
CS 784: Foundations of Data Management Spring 2021

Lecture 9: Datalog: Evaluation
Instructor: Paris Koutris

In this lecture we will focus on how we can evaluate Datalog programs efficiently. We will examine
two different techniques: top-down and bottom-up evaluation. First, let’s write another example
of a Datalog program, which we will use as a running example.

Example 9.1. Write a Datalog program that, given a graph with edge relation R(x, y), computes all pairs
of nodes (x, y) such that there is a directed path of even length from x too y. Do the same for odd paths.

Odd(x,y) :- R(x,y).
Even(x,y) :- Odd(x,z), R(z,y).
Odd(x,y) :- Even(x,z), R(z,y).

9.1 Naive Evaluation and Complexity

We start with the simplest bottom-up approach to evaluate a Datalog program P, called naive
evaluation. Let P1, . . . , Pm be the intensional relations (IDBs) of the program P. For every relation
Pi, let qi be the immediate consequence operator, in other words a single application of the rules that
contain Pi as the head. Notice that qi is a UCQ, since it can be computed as a union of the rules,
where each rule is a conjunction of predicates followed by a projection.

For our example, the query qOdd that computes the IDB Odd is:

qOdd = R(x, y) ∪ πx,y(Even(x, z) ./ R(z, y)).

Similarly, the query qEven that computes the idb Even is:

qEven = πx,y(Odd(x, z) ./ R(z, y)).

Notice that the intensional relations of the Datalog program depend on each other, in which case
we call the program mutually recursive.

The naive algorithm iteratively computes versions of each predicate P(k)
i by applying the immedi-

ate consequence operator qi on the previous versions of these predicates.

1. for every IDB Pi : P(0)
i ← ∅

2. k← 0

3. repeat

9-1



Lecture 9: Datalog: Evaluation 9-2

• k← k + 1
• For every IDB Pi: P(k)

i ← qi(P(k−1)
1 , . . . , P(k−1)

m )

until for every i, P(k)
i = P(k−1)

i

4. output P(k)
1 , . . . , P(k)

m

The number of iterations of the naive algorithm is polynomial in the size of the input, since the
total number of facts that can be produced is polynomial, and at each iteration we add at least
one new fact (otherwise the algorithm terminates). Moreover, since at each iteration we compute
a number of UCQs in parallel, each iteration needs polynomial time. Thus, the data complexity
for evaluating Datalog is P. In fact, it is also P-complete.

Theorem 9.2. The data complexity of Datalog is P-complete.

We will not show this here, but the combined complexity of Datalog is EXP-complete (this is a com-
plexity class that is higher than PSPACE).

9.2 Semi-Naive Evaluation

Let’s look again at the Datalog program that computes the transitive closure of a graph.

T(x,y) :- R(x,y).
T(x,y) :- T(x,z), T(z,y).

Consider the naive evaluation of the above program for the case where the graph is a path of
length n: {R(1, 2), R(2, 3), . . . , R(n− 1, n)}. Notice that the fact T(1, 3) is discovered again at every
iteration (and thus n− 1 times). This is redundant computation, and to overcome this problem we
will consider a different type of bottom-up evaluation, called semi-naive evaluation, that tries to to
compute only new facts and reduce the number of times the old fact are rediscovered.

The idea behind semi-naive evaluation is the following. Suppose we want to compute the rule:
T(i+1)(x, y) := q(T(i), T(i)), where q(R, S) = πx,y(R(x, z) ./ S(z, y)). We write T(i) as T(i−1) ∪∆T(i),
where ∆T(i) are the new tuples discovered at the i-th iteration. Now we can write:

T(i+1) = q(T(i−1) ∪ ∆T(i), T(i−1) ∪ ∆T(i))

= q(T(i−1), T(i−1)) ∪ q(T(i−1), ∆T(i)) ∪ q(∆T(i), T(i−1)) ∪ q(∆T(i), ∆T(i))

= T(i) ∪ q(T(i−1), ∆T(i)) ∪ q(∆T(i), T(i−1)) ∪ q(∆T(i), ∆T(i))

The above rewriting of the query was a simple distribution of union over the join operator. Now,
instead of evaluating the query from scratch, we can incrementally compute the fresh tuples by
joining the newly discovered tuples with the previous ones. This is exactly how incremental view
maintenance also works in relational databases! For a UCQ query q, write ∆q to denote its incre-
mental evaluation. We can now write the algorithm for semi-naive evaluation:



Lecture 9: Datalog: Evaluation 9-3

1. For all IDB Pi : P(0)
i ← ∅

2. k← 1

3. In parallel do ∆P(1)
i ← qi(P(0)

1 , . . . , P(0)
m )

4. repeat:

• k← k + 1

• P(k−1)
i ← P(k−2)

i ∪ ∆P(k−1)
i

• In parallel do ∆P(k)
i ← ∆qi(P(k−2)

1 , . . . , P(k−2)
m , ∆P(k−1)

1 , . . . , ∆P(k−1)
m )− P(k−1)

i

until for every i, ∆P(k)
i = ∅

5. output P(k)
1 , . . . , P(k)

m

There are some Datalog programs where semi-naive evaluation becomes extremely effective.

Definition 9.3. A rule in a Datalog program is linear if there is at most one atom in the body of the rule
whose predicate is mutually recursive with the head of the rule.

For example, the rule T(x, y) : −T(x, z), R(z, y) is a linear rule. In this case, the incremental
operator becomes: ∆T(k) = πx,y(∆T(k−1) ./ R)− T(k−1); in other words, to compute the new tuples
we only need to use the new tuples from the previous iteration, and not the rest of the intensional
relation. Hence, linear rules are in general amenable to very efficient semi-naive evaluation.

Another optimization that can be done on top of the above algorithm is to impose some order
on how we evaluate the idb relations. To do this, we construct the precedence graph, where the
vertices are the idb relations, and we add an edge (R, S) appears in the body of a rule with head S.
We then do a topological sorting of the directed graph, and we evaluate each strongly connected
component in the topological order (bottom-up) using the semi-naive algorithm.

9.3 Top-Down Evaluation

Consider the following Datalog program:

T(x,y) :- R(x,y).
T(x,y) :- T(x,z), R(z,y).
q(y) :- T(’a’,y).

Suppose we are only interested in evaluating the predicate q, in other words we want only to com-
pute the nodes that are reachable from node a. The semi-naive evaluation of the above program is
very wasteful, since it will first compute all the transitive closure T, and then perform on selection



Lecture 9: Datalog: Evaluation 9-4

to choose only the paths that start with node a. In this case, the bottom-up approach is not very
effective. We present next a top-down algorithm called the Query-Subquery (QSQ) algorithm.

The are two key ideas in this algorithm: binding patterns and supplementary relations.

Binding Patterns. For each idb, we will consider an adorned version based on the bindings of the
variables that are considered. For example, because of the rule q(y) : −T(′a′, y), we are only inter-
ested in finding derivations for T where the first coordinate is bound (b) and the second coordinate
is free (f). To denote this, we will use the adorned idb Tb f . Now, if we want to compute the rule
T(x, y) : −T(x, z), R(z, y) for T adorned as Tb f , since x is bound, we can write the rule as:

Tb f (x, y) : −Tb f (x, z), R(z, y).

Here we should note that the same idb may appear with different adornments in a Datalog pro-
gram. However, different adornments of the same relation are treated as different relations during
the computation! The algorithm for computing adornments of a rule is given below:

1. All occurrences of each bound variable in the rule head are bound.

2. All occurrences of constants are bound.

3. If a variable x occurs in the body, then all occurrences of x in subsequent atoms are bound.

Supplementary Relations. For each adorned idb and each position in the body of a rule, we
define a supplementary relation that accumulates the bindings relevant to that position. The first
supplementary relation sup0 has only the bound variables from the head, the last supplementary
relation has all the variables in the head, and the intermediate supplementary relations have the
bound variables at that position. For example, consider the rule Tb f (x, y) : −Tb f (x, z), R(z, y). The
rule with the supplementary relations will be as follows:

Tb f (x, y) : −[sup0(x)]Tb f (x, z), [sup1(x, z)]R(z, y)[sup2(x, y)]

The full example Datalog program will now look as follows:

Tb f (x, y) : −[sup1
0(x)]R(x, y)[sup1

1(x, y)].

Tb f (x, y) : −[sup2
0(x)]Tb f (x, z), [sup2

1(x, z)]R(z, y)[sup2
2(x, y)].

q(y) : −Tb f (′a′, y).

For each adorned relation, we will also consider a corresponding input relation with the same arity
as the number of bound variables. For example, let in_Tb f (x) be the input relation for Tb f . To
evaluate the program using the query-subquery algorithm, we start with the output goal q, which
gives the initial value a to in_Tb f (x). The input relation then populates the first supplementary
relations of each rule sup1

0(x), sup2
0(x). The new values are then propagated to the other supple-

mentary relations from left to right. The final supplementary relations then feed the new tuples
back to the adorned relation Tb f . The process ends when no new facts are produced.



Lecture 9: Datalog: Evaluation 9-5

9.4 Magic Sets

The top-down computation allows us to reduce unnecessary computation by disregarding facts
that we will not need at all. A surprising fact about Datalog is that we can achieve exactly the
same result by bottom-up evaluation techniques through rewriting the Datalog program in a way
that is similar to pushing the selection down a relational algebra query plan. This technique is
called magic sets. The idea of the magic set transformation is to use the adorned relations and
supplementary relations in order to simulate pushing down selections.

Below is the rewriting of our running Datalog example. The first rule is rewritten as follows:

sup1
0(x) : −in_Tb f (x).

sup1
1(x, y) : −sup1

0(x), R(x, y).

Tb f (x, y) : −sup1
1(x, y).

The second rule:

sup2
0(x) : −in_Tb f (x).

sup2
1(x, z) : −sup2

0(x), Tb f (x, z).

sup2
2(x, y) : −sup2

1(x, z), R(z, y).

Tb f (x, y) : −sup2
2(x, y).

We finally need to initialize the input relations:

in_Tb f (x) : −Tb f (x, y).

in_Tb f (′a′) : −
q(y) : −Tb f (′a′, y).

Theorem 9.4. The set of facts produced when we execute the semi-naive algorithm on the magic-set trans-
formed Datalog program is identical to the set of facts produced by a QSQ evaluation.

References

[Alice] S. ABITEBOUL, R. HULL and V. VIANU, “Foundations of Databases.”


