
CS 784: Foundations of Data Management Instructor: Paris Koutris

Lecture 1: Conjunctive Queries

A database schema R is a set of relations: we will typically use the symbols R, S, T, . . . to denote
relations. The arity of a relation R is the number of attributes in the relation. This is the unnamed
perspective of a relational schema, since we do not associate a name with each attribute in the
relation. Contrast this to the named perspective, where we define a relation as R(A, B) and we
can refer to each of the attributes as R.A and R.B respectively.

The attributes in a relation can take values from the same domain dom, which is a countably
infinite set. We can alternatively assume that each attribute takes values from a different domain
– in this case we would use dom(A) to denote the domain of attribute A. From a theoretical
perspective, it almost always suffices to have a single shared domain. A constant is an element of
the domain dom.

Let R be a relation of arity m. A fact over R is an expression of the form R(a1, . . . , am), where
ai ∈ dom for every i = 1, . . . , m. An instance of the relation R is a finite set of facts over R. It is
important that we define an instance as a set, and not as a bag or multiset (set semantics vs bag
semantics). This means that each fact can appear at most once in an instance.

A database instance I over a database schema R is a union of relational instances over the relations
R ∈ R. In this case, we denote RI the instance of relation R ∈ R. Given a database instance I, we
define the active domain of I, denoted adom(I) as the set of all constants occurring in I.

1.1 Basics of Conjunctive Queries

Conjunctive Queries are the simplest form of queries that can be expressed over a database, but
as we will see they have many interesting properties and a deep theory behind them.

There are many ways to define a Conjunctive Query. We will start from a logical perspective,
using Datalog notation. Syntactically, a Conjunctive Query q (abbreviated CQ) is an expression of
the form

q(x1, . . . , xk) :- R1(~y1), . . . , Rn(~yn) (1.1)

where n ≥ 0, Ri ∈ R for every i = 1, . . . , n and q is a fresh relation name. The expressions
~x, ~y1, . . . , ~yn are called free tuples, and contain either variables or constants. We will typically name
the variables x, y, z, . . ., and the constants a, b, c, . . . There are two syntactic restrictions on how a
conjunctive query is formed:

1. The tuples ~yi must match the arities of the corresponding relation.

2. Every variable in ~x = 〈x1, . . . , xk〉must appear in one of ~y1, . . . , ~yn.

1-1

Lecture 1: Conjunctive Queries 1-2

The expression q(x1, . . . , xk) is called the head of the query, and R1(~y1), . . . , Rn(~yn) is called the
body of the query. Each expression Ri(~yi) is called an atom: notice that the atom is different from a
relation, since many atoms can correspond to the same relation! The set of variables in the query
is denoted var(q).

Example 1

Below are some examples of Conjunctive Queries:

q1(x, y) :- R(x, y), S(y, z)

q2() :- R(x, y), S(y, a), T(x)

q3(x, y, z) :- R(x, y), R(y, z), R(z, x)

q4(x, b) :- R(x, x), S(x, y)

When writing CQs in Datalog form, we can also choose to use equality (=). For example, we can
equivalently write the query q(x) :- R(x, a) as q(x) :- R(x, y), y = a. However, we are not allowed
to use any other predicate symbols, such as <,≤,>,≥, 6=.

1.1.1 Semantics

So far we looked at the syntactic definition of a Conjunctive Query. We now turn our attention to
the semantics of CQs. The intuition here is that we will try to match to each variable of the body a
value from the domain such that the body is true, and then we can infer a new fact from the head
of the query.

Definition 1: Valuation
A valuation v over a set of variables V is a total function from V to the domain dom.

For example, for query q1, the function v, where v(x) = a, v(y) = b, v(z) = c is a valuation. We
extend the valuation to be the identity from dom to dom, and then extend it naturally to map
free tuples to tuples over dom. For example, v((x, y)) = (v(x), v(y)) = (a, b), and v((x, y, c)) =

(v(x), v(y), v(c)) = (a, b, c).

We can now formally define the semantics for CQs. Let I be a database instance over the schema
R. Then, for the Conjunctive Query q, as given in (1.1), the result q(I) of executing query q over
the database instance I is:

q(I) = {v(~x) | v is a valuation over var(q) such that ∀i = 1, . . . , n : v(~yi) ∈ RI
i }

The query q returns a new relational instance over a new schema; the arity of the instance is equal
to the arity of the head of q.

Lecture 1: Conjunctive Queries 1-3

Example 2

We will execute query q1(x, y) :- R(x, y), S(y, z) over the relational instance

I = {R(a, a), R(a, b), R(b, c), R(c, a), S(b, c), S(b, b), T(a)}.

There are two valuations over the set of variables {x, y, z} that will result in an output tuple.
The first valuation is v(x) = a, v(y) = b, v(z) = c. Since v((x, y)) = (a, b) ∈ RI and v(y, z) =

(b, c) ∈ SI , this valuation will give the output tuple v(x, y) = (a, b). The second valuation is
v(x) = a, v(y) = b, v(z) = b; this valuation gives the same output tuple (a, b). There is no other
valuation that gives an output tuple. The final result is q1(I) = {(a, b)}.

Exercise 1

Evaluate the queries q2, q3, q4 over the database instance

I = {R(a, a), R(a, b), R(b, c), R(c, a), S(b, c), S(b, b), T(a)}.

In Datalog terminology, the expressions Ri(~yi) are called subgoals. The relations R1, . . . , Rn are
called extensional relations, since they are provided as input to the query. The relation q is called
intensional relation, since its content is only given by "intension" or "definition" through the query.

1.1.2 Equivalent Formalisms

In the formalism of relational calculus, the query q from (1.1) can be written as follows:

{x1, . . . , xk | ∃z1, . . . , zm(R1(~y1) ∧ · · · ∧ Rn(~yn))}

where z1, . . . , zm are the variables that appear in the body, but not in the head of the query q. Notice
that this is a first-order logical formula that consists of only existential quantification, followed by
a conjunction of atoms: this is the reason why this class of queries is called Conjunctive Queries.
As an example, q1 would be expressed in relational calculus as follows:

{x, y | ∃z(R(x, y) ∧ S(y, z))}

The above formalism in relational calculus is equivalent to the Datalog definition of CQs. The
other formalism that is equivalent is the class of SPJ queries in relational algebra: these are queries
that contain only selections (S) with equality, projections (P) and joins (J). Notice that the relational
algebra formalism is procedural, in contrast to the other formalisms that are declarative; in other
words, they specify what the result of a query is instead of specifying how to compute it.

Lecture 1: Conjunctive Queries 1-4

Exercise 2

Express the queries q1, q2, q3, q4 in relational algebra and relational calculus.

In SQL, CQs correspond to SELECT/FROM/WHERE queries, where the WHERE conditions contain
only equalities.

Example 3

To express the query q1(x, y) :- R(x, y), S(y, z) in SQL, say that the relational schema is R(A, B), S(C, D).
Then:

SELECT DISTINCT R.A, R.B
FROM R, S
WHERE R.B = S.C ;

1.1.3 Some Interesting Properties of CQs

Definition 2: Monotonicity

A query q is monotone if for all instances I, J such that I ⊆ J, it holds that q(I) ⊆ q(J).

An equivalent way of expressing monotonicity is that q(I) ⊆ q(I ∪ {t}); in other words, adding a
tuple in an instance will never cause the output result of q to decrease in size.

Proposition 1

Every Conjunctive Query is monotone.

Proof. Consider some tuple t ∈ q(I). Then, there exists a valuation v over var(q) such that t =

v(~x), and for every Ri, we have v(~yi) ∈ RI
i . Since I ⊆ J, we have that v(~yi) ∈ RJ

i , and thus t ∈ q(J)
as well.

The above proposition immediately tells us that there are tasks that cannot be expressed as a
Conjunctive Query. Indeed, any query that expresses a non-monotone property cannot be written
as a CQ. For example, suppose that we have a binary relation R, and we express the following
task: return all tuples of the form (a, b) such that (b, a) is not in R.

Definition 3: Satisfiability

A query q is satisfiable if there exists an instance I such that q(I) 6= ∅.

Lecture 1: Conjunctive Queries 1-5

Proposition 2

Every Conjunctive Query is satisfiable.

When the head of a CQ is of the form q(), then we say that q is a boolean CQ. For example, the
query q2 is boolean. The answer to a boolean CQ is essentially a yes or no, depending on whether
the answer is the set containing a single tuple with no attributes {〈〉}, or it is the empty set {}
respectively. When the head of the CQ contains all the variables in the body, then we say it is a full
CQ; this is equivalent to a query in relational algebra that has no projections (SJ).

1.2 Extensions of Conjunctive Queries

We can extend the class of Conjunctive Queries to obtain classes of queries that are strictly more
expressive than CQs.

CQ 6=. The query class CQ 6= is obtained by adding inequality (6=) to conjunctive queries. For ex-
ample, we can now express the following query: "Return the endpoints for paths of length 3 that start
and end in different vertices.”

q(x, w) :- R(x, y), R(y, z), R(z, w), x 6= w.

The above query cannot be expressed as a standard CQ.

CQ<.The class CQ< is obtained by adding the operators <,≤,>,≥ to Conjunctive Queries. In
this case, we also have to assume a total order on the values of the domain dom. For example,
we can express the following query: "Return the endpoints for paths of length 3 with strictly increasing
value of vertices."

q(x, w) :- R(x, y), R(y, z), R(z, w), x < y, y < z, z < w.

UCQ. The class UCQ (Union of Conjunctive Queries) is obtained by adding union to Conjunctive
Queries. A UCQ is a query of the form q1 ∪ q2 ∪ . . . qm, where each qi is a conjunctive query. For ex-
ample, the query q = q1∪ q2, where q1(x, y) :- R(x, z), R(z, y), and q2(x, y) :- R(x, z), R(z, w), R(w, y)
is a UCQ that returns the endpoints of paths of length 2 or 3. We can also write the above UCQ as
two Datalog rules with the same head:

q(x, y) :- R(x, z), R(z, y).

q(x, y) :- R(x, z), R(z, w), R(w, y).

The class of UCQs corresponds to the fragment of relational algebra that uses Selection, Projec-
tion, Joins and Union (SPJU), and to relational calculus queries that uses ∃,∨,∧ (so no universal
quantifier ∀ or negation).

CQ¬. The class CQ¬ is obtained by adding negation (¬) to Conjunctive Queries. For example, we
can now express the following non-monotone task: return all tuples of the form (a, b) such that (b, a)

Lecture 1: Conjunctive Queries 1-6

is not in R.
q(x, y) :- R(x, y),¬R(y, x).

When adding negation, we have to be careful to add it in a safe way. In particular, we have to
make sure that every variable that appears in a negated atom also exists in a positive atom: we
call such a query safe. For example, the query q() :- R(x),¬R(y) is not a safe query.

A query in CQ¬ is not necessarily monotone! However, the other extensions of CQs are all mono-
tone languages.

Proposition 3

The query languages CQ 6=, CQ<, UCQ are all monotone.

	Basics of Conjunctive Queries
	Semantics
	Equivalent Formalisms
	Some Interesting Properties of CQs

	Extensions of Conjunctive Queries

