THE B+ TREE INDEX

CS 564- Fall 2015

ACKs: Jignesh Patel, AnHai Doan

RECAP

* We have the following query:
SELECT *
FROM Sales
WHERE price > 100 ;

 How do we organize the file to answer this query
efficiently?

INDEXES

Two main types of indexes

* Hash index:
— good for equality search

— in expectation O(1) I/0s and CPU performance for
search and insert

* B+ treeindex:
— good for range and equality search
— O(logr(N)) 1/0 cost for search, insert and delete.

THE B+ TREE INDEX

dynamic tree-structured index
— adjusted to be height-balanced

supports efficient equality and range search

widely used in many DBMSs (SQLite uses it for
example)

B+ TREE BASICS

 d =the order of the tree

 Each node containsd < m < 2d entries
— minimum 50% occupancy at all times
— exception: the root can contain 1 < m < 2d entries

* The cost of an insert/deleteis 0(logF (N)) [/0s

— F = fanout of a node
— N = # leaf pages

B+ TREE INDEX BASICS

Non-leaf 4///////////,L

Nodes S

! '
— [g\ - [&\ [&\ - [4\

Leaf Nodes (sorted by search key)

NON-LEAF NODE

* Annon-leaf node with m entries has m+1 pointers to
lower-level nodes

index entries
[|

Pr| K1| Py K2|P
| |

ST PO

page with
values 2K,

Pointer to a Pointer to a page Pointer to a page
page with with values s.t. with values s.t.,
Values <K, K,< Values < K, K,< Values < K;

LEAF NODE

A leaf node with m entries has
— m pointers to the data records (rids)

— a pointer to the next leaf

data entries

-

Po

Ry
|

K4

R,

Pn41
1 =
Next

Prev
Page
Pointer

;

;

Page
Pointer

B+ TREE IN PRACTICE

* Typical order: 100. Typical fill-factor: 67%.
— average fanout = 133

* Typical capacities:
— Height 4: 1334 =312,900,700 records
— Height 3: 1333 = 2,352,637 records

* Can often hold top levels in buffer pool:
— Level 1= 1 page = 8KB
—- Level2= 133 pages= 1MB
— Level 3=17,689 pages =133 MB

B+ TREE OPERATIONS

A B+ Tree supports the following operations

* equality search
* rangesearch

* insert

* delete

* bulkload

B+ TREE: SEARCH

start from root

examine index entriesin non-leaf nodesto find the
correct child

traverse down the tree until a leafnode is reached

Non-leaf nodes can be searched using a binary or a
linear search

B+ TREE: INSERT

 Find correctleafnodeL

* InsertdataentryinL
— If L has enough space, DONE!
— Else, must split L (into L and a new node L,)
* Redistribute entries evenly, copy up middle key
* Insert index entry pointing to L, into parent of L

* This can propagate recursively to other nodes!

— To split non-leaf node, redistribute entries evenly, but
pushing up the middle key

B+ TREE: DELETE

* Find leaf node L where entry belongs

* Remove the entry
— If L is at least half-full, DONE!

— If L has only d-1 entries,
* Try to re-distribute, borrowing from sibling

* If re-distribution fails, merge L and sibling

* If a merge occurred, we must delete an entry from
the parentof L

DUPLICATES

* Duplicate Keys: many data entries with the same
key value
* Solution 1:
— All entries with a given key value reside on a single page
— Use overflow pages!
* Solution 2:

— Allow duplicate key values in data entries
— Modify search

