TODAY

• Relational Algebra
 – Group-By Aggregate

• Relational Calculus

• Examples
GROUP BY AGGREGATE

- is part of the so-called extended RA
- helps us to compute counts, sums, min, max, ...

Examples
- What is the average age of the customers?
- How many people bought an iPad?
GROUP BY AGGREGATE

Notation: $\gamma_{X,Agg}(Y)(R)$

- **group by** the attributes in X
- **aggregate** the attribute in Y
 - SUM, COUNT, AVG (average), MIN, MAX

- Output schema: $X +$ an extra (numerical) attribute
Example

Person

<table>
<thead>
<tr>
<th>SSN</th>
<th>name</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>934729837</td>
<td>Paris</td>
<td>24</td>
</tr>
<tr>
<td>123123645</td>
<td>John</td>
<td>30</td>
</tr>
<tr>
<td>384475687</td>
<td>Arun</td>
<td>21</td>
</tr>
</tbody>
</table>

$\gamma_{AVG(age)}(Person)$

<table>
<thead>
<tr>
<th>AVG(age)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>
Example

Person

<table>
<thead>
<tr>
<th>SSN</th>
<th>name</th>
<th>age</th>
<th>phoneNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>934729837</td>
<td>Paris</td>
<td>24</td>
<td>608-374-8422</td>
</tr>
<tr>
<td>934729837</td>
<td>Paris</td>
<td>24</td>
<td>603-534-8399</td>
</tr>
<tr>
<td>123123645</td>
<td>John</td>
<td>30</td>
<td>608-321-1163</td>
</tr>
<tr>
<td>384475687</td>
<td>Arun</td>
<td>21</td>
<td>206-473-8221</td>
</tr>
</tbody>
</table>

\[\gamma_{SSN, \text{COUNT}(\text{phoneNumber})}(\text{Person}) \]

<table>
<thead>
<tr>
<th>SSN</th>
<th>\text{COUNT}(\text{phoneNumber})</th>
</tr>
</thead>
<tbody>
<tr>
<td>934729837</td>
<td>2</td>
</tr>
<tr>
<td>123123645</td>
<td>1</td>
</tr>
<tr>
<td>384475687</td>
<td>1</td>
</tr>
</tbody>
</table>
RELATIONAL CALCULUS
RELATIONAL QUERY LANGUAGES

• **Declarative**: Tuple Relational Calculus (TRC)
 Domain Relational Calculus (DRC)
 – describe what a user wants, rather than how to compute it

• **Procedural**: Relational Algebra (RA)
 – operational, useful for representing execution plans
Relational Calculus

- declarative query language
- simple subset of First-Order Logic
 - TRC: variables range over *tuples*
 - DRC: variables range over *domain elements*

Example

- RA: \(\sigma_{\text{age}>24}(\text{Person}) \)
- TRC: \(\{ t \mid t \in \text{Person} \land t.\text{age} > 24 \} \)
Tuple Relational Calculus

A query in TRC has the form: \(\{ t \mid \phi(t) \} \)

- The query returns all tuples \(t \) for which the formula \(\phi(t) \) evaluates to **true**
- A formula is **recursively** defined, starting with simple *atomic formulas*, and building more complex formulas using the logical operators
• an atomic formula can be:
 – $t \in R$
 – $s.A \ op \ t.B$
 – $s.A \ op \ constant$
• a formula is recursively defined from formulas p, q:
 – $\neg p$, $p \land q$, $p \lor q$, $p \implies q$
 – $\exists t\ (p(t))$
 – $\forall t\ (p(t))$
TRC Example

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color)

• $\sigma_{\text{rating} > 1 \land \text{age} > 30}(\text{Sailors})$
• $\{ t \mid t \in \text{Sailors} \land t.\text{rating} > 1 \land t.\text{age} > 30 \}$

atomic formulas
Free and Bound Variables

Let the TRC query \{t \mid \phi(t)\}

- The use of quantifiers \(\forall t, \exists t\) in a formula binds the variable \(t\)
 - a variable that is not bound is free
- The variable \(t\) that appears to the left of | must be the only free variable in the formula \(\phi(t)\)
TRC Example

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color)

• $\pi_{sname}(\sigma_{rating>1}(\text{Sailors}))$
• $\{t \mid \exists s \in \text{Sailors} \ (s\.rating > 1 \land t\.sname = s\.sname)\}$

Convention: the attributes of the free variable t are exactly the ones mentioned in the formula!
Codd’s Theorem

• **Codd’s Theorem**: Every RA query can be expressed as a *safe* query in TRC/DRC; the converse is also true

• A query language is *relationally complete* if it can express every query that is expressible in RA/RC
More Examples

- **Sailors** \((\text{sid, sname, rating, age})\)
- **Reserves** \((\text{sid, bid, day})\)
- **Boats** \((\text{bid, bname, color})\)

Q1: What are the names of the sailors who have reserved boat #100?

\[
\{ t \mid \exists s \in \text{Sailors}, \exists r \in \text{Reserves} (s.\text{sid} = r.\text{sid} \land r.\text{bid} = 100 \land t.\text{sname} = s.\text{sname}) \}
\]
More Examples

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color)

Q2: Find the names of the sailors who have reserved at least two different boats

Q3: Find the names of the sailors who have reserved all ‘470’ boats
MORE EXAMPLES

Product (pid, name, price, category, maker-cid)
Purchase (buyer-ssn, seller-ssn, store, pid)
Company (cid, name, country)
Person (ssn, name, phone, city)

Q4: Find the phone numbers of people who bought iPads from Fred (the salesman)

Q5: Find the names of people who bought products from the USA
More Examples

Product (pid, name, price, category, maker-cid)
Purchase (buyer-ssn, seller-ssn, store, pid)
Company (cid, name, country)
Person (ssn, name, phone, city)

Q6: Find the names of people who bought products from the USA, but not from Greece

Q7: Find the names of people who bought products from the USA, and live in Madison
More Examples (Aggregate)

- **Product** (pid, name, price, category, maker-cid)
- **Purchase** (buyer-ssn, seller-ssn, store, pid)
- **Company** (cid, name, country)
- **Person** (ssn, name, phone, city)

Q8: Find the total value of products sold by Fred (the salesman)

Q9: Find the average price of computers made in Greece
More Examples: Beers

Likes (drinker, beer)
Frequents (drinker, bar)
Serves (bar, beer)

• Find the bars that serve all beers that Fred likes
More Examples: Beers

Likes (drinker, beer)
Frequents (drinker, bar)
Serves (bar, beer)

- **Average drinker**: frequents some bar that serves some beer they like
- **Prudent drinker**: frequents only bars that serve some beer they like
- **Paranoid drinker**: frequents only bars that serve only beers they like