
CS 784: Foundations of Data Management Spring 2021

Lecture 11: Parallel Query Evaluation
Instructor: Paris Koutris

In parallel database systems, the goal is to speed up the evaluation of queries by throwing more
machines to the problem in hand. Why are we interested in using parallelism in the context of
databases? It is cheaper and more scalable to use more machines (and thus increase parallelism)
rather than using faster and faster processors. SQL is particularly amenable to parallelism, since as
we show in previous lectures it is an embarrassingly parallel language. Recall that from a theoretical
viewpoint we argued that Relational Algebra (and SQL) is in the complexity class AC0.

In the context of parallel database systems, we typically study two system architectures:

1. Shared memory: the computing nodes share RAM and disk. This architecture is relatively
easier to program, but expensive to scale.

2. Shared nothing: the computing nodes have their own RAM and disk, and they share no
resources. The nodes connected through a fast network. This is the cheapest solution and
scale up to thousands of machines. However, it is very hard to program, since the developer
must specify how the communication and the computation interleave.

In this lecture, we will focus on the shared-nothing model, since it is the architecture commonly used
by most modern parallel databases, as well as most large-scale data analytics systems (e.g. Spark,
MapReduce [MR]).

Parallel DBMSs use three different types of parallelism for query processing:

• Inter-query parallelism: a query workload can be distributed among multiple machines, by
sending each query to be processed in a different location. A common use case for this is
transaction processing, where each transaction can be executed in a different node.

• Inter-operator parallelism: a single query can be distributed among multiple processors, by
splitting the query plan such that different operators of the plan run in different machines.

• Intra-operator parallelism: a single operator can be distributed among multiple processors.
This is also commonly referred to as data parallelism.

There exists a huge amount of literature for all types of parallelism, but here we will focus on
intra-operator parallelism, since this is the one that can provide the largest gains in performance.

11-1

Lecture 11: Parallel Query Evaluation 11-2

11.1 Partitioning the Data

Before we discuss models and algorithms on how to evaluate in parallel relational queries, we
will see different ways that we can partition the data across the nodes. Consider the relation
R(K, A, B, C), where K is the key. Assume that the relation has n tuples, and the number of nodes
is p. Here are different ways to achieve the so-called horizontal data partitioning:

• Block partitioning: arbitrarily partition the data such that the same amount of data n/p is
placed at each node. For example, we can send the first tuple to node 1, the second to node
2, and so on, in a round-robin fashion.

• Hash partitioning: partition the data by applying a hash function on one or more attributes
of the relation. In particular, we take a hash function h that maps a value from the domain
to 1, . . . , p, and then send each tuple to the corresponding node.

• Range partitioning: partition the data according to a specific range of an attribute (such that
close values are in the same or nearby servers). In this, we find separating points k1, . . . , kp,
and then send to the first node the tuples such that (say we consider attribute A), −∞ ≤
t.A ≤ k1, the second node get k1 < t.A ≤ k2, and so on.

When we partition our data, we may create skew if the data is not evenly distributed evenly among
the nodes. Ideally, we want each node to have n/p data. Observe that block partitioning will never
create skew, but hash and range partitioning can create skew. For example, if we hash-partition on
attribute A, and in the database instance all tuples have the same value a for A, then all tuples will
be sent to the same machine, creating unbalanced partitioning. If we partition on the key attribute
K, and we assume that the hash function distributes the values well, then we can guarantee that
every machine will get the same number of tuples, approximately O(n/p) (since each value of K
appears exactly once!).

Now, suppose we want to run a selection query on the partitioned relation, for example σA=10(R).
If the relation is hash partitioned (say with hash h) and the selection condition is on the attribute
we are hashing (i.e. A), it suffices to execute the selection condition only on the machine h(10).
Otherwise, we can in parallel execute the selection on every data fragment on each machine.

11.2 Modeling Parallelism

In order to analyze the behavior of a shared-nothing parallel system, we first need to establish a
theoretical model of parallel computation, and consider the various parameters in play.

The first important parameter is the number of computing nodes (or machines, or processors) that
we use: we will denote that by p.

Second, we need to specify how the communication and computation interleaves. If we allow an
arbitrary interleaving of communication and computation, then we model the parallel system as

Lecture 11: Parallel Query Evaluation 11-3

an asynchronous system. Some systems allow asynchronicity, but most parallel systems work in a
synchronous manner. In such a system, the computation proceeds in rounds: each round consists
of some local computation followed by global exchange of data between the machines. At the
end of each round, the machines have to synchronize, i.e. wait for all machines to finish before
proceeding to the next round. This type of parallelism with synchronization is typically called
BSP-style computation (from the Bulk-Synchronous-Parallel Model [BSP]). We denote the number
of rounds by r: the number of rounds measures the amount of synchronization in a computation.

Third, we need to measure the amount of communication during the computation. Instead of
measuring the total communication, we will focus on the maximum load, which is the maximum
amount of data that a machine can receive at any round during computation. A smaller load
means that data is more evenly distributed, and the amount of data communicated is smaller. We
typically denote this parameter by L. Ideally, we want to achieve L = n/p, where n is the size of
the input data.

round 1 round 2

communication communication

...

...

round rround 3

server 1

server 2

server 3

server p

computation computation computation

11.3 Computing Joins in Parallel

We will discuss here how to parallelize the basic join, as well as how to parallelize multiway
joins (so Conjunctive Queries without projections and selections). Suppose initially we want to
compute the binary join:

q(x, y, z) : −R(x, y), S(y, z)

Hash Join. The standard parallel join algorithm is called parallel hash join. The idea is to use a hash
function h to partition both R, S on their join attribute (which in this case is B). Each tuple R(a, b)
will go to machine h(b), and each tuple S(b, c) will go to machine h(b). After the data has been
partitioned, each machine will compute the join by joining its local data fragments.

Lecture 11: Parallel Query Evaluation 11-4

Cartesian Product. If we want to compute the cartesian product q(x, y) : −R(x), S(y), the problem
becomes more interesting. Suppose that |R| = nR and |S| = nS. A naive way for a parallel
implementation would be to broadcast the smallest relation to all machines, and then partition
evenly the largest relation. But we can do better!

The key idea is to organize the p machines into a pR × pS rectangle, such that p = pR · pS. Then,
we can identify each machine with a pair of coordinates. We then pick two hash functions,
hR : dom → {1, . . . , pR} and hS : dom → {1, . . . , pS}. Then, we send each tuple R(a) to all the
machines with coordinates (hR(a), ∗), so to all the machines of a specific row chosen by our hash
function. Similarly, we send S(b) to all the machines with coordinates (∗, hS(b)). After the data is
partitioned, each machine again locally computes the cartesian product. The algorithm is correct,
since each tuple (a, b) can be discovered in the machine with coordinates (hR(a), hS(b)).

We can now calculate how much data each machine receives. Assuming that the hash functions
behave well, each machine will get nR

pR
+ nS

pS
tuples. To minimize this load, we have to make nR

pR
=

nS
pS

, and so we can choose pR =
√

p nR
nS

and pS =
√

p nS
nR

.

Multiway Joins. Consider the triangle query q(x, y, z) : −R(x, y), S(y, z), T(z, x). The standard
way to compute this query in parallel is to use two rounds. In the first round, we perform a parallel
hash join between R, S to obtain an intermediate relation RS(x, y, z). In the second round, we
perform another parallel hash join between RS and T (where we can join on one or two attributes).
The potential problem with this approach is that the intermediate result RS can be very large,
which would mean very expensive communication in the second round.

An alternative way to compute the triangle query is to use the same idea as the cartesian product
and compute the query in a single round! The algorithm we present is called in the literature the
SHARES or HYPERCUBE algorithm [AU10]. Here, we organize the p machines into a 3-dimensional
hypercube (observe that the number of dimensions is the same as the number of variables): p =

px × py × pz. Each machine now identifies with a unique point in the 3-dimensional space. The
algorithm uses a different hash function for each variable.

Now, each tuple R(a, b) will be sent to all machines with coordinates (hx(a), hy(b), ∗). Similarly,
each tuple S(b, c) will be sent to coordinates (∗, hy(b), hz(c)) and each tuple T(c, a) to (hx(a), ∗, hz(c)).
After the data has been communicated, each machine will locally compute the triangles, using any
single-machine algorithm.

Assume for the moment that we choose px = py = pz = p1/3. Then, we can see that each tuple
will be replicated to p1/3 machines.

At this point, we should note two things. First, the idea of the triangle query can be generalized
to compute any conjunctive query using a single round. Second, we need to find the optimal size
of each dimension. This is not a trivial task, since the optimal size will have a complex connection
to the relation sizes and the structure of the query (for more details see [BKS14]).

Lecture 11: Parallel Query Evaluation 11-5

References

[MR] J. DEAN, and S. GHEMAWAT, "MapReduce: simplified data processing on large clus-
ters", OSDI, 2004

[S86] M. STONEBRAKER, “The Case for Shared Nothing.”, Database Engineering, 1986

[AU10] F. AFATI and J. ULLMAN, “Optimizing Joins in a Map-Reduce Environment.”, EDBT,
2010

[BKS14] P. BEAME, P. KOUTRIS and D.SUCIU, “Skew in parallel query processing.”, PODS,
2014

[BSP] L. VALIANT, "A bridging model for parallel computation", CACM, 1990

