London for suggestions on a draft of this
paper and Bill Stasior for supporting this research.

References
[1] V. N. Anh. Impact-Based Document Retrieval. PhD

thesis, University of Melbourne, April 2004.

[2] V. N. Anh and A. Moffat. Inverted index compression
using word-aligned binary codes. Information Retrieval,
8(1):151–166, 2005.

[3] Apache Software Foundation. Lucene 1.4.3 doc-
umentation. http://lucene.apache.org/java/1_4_3/

fileformats.html, 2004.

[4] S. Büttcher, C. L. A. Clarke, and G. V. Cormack. Infor-
mation Retrieval: Implementing and Evaluating Search
Engines. MIT Press, Cambridge, MA, 2010.

[5] S. Büttcher, C. L. A. Clarke, and G. V. Cor-
mack. Information retrieval: Implementing and eval-
uating search engines, addenda for chapter 6: In-
dex compression. http://www.ir.uwaterloo.ca/book/

addenda-06-index-compression.html, 2010.

[6] W. B. Croft, D. Metzler, and T. Strohman. Search
Engines: Information Retrieval in Practice. Pearson
Education, Boston, 2010.

[7] D. Cutting and J. Pedersen. Optimizations for dynamic
inverted index maintenance. In Proceedings of the 13th
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SI-
GIR ’90, pages 405–411, New York, NY, USA, 1990.
ACM.

[8] J. Dean. Challenges in building large-scale information
retrieval systems. Keynote, WSDM 2009, http://

research.google.com/people/jeff/WSDM09-keynote.pdf,
February 2009.

[9] P. Elias. Universal codeword sets and representations of
the integers. IEEE Transactions on Information The-
ory, 21(2):194–203, 1975.

[10] D. A. Grossman. Integrating Structured Data and Text:
A Relational Approach. PhD thesis, George Mason Uni-
versity, 1995.

[11] H. S. Heaps. Storage analysis of a compression coding
for a document database. INFOR, 10(1):47–61, Febru-
ary 1972.

[12] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developers Manual. Intel Corporation, Santa
Clara, California, USA, September 2010. Version 37.

[13] C. D. Manning, P. Raghavan, and H. Schütze. Intro-
duction to Information Retrieval. Cambridge University
Press, 2008.

[14] MIDI Manufacturers Association. MIDI 1.0 Specifica-
tion, 1982-2001.

[15] NIST. GOV2 collection. http://ir.dcs.gla.ac.uk/test_
collections/, 2010.

[16] Reuters. Reuters RCV1 Corpus. http://trec.nist.gov/
data/reuters/reuters.html, 2010.

[17] B. Schlegel, R. Gemulla, and W. Lehner. Fast integer
compression using SIMD instructions. In Proceedings
of the Sixth International Workshop on Data Manage-
ment on New Hardware (DaMoN 2010), Indianapolis,
Indiana, June 7 2010.

[18] F. Silvestri and R. Venturini. VSEncoding: efficient
coding and fast decoding of integer lists via dynamic
programming. In Proceedings of the 19th ACM interna-
tional conference on Information and knowledge man-
agement, CIKM ’10, pages 1219–1228, New York, NY,
USA, 2010. ACM.

[19] T. Westmann, D. Kossmann, S. Helmer, and G. Mo-
erkotte. The implementation and performance of com-
pressed databases. SIGMOD Rec., 29:55–67, September
2000.

[20] Wikimedia Foundation. Wikipedia database download
(english). http://en.wikipedia.org/wiki/Wikipedia:

Database_download, September 2010.

[21] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz.
Super-scalar RAM-CPU cache compression. In Pro-
ceedings of the 22nd International Conference on Data
Engineering, ICDE ’06, pages 59–, Washington, DC,
USA, 2006. IEEE Computer Society.

