RELATIONAL OPERATORS #1

CS 564- Spring 2018

ACKs: Jeff Naughton, Jignesh Patel, AnHai Doan
WHAT IS THIS LECTURE ABOUT?

Algorithms for relational operators:
• select
• project
ARCHITECTURE OF A DBMS

query

Query Execution

data access

Storage Manager

I/O access
LOGICAL VS PHYSICAL OPERATORS

• Logical operators
 – *what* they do
 – e.g., union, selection, project, join, grouping

• Physical operators
 – *how* they do it
 – e.g., nested loop join, sort-merge join, hash join, index join
EXAMPLE QUERY

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name
AND Q.city='Madison'

• Assume that Person has a B+ tree index on city
EXAMPLE: LOGICAL PLAN

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name
AND Q.city='Madison'

PROJECT on buyer
JOIN buyer = name

SELECT city = 'Madison'

Purchase
Person
EXAMPLE: PHYSICAL PLAN

```
SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer = Q.name
AND Q.city = 'Madison'
```
Selection
SELECT OPERATOR

access path = way to retrieve tuples from a table

- **File Scan**
 - scan the entire file
 - I/O cost: $O(N)$, where $N = \#$pages

- **Index Scan**:
 - use an index available on some predicate
 - I/O cost: it varies depending on the index
INDEX SCAN COST

I/O cost for index scan

- **Hash index**: $O(1)$
 - but we can only use it with equality predicates

- **B+ tree index**: height + X
 - X depends on whether the index is clustered or not:
 - **unclustered**: $X = \# \text{ selected tuples in the worst case}$
 - **clustered**: $X = (\#\text{selected tuples})/ (\#\text{tuples per page})$
 - **optimization**: we can sort the rids by page number before we retrieve them from the unclustered index
B+ TREE SCAN EXAMPLE

• A relation with 1,000,000 records
• 100 records on a page
• 500 (key, rid) pairs on a page
• height of B+ tree = 3

<table>
<thead>
<tr>
<th></th>
<th>1% Selectivity</th>
<th>10% Selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>clustered</td>
<td>3+100</td>
<td>3+1000</td>
</tr>
<tr>
<td>unclustered</td>
<td>3+10,000</td>
<td>3+100,000</td>
</tr>
<tr>
<td>unclustered + sorting</td>
<td>3+(~10,000)</td>
<td>3+(~10,000)</td>
</tr>
</tbody>
</table>

selectivity = percentage of tuples that satisfy the selection condition

if we first sort, we will read at most all the pages in the B+ tree
GENERAL SELECTIONS

• So far we studied selection on a single attribute
• How do we use indexes when we have multiple selection conditions?
 – R.A = 10 AND R.A > 10
 – R.A = 10 OR R.B < 20
INDEX MATCHING

We say that an index *matches* a selection predicate if the index can be used to evaluate it.

- relation \(\text{R}(A,B,C,D) \)
- hash index on composite key \((A,B)\)

\[
\begin{align*}
\text{SELECT} & \quad * \\
\text{FROM} & \quad \text{R} \\
\text{WHERE} & \quad A = 10 \ \text{AND} \ B = 5 ;
\end{align*}
\]

matches the index!

\[
\begin{align*}
\text{SELECT} & \quad * \\
\text{FROM} & \quad \text{R} \\
\text{WHERE} & \quad A = 5 ;
\end{align*}
\]

does not match the index!
INDEX MATCHING: HASH INDEX

selection = \text{pred}_1 \text{ AND } \text{pred}_2 \text{ AND } \ldots

A hash index on \((A, B, \ldots)\) \textbf{matches} the selection condition if:

- \textit{all} attributes in the index search key appear in a predicate with equality (\(=\))
The predicates A=5, B=3, C=1 that match the index are called primary conjuncts.

<table>
<thead>
<tr>
<th>selection condition</th>
<th>hash index on (A,B,C)</th>
<th>hash index on (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=5 AND B=3</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>A>5 AND B<4</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>B=3</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>A=5 AND C>10</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>A=5 AND B=3 AND C=1</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>A=5 AND B=3 AND C=1 AND D >6</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
INDEX MATCHING: B+ TREE

selection = pred_1 AND pred_2 AND ...

A B+ tree index on \((A, B, ...)\) matches the above selection condition if:

- the attributes in the predicates form a prefix of the search key of the B+ tree
- any operations can be used \((=, <, >, ...)\)
EXAMPLE

relation $R(A, B, C, D)$

<table>
<thead>
<tr>
<th>selection condition</th>
<th>B+ tree on (A,B,C)</th>
<th>B+ tree on (B,C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=5 AND B=3</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>A>5 AND B<4</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>B=3</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>A=5 AND C>10</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>A=5 AND B=3 AND C=1</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>A=5 AND B=3 AND C=1 AND D >6</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
MORE ON INDEX MATCHING

A predicate can match *more than one* index

- hash index on \((A)\) and B+ tree index on \((B, C)\)
- selection: \(A=7\) AND \(B=5\) AND \(C=4\)

Which index should we use?

1. use the hash index, then check the conditions \(B=5, C=4\) for every retrieved tuple
2. use the B+ tree, then check the condition \(A=7\) for every retrieved tuple
3. use both indexes, intersect the rid sets, and only then fetch the tuples
SELECTION WITH DISJUNCTION (1)

- hash index on (A) + hash index on (B)
- selection: \(A=7 \ OR \ B>5 \)

- Only the first predicate matches an index
- The only option is to do a file scan
SELECTION WITH DISJUNCTION

- hash index on \(A\) + B+ tree on \(B\)
- \(A=7\) OR \(B>5\)

- One solution is to do a file scan
- A second solution is to use both indexes, fetch the rids, and then do a union, and only then retrieve the tuples

Why do we need to perform the union before fetching the tuples?
SELECTION WITH DISJUNCTION

- hash index on (A) + B+ tree on (B)
- \((A=7 \text{ OR } C>5) \text{ AND } B > 5\)

- We can use the B+ tree to fetch the tuples that satisfy the second predicate \((B >5)\), then filter according to the first
CHOOSING THE RIGHT INDEX

Selectivity of an access path = *fraction* of tuples that need to be retrieved

- We want to choose the *most selective* path!
- Estimating the selectivity of an access path is generally a hard problem
ESTIMATING SELECTIVITY (1)

• selection: \(A=3 \) AND \(B=4 \) AND \(C=5 \)
• hash index on \((A,B,C)\)

The selectivity can be approximated by: \(1/#\text{keys} \)
• \(#\text{keys} \) is known from the index
• this assumes that the values are distributed \textit{uniformly} across the tuples
EXAMPLE

• selection: \(A=3 \quad \text{AND} \quad B=4 \quad \text{AND} \quad C=5 \)

• \textit{clustered} hash index on (A,B,C)

• \#pages = 10,000

• \#keys in hash index = 100

• selectivity = 1\%

• number of pages retrieved = \(10,000 \times 1\% = 100 \)

• I/O cost \(\sim 100 + \) (a small constant)
ESTIMATING SELECTIVITY (2)

- selection: \(A=3 \) \(\text{AND} \) \(B=4 \) \(\text{AND} \) \(C=5 \)
- hash index on \((B,A)\)

If we don’t know the \(\#\text{keys} \) for the index, we can estimate selectivity as follows:

- multiply the \textit{selectivity} for each primary conjunct
- If \(\#\text{keys} \) is not known for an attribute, use 1/10 as default value
- this assumes independence of the attributes!
• Selection: $A > 10 \text{ and } A < 60$

• If we have a range condition, we assume that the values are uniformly distributed

• The selectivity will be approximated by $\frac{\text{interval}}{\text{High} - \text{Low}}$

Example: if A takes values in [0,100] then the selectivity will be $\sim \frac{60 - 10}{100 - 0} = 50\%$
PROJECTION
PROJECT OPERATOR

Simple case: \textbf{SELECT} R.A, R.D

 – scan the file and for each tuple output R.A, R.D

Hard case: \textbf{SELECT DISTINCT} R.A, R.D

 – project out the attributes
 – eliminate \textit{duplicate tuples} (this is the difficult part!)
Naïve algorithm:
1. scan the relation and project out the attributes
2. sort the resulting set of tuples using all attributes
3. scan the sorted set by comparing only adjacent tuples and discard duplicates
RUNNING EXAMPLE

$R(A, B, C, D, E)$

- $N = 1000$ pages
- $B = 20$ buffer pages
- Each field in the tuple has the same size
- Suppose we want to project on attribute A
SORT-BASED COST ANALYSIS

- initial scan = 1000 I/Os
- after projection T = (1/5) * 1000 = 200 pages
- cost of writing T = 200 I/Os
- sorting in 2 passes = 2 * 2 * 200 = 800 I/Os
- final scan = 200 I/Os

total cost = 2200 I/Os
We can improve upon the naïve algorithm by modifying the sorting algorithm:
1. In Pass 0 of sorting, project out the attributes
2. In subsequent passes, eliminate the duplicates while merging the runs
SORT-BASED COST ANALYSIS

• we can sort in 2 passes
• pass 0 costs $1000 + 200 = 1200\ I/Os$
• pass 1 costs $200\ I/Os$ (not counting writing the result to disk)

total cost = 1400\ I/Os
PROJECT: HASH-BASED

2-phase algorithm:

• **partitioning**
 – project out attributes and split the input into B-1 partitions using a hash function h

• **duplicate elimination**
 – read each partition into memory and use an in-memory hash table (with a *different* hash function) to remove duplicates
When does the hash table fit in memory?

• size of a partition $= T / (B - 1)$, where T is #pages after projection

• size of hash table $= f \cdot T / (B - 1)$, where f is a fudge factor (typically ~ 1.2)

• So, it must be $B > f \cdot T / (B - 1)$, or approximately $B > \sqrt{f \cdot T}$
HASH-BASED COST ANALYSIS

• T = 200 so the hash table fits in memory!
• partitioning cost = 1000 + 200 = 1200 I/Os
• duplicate elimination cost = 200 I/Os

total cost = 1400 I/Os
COMPARISON

- Benefits of sort-based approach
 - better handling of skew
 - the result is sorted

- The I/O costs are the same if $B^2 > T$
 - 2 passes are needed by both algorithms
PROJECT: INDEX-BASED

• Index-only scan
 – projection attributes subset of index attributes
 – apply projection algorithm only to data entries

• If an ordered index contains all projection attributes as prefix of search key:
 1. retrieve index data entries in order
 2. discard unwanted fields
 3. compare adjacent entries to eliminate duplicates