CS 784: Foundations of Data Management Spring 2021

Lecture 7: Worst-Case Optimal Joins

Instructor: Paris Koutris

In this lecture, we ask the following question: can we compute a full Conjunctive Query in running
time bounded by the AGM bound? We will answer this positively, and describe two algorithmic
techniques that can achieve this optimal result. But first we will sketch the main technical ideas
using as an example the triangle query.

7.1 Computing the Triangle Query

Consider the triangle query

A(x,y,2) - =R(x,y),S(y,2), T(z %)

where the three relations have sizes N, Ns, Nt respectively. Recall that the AGM bound gives a
bound of (N, RNSNT)U 2 for the output size, which becomes N 3/2 when all relation sizes are equal
to N. With the next example we show that it is ot possible to achieve a running time of O(N3/?)
using only join-project plans.

Example 7.1. Let {ay,...,an}, {bo,...,bu}, {co,...,cn} be the domains for variables x,y, z respectively.
We define an instance I as follows:

R' = ({ag} x {bo,...,bu}) U ({aq, ..., an} x {bo})
S'= ({bo} x {co,---,cn}) U ({bo, ..., bu} x {co})
T! = ({co} x {ag,...,a,}) U ({co,...,cn} x {ao})

Each relation has size 2n 4 1, and the output has size 3n 4+ 1. However, observe that every pairwise join
(RS, S T, RxT) has size n* +n = Q(n?). Hence, no join plan can achieve the O(n>'?) bound.

The reason that the join plan from the above example fails is that the values ay, by, ¢o are all skewed.
To overcome this obstacle, we will deal with such values differently. We say that a value a is heavy
if [ox=4(R)| - |0x=a(T)| > |S|; otherwise, it is light.

P2C algorithm. The Power of 2 Choices algorithm works as follows:

1. Let L <= 1o (R) N7t (T).
2. Foreacha € L do:
(a) If a is light: compute 0y—4(R) > 0y—4(T) and semijoin the result with S.

(b) If a is heavy: for each tuple (b,c) € S, check whether (4,b) € Rand (c,a) € T.
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Analysis. Assume for now that we have computed the appropriate indices for each relation
(which we can do in time linear to the input size). It is easy to see that we can compute the set L in
linear time. For the main loop, the key observation is that the running time of case (a) is bounded
by |0x=aR| - |0x=4T|, while the running time of case () is bounded by Ng. Hence, the total time T
can be bounded as follows:

T - Zmin{|gx:aR| . ‘Ux:uT|,NS}
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Here, the first inequality used the fact that min{x,y} < ,/xy, while the second inequality is an
application of the Cauchy-Schwarz inequality.

7.2 The GenericJoin algorithm

We now discuss a general algorithmic framework that works for all CQs called GenericJoin [NRR13].
Let H(q) = (V, £) be the hypergraph for the query 4. For any I C V, define:

g ={Fe&|FNI+Q}

We use Rr to denote the relation that corresponds to hyperedge F. GenericJoin works by recur-
sively splitting the variables into two disjoint sets I and | = V' \ L.

Algorithm 1: GenericJoin

Input: hypergraph (V, )

ourT «+ @;
if |V| = 1 then
‘ return NgegRE ;

end

pickl :0CICV;

L < GenericJoin(><geg, r(RE)) ;

fort; € Ldo
J—V\I;
qlt1] < GenericJoin(><reg, 17(Rp X t1)) ;
OUT « OUT Uq[t] ;

end

return OUT
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Implementation. We next discuss a concrete implementation of the GenericJoin algorithm, called
Leapfrog Triejoin [V14]. Leapfrog Triejoin is implemented as part of the LogicBlox Datalog engine.
It has the following characteristics:

e It picks I at every step to be of size 1 (i.e., picks a single variable). Any order of picking the
variables will work (in the worst-case analysis), but in practice certain variable orders can
be orders of magnitude faster. Finding the best variable sequence is an open problem!

¢ It merges unary relations (of arity 1) using Leapfrog join. If the relations are already sorted
(according to the same total order), then Leapfrog join needs time linear with respect to the
smallest relation.

* The relations are indexed using tries. A trie is a tree with depth equal to the arity of the rela-
tion (plus 1). Each level has values of a particular variable, and each tuple is represented by
a path from the root of the trie to a leaf. Moreover, the children of each node are distinct from
one another and sorted, with the leftmost child being the smallest. The variable ordering in
a trie must agree with the ordering chosen by the Leapfrog Triejoin algorithm.

Analysis. Finally, we analyze the running time of GenericJoin. Let {uf | F € £} be a fractional
edge cover for H. We analyze the running time for GenericJoin using induction on the size of V.

For the base case where |V| = 1, we perform merging between unary relations. If these are sorted,
we can compute their intersection in time O(ming |Rg|) = O(TTf |RF|*F).

For the inductive step, the running time is (asymptotically):

TTIRel™ + Y TTIRext:|" < [T IRl + TTIRe["™ <2TTIRe|*

Fe&; tieL Fe& Fe&; Fe& Fe&

Here, the second inequality comes from the so-called query decomposition lemma [NRR13].

7.3 Fractional Hypertree Width

We can now combine the worst-case optimal join algorithm with GHDs to obtain faster evaluation
algorithms for any CQ. Recall that to define the ghw we used the minimum cover as the width of
each bag in the GHD. By replacing this with the minimum fractional edge cover, we obtain instead
the fractional hypertree width (fhw) of a CQ. We always have that fhw < ghw, but in fact fhw can be
much smaller than ghw.

Example 7.2. The ghw of the triangle query is ghw(A) = 2, since the size of the minimum cover for the
bag that contains all three variables is 2 (it is necessary to pick at least two relations to cover each variable).
However, fhw(A) = 3/2.

Hence, we can evaluate any full CQ in time O(N/"* + OUT), where N is the input size.
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