
CS 784: Foundations of Data Management Spring 2021

Lecture 8: Introduction to Datalog
Instructor: Paris Koutris

Relational Algebra is the core language for databases, but its expressibility is limited. The most
basic problem that is not expressible in RA is the graph transitive closure. In the following lectures,
we will introduce a new language, called Datalog, that allows us to express more complex prob-
lems by adding recursion. Datalog has seen many applications over the last years, including data
integration, declarative networking, and program analysis.

8.1 Datalog Syntax

A Datalog rule is an expression of the form

R(~x) : −R1(~x1), . . . , Rn(~xn) (8.1)

This is the same syntax as the one we used for Conjunctive Queries; the big difference is that we
now allow for a relation R to appear both on the left and the right side of the rule. A Datalog
program is defined as a finite set of Datalog rules.

In Datalog we have two different types of schemas:

• Extensional Schema: this consists of extensional relations (EDBs), which occur only in the
right-hand-side of the rules. Such relations are intuitively the "input" of the Datalog pro-
gram.

• Intensional Schema: this consists of intensional relations (IDBs), which occur at least once in
the left-hand-side of a rule. Intensional relations are the "output" of the Datalog program.

A Datalog program semantically is a mapping from instances over the extensional schema to in-
stances over the intensional schema. Let’s see some example of Datalog programs below.

Example 8.1. Let R(A, B) be a relation that contains the edges of a directed graph. The following Datalog
program computes the transitive closure of the graph: all the pairs (u, v) of vertices, such that there is a
directed path from node u to node v:

T(x,y) :- R(x,y).
T(x,y) :- T(x,z), R(z,y).

The second rule is called a linear rule, because the intensional relation T of the head appears exactly once
in the right-hand-side. The following Datalog program, which also computes transitive closure, contains a
non-linear rule.

8-1



Lecture 8: Introduction to Datalog 8-2

T(x,y) :- R(x,y).
T(x,y) :- T(x,z), T(z,y).

Example 8.2. Let us again assume that R(A, B) describes the edges of a directed graph. We want to write
a Datalog program that computes (a) the nodes of the graph such that there exists a cycle of odd length that
goes through, (b) the nodes of the graph such that there exists a cycle of even length that goes through, and
(c) the nodes of the graph such that there exists a cycle of any length that goes through

OddPath(x,y) :- R(x,y).
EvenPath(x,y) :- R(x,z), OddPath(z,y).
OddPath(x,y) :- R(x,z), EvenPath(z,y).
OddCycle(x) :- OddPath(x,x).
EvenCycle(x) :- EvenPath(x,x).
Cycle(x) :- OddCycle(x).
Cycle(x) :- EvenCycle(x).

The relations OddPath and EvenPath are called mutually recursive relations, because they appear on each
other’s bodies.

8.2 Datalog Semantics

There are 3 different equivalent semantics for Datalog: model-theoretic, fixpoint and proof-theoretic.
Here we will discuss only the first two.

8.2.1 Model-Theoretic Semantics

We start by associating a (first-order) logical sentence to each Datalog rule. For example, the rule
ρ : T(x, y) : −T(x, z), R(z, y) gives the following logical sentence: φρ = ∀x, y, z(T(x, z)∧ R(z, y)→
T(x, y)). In general, for a rule ρ of the form (8.1), we associate the following logical sentence:

φr = ∀x1, . . . , xk(R1() ∧ R2() · · · ∧ Rk()→ R())

where x1, . . . , xk are the variables in the body of the rule. An interesting observation is that the
logical sentences of the above form are Horn clauses: Horn clauses are formulas that consist of a
disjunction of literals, where there exists at most one positive literal.

Let ΣP be the set of logical sentences φρ, for every rule ρ in the Datalog program P.

Definition 8.3. Let P be a Datalog program. A pair of instances (I, J), where I is an EDB, and J is an
IDB, is a model of P if (I, J) satisfies ΣP.

Given an EDB I, the minimal model of P, denoted J = P(I), is a minimal IDB J such that (I, J) is a
model of P.



Lecture 8: Introduction to Datalog 8-3

We can show that a minimal model always exists, and it is also unique. Also, the minimal model
contains only tuples with values from the active domain adom(I). The semantics of a Datalog
program P executed on EDB I is exactly the minimum model P(I).

Exercise 8.4. Consider the transitive closure on the following instance: I = {R(1, 2) R(2, 3), R(3, 4)}.
What is the minimal model in this case? Can you find a non-minimal model and a non-model?

8.2.2 Fixpoint Semantics

Let P be a Datalog program, and an instance I over the intensional and extensional schema. We
say that a fact/tuple t is an immediate consequence of I if either t ∈ I, or it is the direct result of a
rule application using the instance I. The immediate consequence operator for P, denoted TP, maps
an instance to another instance (over the intensional and extensional schema), such that TP(I)
contains all the facts that are immediate consequences of instance I. It is easy to see that by our
definition, TP(I) ⊇ I.

Lemma 8.5. If I ⊆ J then TP(I) ⊆ TP(J).

Definition 8.6. We say that an instance I over the schema is a fixpoint for TP if TP(I) = I.

We can now show the connection of the fixpoint semantics to the model-theoretic semantics.

Theorem 8.7. For each Datalog program P and EDB I, the immediate consequence operator TP has a
unique, minimal fixpoint J ⊇ I, which equals the model P(I).

The fixpoint semantics give us an algorithm that computes the output of a Datalog program. We
start with the input I, which is an EDB instance. We then compute TP(I), then TP(TP(I)), and so
on. Recall that the operator TP is monotone. Also, at every iteration we compute at least one new
immediate consequence, and there is only a polynomial number of such tuples (since any new
tuple must use values from the active domain). Thus, after a polynomial number of steps, we will
reach a fixpoint. This way of evaluating Datalog is called the naive evaluation strategy.

Exercise 8.8. Consider the transitive closure on the following instance: I = {R(1, 2) R(2, 3), R(3, 4)}.
Show the application of the operator TP until it reaches the fixpoint.

8.3 More on Datalog

Lemma 8.9. Every Datalog program P is monotone.

There are many interesting properties one can express in Datalog.

Example 8.10. Suppose we have a relation A(x, y) that expresses the fact that y is the parent of x. The
following Datalog program, called same generation, computes the pair (u, v) that have a common ancestor
and belong in the same "generation" w.r.t. to the ancestor.



Lecture 8: Introduction to Datalog 8-4

S(u,v) :- A(u,x), A(v,x).
S(u,v) :- A(u,x), S(x,y), A(v,y).

A more modern application of Datalog is in program analysis, and in particular points-to analy-
sis [PT]. In this setting, we are given a program (in any programming language), and we want to
compute what points to what.

Example 8.11. This example describes the Datalog rules for a simple type of points-to analysis in C pro-
grams, called Andersen’s analysis. Initially, we turn instructions in C to predicates in Datalog:

• y=&x : AddressOf(y, x)

• y=x : Assign(y, x)

• y=*x : Load(y, x)

• *y=x : Store(y, x)

We want to compute the relation PointsTo(y,x), i.e. whether variable y may point to the location of variable
x. We can do this using the following Datalog program:

PointsTo(y,x) :- AddressOf(y,x).
PointsTo(y,x) :- Assign(y,z), PointsTo(z,x).
PointsTo(y,w) :- Load(y,x), PointsTo(x,z), PointsTo(z,w).
PointsTo(z,w) :- Store(y,x), PointsTo(y,z), PointsTo(x,w).

References

[Alice] S. ABITEBOUL, R. HULL and V. VIANU, “Foundations of Databases.”

[PT] Y. SMARAGDAKIS, and G. BALATSOURAS, “Pointer Analysis.”, Foundations and Trends
in Programming Languages, 2015.


