DECOMPOSITION & SCHEMA NORMALIZATION

CS 564- Spring 2018

ACKs: Dan Suciu, Jignesh Patel, AnHai Doan
WHAT IS THIS LECTURE ABOUT?

• Bad schemas lead to redundancy
• To “correct” bad schemas: decompose relations
 – lossless-join
 – dependency preserving
• Desired normal forms
 – BCNF
 – 3NF
DB DESIGN THEORY

• Helps us identify the “bad” schemas and improve them
 1. express constraints on the data: functional dependencies (FDs)
 2. use the FDs to decompose the relations

• The process, called normalization, obtains a schema in a “normal form” that guarantees certain properties
 – examples of normal forms: BCNF, 3NF, ...
Schema Decomposition
WHAT IS A DECOMPOSITION?

We decompose a relation $R(A_1, ..., A_n)$ by creating

- $R_1(B_1, .., B_m)$
- $R_2(C_1, ..., C_l)$
- where $\{B_1, ..., B_m\} \cup \{C_1, ..., C_l\} = \{A_1, ..., A_n\}$

- The instance of R_1 is the projection of R onto $B_1, .., B_m$
- The instance of R_2 is the projection of R onto $C_1, .., C_l$
EXAMPLE: DECOMPOSITION

<table>
<thead>
<tr>
<th>SSN</th>
<th>name</th>
<th>age</th>
<th>phoneNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>934729837</td>
<td>Paris</td>
<td>24</td>
<td>608-374-8422</td>
</tr>
<tr>
<td>934729837</td>
<td>Paris</td>
<td>24</td>
<td>603-534-8399</td>
</tr>
<tr>
<td>123123645</td>
<td>John</td>
<td>30</td>
<td>608-321-1163</td>
</tr>
<tr>
<td>384475687</td>
<td>Arun</td>
<td>20</td>
<td>206-473-8221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSN</th>
<th>name</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>934729837</td>
<td>Paris</td>
<td>24</td>
</tr>
<tr>
<td>123123645</td>
<td>John</td>
<td>30</td>
</tr>
<tr>
<td>384475687</td>
<td>Arun</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSN</th>
<th>phoneNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>934729837</td>
<td>608-374-8422</td>
</tr>
<tr>
<td>934729837</td>
<td>603-534-8399</td>
</tr>
<tr>
<td>123123645</td>
<td>608-321-1163</td>
</tr>
<tr>
<td>384475687</td>
<td>206-473-8221</td>
</tr>
</tbody>
</table>

CS 564 [Spring 2018] - Paris Koutris 6
What should a good decomposition achieve?

1. minimize redundancy
2. avoid information loss (lossless-join)
3. preserve the FDs (dependency preserving)
4. ensure good query performance
EXAMPLE: INFORMATION LOSS

<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
<th>phoneNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paris</td>
<td>24</td>
<td>608-374-8422</td>
</tr>
<tr>
<td>John</td>
<td>24</td>
<td>608-321-1163</td>
</tr>
<tr>
<td>Arun</td>
<td>20</td>
<td>206-473-8221</td>
</tr>
</tbody>
</table>

Decompose into:

- $R_1(\text{name, age})$
- $R_2(\text{age, phoneNumber})$

We can’t figure out which phoneNumber corresponds to which person!
A schema decomposition is **lossless-join** if for any initial instance $R, R = R'$.
A LOSSLESS-JOIN CRITERION

Starting with:
• a relation \(R(A) \) + set \(F \) of FDs
• a decomposition of \(R \) into \(R_1(A_1) \) and \(R_2(A_2) \)

we say that a decomposition is lossless-join if and only if at least one of the following FDs is in \(F^+ \) (the closure of \(F \)):

1. \(A_1 \cap A_2 \rightarrow A_1 \)
2. \(A_1 \cap A_2 \rightarrow A_2 \)
EXAMPLE

- relation \(R(A, B, C, D) \)
- FD \(A \rightarrow B, C \)

Lossless-join
- decomposition into \(R_1(A, B, C) \) and \(R_2(A, D) \)
- \(\{A, B, C\} \cap \{A, D\} = \{A\} \)
- For \(R_1 \) we have indeed \(A \rightarrow B, C \)

Not lossless-join
- decomposition into \(R_1(A, B, C) \) and \(R_2(D) \)
Given \(R \) and a set of FDs \(F \), we decompose \(R \) into \(R_1 \) and \(R_2 \). Suppose:

- \(R_1 \) has a set of FDs \(F_1 \)
- \(R_2 \) has a set of FDs \(F_2 \)
- \(F_1 \) and \(F_2 \) are computed from \(F \)

A decomposition is \textit{dependency preserving} if by enforcing \(F_1 \) over \(R_1 \) and \(F_2 \) over \(R_2 \), we can enforce \(F \) over \(R \)
GOOD EXAMPLE

Person(SSN, name, age, canDrink)

• \(SSN \rightarrow name, age \)
• \(age \rightarrow canDrink \)

decomposes into

• \(R_1(SSN, name, age) \)
 – \(SSN \rightarrow name, age \)
• \(R_2(age, canDrink) \)
 – \(age \rightarrow canDrink \)
BAD EXAMPLE

\(R(A, B, C) \)
- \(A \rightarrow B \)
- \(B, C \rightarrow A \)

Decomposes into:
- \(R_1(A, B) \)
 - \(A \rightarrow B \)
- \(R_2(A, C) \)
 - no FDs here!!

\[\begin{array}{|c|c|}
\hline
A & B \\
\hline
a_1 & b \\
\hline
a_2 & b \\
\hline
\end{array} \]

\[\begin{array}{|c|c|}
\hline
A & C \\
\hline
a_1 & c \\
\hline
a_2 & c \\
\hline
\end{array} \]

The recovered table violates \(B, C \rightarrow A \).
NORMAL FORMS

A normal form represents a “good” schema design:

- 1NF (flat tables/atomic values)
- 2NF
- 3NF
- BCNF
- 4NF
- ...

more restrictive
BCNF Decomposition
A relation R is in **BCNF** if whenever $X \rightarrow B$ is a non-trivial FD, then X is a **superkey** in R.

Equivalent definition: for every attribute set X

- either $X^+ = X$
- or $X^+ = \text{all attributes}$
BCNF Example 1

<table>
<thead>
<tr>
<th>SSN</th>
<th>name</th>
<th>age</th>
<th>phoneNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>934729837</td>
<td>Paris</td>
<td>24</td>
<td>608-374-8422</td>
</tr>
<tr>
<td>934729837</td>
<td>Paris</td>
<td>24</td>
<td>603-534-8399</td>
</tr>
<tr>
<td>123123645</td>
<td>John</td>
<td>30</td>
<td>608-321-1163</td>
</tr>
<tr>
<td>384475687</td>
<td>Arun</td>
<td>20</td>
<td>206-473-8221</td>
</tr>
</tbody>
</table>

\[SSN \rightarrow name, age \]

- **key** = \(\{ SSN, phoneNumber \} \)
- \(SSN \rightarrow name, age \) is a “bad” FD
- The above relation is **not** in BCNF!
BCNF EXAMPLE 2

<table>
<thead>
<tr>
<th>SSN</th>
<th>name</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>934729837</td>
<td>Paris</td>
<td>24</td>
</tr>
<tr>
<td>123123645</td>
<td>John</td>
<td>30</td>
</tr>
<tr>
<td>384475687</td>
<td>Arun</td>
<td>20</td>
</tr>
</tbody>
</table>

\[SSN \rightarrow \text{name, age} \]

- **key** = \{SSN\}
- The above relation is in BCNF!
BCNF Example 3

<table>
<thead>
<tr>
<th>SSN</th>
<th>phoneNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>934729837</td>
<td>608-374-8422</td>
</tr>
<tr>
<td>934729837</td>
<td>603-534-8399</td>
</tr>
<tr>
<td>123123645</td>
<td>608-321-1163</td>
</tr>
<tr>
<td>384475687</td>
<td>206-473-8221</td>
</tr>
</tbody>
</table>

- **key** = \{SSN, phoneNumber\}
- The above relation is in BCNF!
- Is it possible that a binary relation is not in BCNF?
BCNF DECOMPOSITION

• Find an FD that violates the BCNF condition

\[A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m \]

• Decompose \(R \) to \(R_1 \) and \(R_2 \):

• Continue until no BCNF violations are left

\(R_1 \) \(R_2 \)

B’s \(\text{remaining attributes} \) A’s
EXAMPLE

<table>
<thead>
<tr>
<th>SSN</th>
<th>name</th>
<th>age</th>
<th>phoneNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>934729837</td>
<td>Paris</td>
<td>24</td>
<td>608-374-8422</td>
</tr>
<tr>
<td>934729837</td>
<td>Paris</td>
<td>24</td>
<td>603-534-8399</td>
</tr>
<tr>
<td>123123645</td>
<td>John</td>
<td>30</td>
<td>608-321-1163</td>
</tr>
<tr>
<td>384475687</td>
<td>Arun</td>
<td>20</td>
<td>206-473-8221</td>
</tr>
</tbody>
</table>

- The FD $SSN \rightarrow name, age$ violates BCNF
- Split into two relations R_1, R_2 as follows:
EXAMPLE CONT’D

\[\text{SSN} \rightarrow \text{name, age} \]

<table>
<thead>
<tr>
<th>SSN</th>
<th>name</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>934729837</td>
<td>Paris</td>
<td>24</td>
</tr>
<tr>
<td>123123645</td>
<td>John</td>
<td>30</td>
</tr>
<tr>
<td>384475687</td>
<td>Arun</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSN</th>
<th>phoneNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>934729837</td>
<td>608-374-8422</td>
</tr>
<tr>
<td>934729837</td>
<td>603-534-8399</td>
</tr>
<tr>
<td>123123645</td>
<td>608-321-1163</td>
</tr>
<tr>
<td>384475687</td>
<td>206-473-8221</td>
</tr>
</tbody>
</table>
BCNF DECOMPOSITION PROPERTIES

The BCNF decomposition:

– removes certain types of redundancy
– is lossless-join
– is not always dependency preserving
BCNF IS LOSSLESS-JOIN

Example:

\[R(A, B, C) \text{ with } A \rightarrow B \text{ decomposes into: } R_1(A, B) \text{ and } R_2(A, C) \]

- The BCNF decomposition always satisfies the lossless-join criterion!
The BCNF decomposition is:

- $R_1(A, B)$ with FD $A \rightarrow B$
- $R_2(A, C)$ with no FDs
BCNF EXAMPLE (1)

Books (author, gender, booktitle, genre, price)
- author → gender
- booktitle → genre, price

What is the candidate key?
- (author, booktitle) is the only one!

Is is in BCNF?
- No, because the left hand side of both (not trivial) FDs is not a superkey!
BCNF Example (2)

Books (author, gender, booktitle, genre, price)
• author → gender
• booktitle → genre, price

Splitting Books using the FD author → gender:
• Author (author, gender)
 FD: author → gender in BCNF!
• Books2 (authos, booktitle, genre, price)
 FD: booktitle → genre, price not in BCNF!
BCNF EXAMPLE (3)

Books (author, gender, booktitle, genre, price)

- *author* \rightarrow *gender*
- *booktitle* \rightarrow *genre, price*

Splitting **Books** using the FD *author* \rightarrow *gender*:

- **Author** (author, gender)

 FD: *author* \rightarrow *gender* in BCNF!

- Splitting **Books2** (author, booktitle, genre, price):
 - **BookInfo** (booktitle, genre, price)

 FD: *booktitle* \rightarrow *genre, price* in BCNF!
 - **BookAuthor** (author, booktitle) in BCNF!
THIRD NORMAL FORM (3NF)
A relation R is in **3NF** if whenever $X \rightarrow A$, one of the following is true:

- $A \in X$ (trivial FD)
- X is a superkey
- A is part of some key of R (prime attribute)

BCNF implies 3NF !!
3NF CONT’D

- **Example**: $R(A, B, C)$ with $A, B \rightarrow C$ and $C \rightarrow A$
 - is in 3NF. Why?
 - is not in BCNF. Why?

- Compromise used when BCNF not achievable: *aim for BCNF and settle for 3NF*

- Lossless-join and dependency preserving decomposition into a collection of 3NF relations is always possible!
3NF ALGORITHM

1. Apply the algorithm for BCNF decomposition until all relations are in 3NF (we can stop earlier than BCNF)
2. Compute a minimal basis F' of F
3. For each non-preserved FD $X \rightarrow A$ in F', add a new relation $R(X, A)$
3NF EXAMPLE (1)

Start with relation \(R \) (A, B, C, D) with FDs:

- \(A \rightarrow D \)
- \(A, B \rightarrow C \)
- \(A, D \rightarrow C \)
- \(B \rightarrow C \)
- \(D \rightarrow A, B \)

Step 1: find a BCNF decomposition

- \(R1 \) (B, C)
- \(R2 \) (A, B, D)
3NF EXAMPLE (2)

Start with relation R (A, B, C, D) with FDs:

- $A \rightarrow D$
- $A, B \rightarrow C$
- $A, D \rightarrow C$
- $B \rightarrow C$
- $D \rightarrow A, B$

Step 2: compute a minimal basis of the original set of FDs:

- $A \rightarrow D$
- $B \rightarrow C$
- $D \rightarrow A$
- $D \rightarrow B$
Start with relation R (A, B, C, D) with FDs:

- $A \rightarrow D$
- $A, B \rightarrow C$
- $A, D \rightarrow C$
- $B \rightarrow C$
- $D \rightarrow A, B$

Step 3: add a new relation for any FD in the basis that is not satisfied:

- all the dependencies in F' are satisfied!
- the resulting decomposition R_1, R_2 is also BCNF!
IS NORMALIZATION ALWAYS GOOD?

• **Example**: suppose A and B are always used together, but normalization says they should be in different tables
 – decomposition might produce unacceptable performance loss

• **Example**: data warehouses
 – huge historical DBs, rarely updated after creation
 – joins expensive or impractical