
CS 784: Foundations of Data Management Instructor: Paris Koutris

Lecture 2: Query Containment

An important question to answer when we study any query language is how easy it is to decide
whether two queries that are syntactically different express the same query semantically.

Definition 1: Query Equivalence

Two queries q1, q2 are equivalent, denoted q1 ≡ q2 , if for every database instance I, we have
q1(I) = q2(I).

Definition 2: Query Containment

We say that query q1 is contained in query q2, denoted q1 ⊆ q2, if for every database instance
I, we have q1(I) ⊆ q2(I).

It it straightforward to see that if q1 ⊆ q2 and q2 ⊆ q1, then q1 ≡ q2. Thus, we can use query
containment to decide query equivalence.

In the case where both q1, q2 are Boolean queries, query containment is equivalent to logical impli-
cation. Indeed, if q1 ⊆ q2, then for any instance I, q1(I) ⊆ q2(I). But since both queries are Boolean,
this happens if q1(I) is false ({}), or when q1(I) is true {()} and q2(I) is true.

Example 1

We will use the following two queries as our running example.

q1(x, y) :- R(x, y), S(y, y), R(y, w). q′1(x, y) :- R(x, y), S(y, z), R(z, w).

Is there a procedure that allows us to check whether a CQ is contained in another CQ? The answer
to this question was provided by Chandra and Merlin [CM77]. But first, we need to introduce
some more concepts.

Definition 3: Canonical Database
Given a Conjunctive Query q, the canonical database D[q] is the database instance where each
atom in the body of q becomes a fact in the instance.

For example, the canonical database for query q1 of the running example is the instance D[q1] =

{R(x, y), S(y, y), R(y, w)}.

2-1



Lecture 2: Query Containment 2-2

Definition 4: Homomorphism

A homomorphism h from CQ q2 to q1 is a function h : var(q2)→ var(q1) ∪ const(q1) s.t.

1. for every atom R(x1, x2, . . . ) in q2, there is an atom R(h(x1), h(x2), . . . ) in q1.

2. h(head(q2)) = head(q1), where head denotes the head variables of the CQ.

Another term used for a homomorphism is containment mapping.

Example 2

Consider the queries q1, q′1 from the running example. Consider the function h such that h(x) =
x, h(y) = y, h(z) = y, h(w) = w, and observe that it is a homomorphism from q′1 to q1.

2.1 The Homomorphism Theorem

We can now state the central theorem for query containment.

Theorem 1: The Homomorphism Theorem [CM77]

Given two Conjunctive Queries q1, q2, the following statements are equivalent:

1. q1 ⊆ q2.

2. There exists a homomorphism h from q2 to q1.

3. head(q1) ∈ q2(D[q1]).

Proof. 2 =⇒ 1. Let h be a homomorphism from q2 to q1. Consider a database instance I. For
a tuple t ∈ q1(I), we need to prove that t ∈ q2(I). Since t ∈ q1(I), there exists a valuation v
such that t = v(head(q1)). Consider the composition of v with the homomorphism h: g = v ◦ h.
We will show that g is a valuation for query q2. Indeed, consider any atom R(y1, . . . , ym) in q2.
By the definition of homomorphism, R(h(y1), . . . , h(ym)) is an atom in the body of q1. Then, by
definition of the valuation, R(g(y1), . . . , g(ym)) is a fact of I. Finally, observe that g(head(q2)) =

v(h(head(q2))) = v(head(q1)) = t.

1 =⇒ 3. Let q1 ⊆ q2, and consider the canonical database D[q1]. Then, head(q1) ∈ q1(D[q1]),
since the identity function is a valuation for the canonical database. Since q1 ⊆ q2, head(q1) ∈
q2(D[q1]) as well.

3 =⇒ 2. Since head(q1) ∈ q2(D[q1]), there exists a valuation v for query q2. This valuation is a ho-
momorphism from q2 to q1, since (a) v(head(q2)) = head(q1) and (b) for every atom R(y1, . . . , ym),
R(v(y1), . . . , v(ym)) is a fact in the canonical database D[q1], and so an atom in q1.



Lecture 2: Query Containment 2-3

Continuing our running example, since there exists a homomorphism from q′1 to q1, the theorem
tells us that q1 ⊆ q′1. On the other hand, q′1 is not contained in q1.

Exercise 1

Decide whether q ⊆ q′ or q′ ⊆ q for the following pairs of CQs:

q2(x) :- R(x, y), R(y, z), R(z, w) q′2(x) :- R(x, y), R(y, z)

q3(x) :- R(x, y), R(y, z), R(z, x) q′3(x) :- R(x, y), R(y, x)

q4(x) :- R(x, u), R(u, u) q′4(x) :- R(x, u), R(u, v), R(v, w)

q5(x) :- R(x, y), R(y, z), R(z, w) q2(x) :- R(x, y), R(y, x)

2.2 The Complexity of CQ Containment

We will now characterize the complexity of deciding whether a CQ is contained in another CQ.

Theorem 2
The problem of query containment for Conjunctive Queries is NP-complete.

Proof. The membership in NP follows from the homomorphism theorem. Indeed, to decide whether
q1 ⊆ q2, we need to find a homomorphism from q2 to q1. If we guess a valuation for the variables
of q2, we can check whether it is a homomorphism in polynomial time.

To show that query containment is NP-hard, we will use a reduction from the graph 3-colorability
problem: given a (directed or undirected) graph G(V, E), is it possible to color the vertices with 3 colors,
such that every pair of neighboring vertices has different colors? Given the graph G, consider the binary
relation R(x, y) that represents the edges of the graph, and let qG be the Boolean CQ that corre-
sponds to the graph. For example, if the graph has the edges (a, b), (b, c), (c, a), then the query is
qG() :- R(a, b), R(b, c), R(c, a). Consider now the query

K3() :- R(x, y), R(y, x), R(y, z), R(z, y), R(z, x), R(x, z).

K3 essentially represents the complete (undirected) graph with 3 vertices. It is easy to see that G is
3-colorable if and only if there exists a homomorphism from qG to K3. Indeed, a homomorphism
will map the variables of qG, which are the vertices of the graph G, to the variables x, y, z of K3,
which can be viewed as the 3 colors. Applying the homomorphism theorem, G is 3-colorable if
and only if K3 ⊆ qG.

It can also be shown (the proof is left as an exercise) that deciding the equivalence of conjunctive
queries is also NP-complete.



Lecture 2: Query Containment 2-4

Theorem 3
The problem of query equivalence for Conjunctive Queries is NP-complete.

As a corollary of the homomorphism theorem, we can also pinpoint the complexity of evaluating
a conjunctive query.

Proposition 1

The problem of evaluating a Conjunctive Query is NP-complete (combined complexity).

Even though query containment is an NP-complete problem, it is a feasible problem to solve
because typically the size of the queries we want to check for containment is not very large. More
on that in the next lectures!

2.3 Conjunctive Query Minimization

In this section, we discuss how to minimize a CQ. In other words, given a Conjunctive Query q,
can we find an equivalent CQ q′ such that it has as few atoms as possible?

Definition 5: Minimal Query

A Conjunctive Query q is minimal if for every other CQ q′ such that q ≡ q′, q′ has at least as
many atoms as q.

Example 3

Consider the CQ q(x) :- R(x, y), R(x, z), R(z, w). This query is not minimal; indeed, consider the
CQ q′(x) :- R(x, z), R(z, w). It is easy to see that q ≡ q′, and q′ has one fewer atom than q. In
contrast, q′ is a minimal query.

Exercise 2

Find the minimal equivalent CQ to q(x, y) :- R(y, x), R(z, x), R(w, x), R(x, u).

Using query minimization, instead of evaluating a CQ q directly, we can first compute a minimal
equivalent CQ q′, and then evaluate the new query q′. Since the resulting query will have fewer
atoms in the body, a database engine would need to compute fewer joins to evaluate the same
query, hence achieving better performance.

The following theorem characterizes the structure of minimal Conjunctive Queries.



Lecture 2: Query Containment 2-5

Theorem 4
Let q be a Conjunctive Query.

1. There exists a minimal equivalent CQ q′ that can be obtained from q by removing zero
or more atoms.

2. All minimal equivalent CQs of q are isomorphic (the same up to variable renaming).

Proof. (1) Let q′′ be a minimal equivalent query to q. Then, by the homomorphism theorem, there
exists a homomorphism h from q to q′′, and g from q′′ to q. Let q′ be the query that results if we
apply h ◦ g to q. It is straightforward to verify that q′ ≡ q and that q′ has at most as many atoms
as q′′.

(2) This item tells us that, even though there is not a unique minimal equivalent query, minimal
queries are the same up to renaming of variables. The proof is left as an exercise!

Using the above theorem as a guide, we can devise a simple algorithm that computes a minimal
equivalent query:

1. Choose an atom from q and remove it to obtain a new query q′. We know from the homo-
morphism theorem that q ⊆ q′.

2. Check if q′ ⊆ q; if so, then q′ is equivalent and we can continue the process of removing
another atom.

3. If not, try to remove another atom from q.

Unfortunately, CQ minimization is also an NP-hard problem, so we cannot hope to have a general
efficient algorithm to minimize a given query. CQ minimization techniques are not used in prac-
tice inside query optimizers, since (i) SQL uses bag instead of set semantics, and (ii) most SQL
queries have a simple join structure and hence are already minimal.

2.4 Beyond Conjunctive Queries

Query containment for all of relational algebra (so the first-order fragment of relational calculus)
is an undecidable problem. To prove undecidability, we can reduce from the problem of finite
satisfiability of first-order formulas. A first order sentence φ is finitely satisfiable if there exists a
finite database instance I such that φ is true over I.

Theorem 5: Trakhtenbrot’s Theorem [T50]
Finite satisfiability is undecidable in first-order logic.



Lecture 2: Query Containment 2-6

To show the reduction, consider a first-order sentence φ and construct the following two relational
calculus queries: q1 = ∃x(R(x)∧ φ) and q2 = ∃x(R(x)∧ (x 6= x)). It is clear that q2 is always false,
hence q1 ⊆ q2 if and only if q1 is always false, which is equivalent to φ being not finitely satisfiable.

However, query containment is more tractable for classes of queries that are between CQs and the
full relational calculus. Let’s consider first the class of UCQs [SY80].

Theorem 6
Let q = q1 ∪ q2 ∪ · · · ∪ qm and q′ = q′1 ∪ q′2 ∪ · · · ∪ q′n be UCQs. The following statements are
equivalent:

1. q ⊆ q′.

2. For every i = 1, . . . , m, there exists some j = 1, . . . , n such that qi ⊆ q′j.

Proof. 2 =⇒ 1. Straightforward. Consider an instance I and let t ∈ q(I). Then, t ∈ qi(I) for some
i = 1, . . . , m, and since qi ⊆ q′j for some j, t ∈ q′j(I). Thus, t ∈ q′(I).

1 =⇒ 2. Consider the canonical instance D[qi]. We then have: qi(D[qi]) ⊆ q(D[qi]) ⊆ q′(D[qi]).
It must be then that head(qi) ∈ q′j(D[qi]), which by the homomorphism theorem implies that
qi ⊆ q′j.

As a corollary of the above result, we obtain that the problem of query containment for UCQs is
also an NP-complete problem.

The complexity for query containment for CQ 6=, CQ< is much higher than NP-complete: it is in
the complexity class Πp

2 .

References

[Alice] S. ABITEBOUL, R. HULL and V. VIANU, “Foundations of Databases.”

[CM77] A.K. CHANDRA and P.M. MERLIN, “Optimal implementation of conjunctive queries
in relational data bases,” STOC 1977.

[SY80] Y. SAGIV and M. YANNAKAKIS, “Equivalences Among Relational Expressions with
the Union and Difference Operators", JACM 1980.

[T50] B.A. TRAKHTENBROT, “The impossibility of an algorithm for the decidability problem
on finite classes", Doklady AN SSR 70(4), 569?572, 1950.


	The Homomorphism Theorem
	The Complexity of CQ Containment
	Conjunctive Query Minimization
	Beyond Conjunctive Queries

