
CS 784: Foundations of Data Management Instructor: Paris Koutris

Lecture 3: The Computational Complexity of Relational Queries

When we study a query language L from a theoretical perspective, we typically focus on the
following two questions:

1. How expressive is L, i.e., what properties can we express using the language?

2. What is the complexity of evaluating a query from L?

In this lecture we study the complexity of evaluating queries, and in particular Conjunctive Queries,
and Relational Algebra queries. Before that, we will start with a brief revision of a few basic com-
putational complexity concepts.

3.1 A Short Introduction to Computational Complexity

When we refer to the computational complexity of a problem, we typically talk about a decision
problem: given an input x = (x1, x2, . . . , xn) of size n (where each xi represents a bit), we have to
decide whether the output is yes (output 1) or no (output 0). It will be helpful to define some
complexity classes in terms of circuit complexity, which is why we next introduce the notion of a
Boolean circuit.

Definition 1: Boolean Circuit
A Boolean circuit C with n inputs is a Directed Acyclic Graph (DAG). It contains n nodes
with no incoming edges, which are called the input nodes, and one node with no outgoing
edges, which is called the output node. All other nodes in the graph are called gates, and
can be one of the following logical operations: OR, AND, and NOT.

The fan-in of a gate is the number of incoming edges. A NOT gate has always fan-in 1, while the
OR and AND gates can have fan-in at least 2.

A Boolean circuit computes an output from an input by pushing the input bits from the bottom
of the circuit to the top (following the topological order of the nodes). We are interested in three
parameters of a boolean circuit: (i) the size, which is the number of nodes in it, (ii) the depth, which
is the longest directed path from an input node to the output node, and (iii) the fan-in, which is
the maximum fan-in of an OR or AND gate in the circuit.

3-1

Lecture 3: The Computational Complexity of Relational Queries 3-2

x0 x1 x2

NOT

AND AND

OR

Figure 3.1: Example of a Boolean circuit with 3 input nodes, size 7, depth 3, and fan-in 2.

Exercise 1

Construct a Boolean circuit of depth 2 and unbounded fan-in that, given a string of n bits as
input, decides whether it contains at least two 1’s or not.

We can now define our first class of interest:

Definition 2: NC

NCi is the class of problems solved using a Boolean circuit of depth O(logi n), and a poly-
nomial number of gates of fan-in at most 2.

We simply now define NC =
⋃

i≥0 NC
i. NC stands for Nick’s Class. The class NC0 is not very

interesting, since it captures only functions that depend on a constant number of input bits. The
following problems are in the class NC: integer multiplication, integer addition, and matrix mul-
tiplication. Another problem of interest is PARITY: given an input string of size n, output yes if the
string contains an even number of 1’s, otherwise output no.

Proposition 1

PARITY is in NC1.

Similarly to NC we can define the class AC.

Definition 3: AC

ACi is the class of problems solved using a Boolean circuit of depth O(logi n), and a poly-
nomial number of gates of unbounded fan-in.

We also define AC =
⋃

i≥0 AC
i. One can show that NCi ⊆ ACi ⊆ NCi+1 (proving the statement is

Lecture 3: The Computational Complexity of Relational Queries 3-3

left as an exercise!). So we can write:

NC0 ⊆ AC0 ⊆ NC1 ⊆ AC1 ⊆ NC2 . . .

It thus holds that NC = AC. The smallest class of AC is the class AC0, which consists of circuits of
constant depth, unbounded fan-in and polynomially many gates (in contrast to NC0, the class AC0

contains many interesting problems!).

Why are we interested in the classes NCi,ACi? I turns out that we can equivalently describe NCi as
the class of decision problems solvable in time O(logi n) on a parallel computer with a polynomial
number of processors. The idea is that the gates at each level of the circuit can evaluate their
outputs in parallel, and thus the running time will be equal to the depth of the circuit. Hence, NC
can be thought as the class of problems that can be solved efficiently on a parallel computer. It is
easy to see than that AC0 is the "easiest" complexity class that we can parallelize, since we need
only a circuit of constant depth! In other words, AC0 is a very weak complexity class, which means
that its expressive power is not strong. For example, it can be shown that the problem PARITY can
not be expressed in this class.

Theorem 1

PARITY is not expressible in AC0.

Another problem that is not expressible in AC0 is the graph reachability problem STCON: given a
directed graph, and two nodes s, t, is there a directed path from s to t?

Definition 4: Logarithmic Space

A problem is in L if it can be computed by a deterministic Turing machine using O(log n)
space. A problem is in NL if it can be computed by a non-deterministic Turing machine
using O(log n) space.

It is easy to see that STCON is in NL. In particular, it is NL-complete. Here, we have to be very
careful on how we define a reduction to prove completeness for L or NL, since the reduction must
be a logarithmic-space reduction (and not a polynomial time). Another NL-complete problem is
2-satisfiability (satisfiability for a SAT formula where each clause has two variables). A complete
problem for L is the undirected connectivity problem USTCON: given an undirected graph, is
there a path from node s to node t?

The relationship between the complexity classes we have defined so far is as follows:

AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ NC2

Definition 5: PSPACE
A problem is in PSPACE if it can be computed by a Turing machine using a polynomial
amount of space.

Lecture 3: The Computational Complexity of Relational Queries 3-4

Including deterministic polynomial time (P) and non-deterministic polynomial time (NP), the hi-
erarchy of the aforementioned complexity classes is as follows:

AC0 ⊂ L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE

We only know that the first containment is strict; all the other class containment questions are big
open problems in the area of computational complexity.

3.2 Complexity Notions for Queries

We now turn our attention to how complexity is defined for evaluating queries in the context of
databases. Recall that so far we studied only decision problems, where the answer is yes or no. In
the case of a Boolean query, the correspondence to a decision problem is straightforward. In the
case of non-Boolean queries, we will distinguish between two different problems: (a) computing
the full query result, i.e., the one that computes all tuples in the output, and (b) computing the
decision problem of whether a tuple t belongs in the query output.

Let us now consider a CQ q that we execute over an input database I, where we want to output
all the tuples in q(I). We start with a naive algorithm that computes the result. Let k = |vars(q)|
be the number of variables in q, ` be the number of atoms in q, and |q| be the sum of the arities
of the atoms in the body of q. Note that k, ` ≤ |q|. Since a valuation maps each variable to
a constant in |adom(I)|, there can be at most |adom(I)|k possible mappings. Observe that the
quantity |adom(q)| is connected polynomially to the input size: |adom(I)| ≤ |q| · |I|.

For each mapping, we can check whether it is a valuation or not in time linear to the number of
atoms in q, and output the corresponding output tuple (we can achieve this by creating a hash
table for each relation, and then probe the hash table). Hence, the running time of this simple
algorithm is

O(|I|+ ` · |adom(I)|k) = O(|q|k+1 · |I|k)

Looking at the above expression, we can observe the following things. First, if we assume that
the query q is fixed (and hence only the database I is the input), the running time is polynomial in
the size of the input. On the other hand, if we fix the database I and have the query as input, or
we have both the query and the database as inputs, the running time becomes exponential in the
input. Since in practice I and q have very different behaviors (I is typically very large, while q is
very small), it makes sense to distinguish the complexity of the evaluating a query depending on
what is considered as an input.

We distinguish between 3 different types of complexity of evaluating a query, so that we can
separate the influence of the query and the database on the complexity:

Data Complexity : the query is fixed, and the complexity is expressed in terms of the size of the
database. This is useful in the context of databases, since the query is typically much smaller
in size than the database.

Lecture 3: The Computational Complexity of Relational Queries 3-5

Query Complexity : the database remains fixed, and the cost is expressed in terms of the size of
the query. This complexity is not commonly considered in a database context.

Combined Complexity : the complexity is measured in the size of both the query and the database.

Observe that the combined complexity will always be at least as high as both the query and the
data complexity. In this course we will mainly focus on data and combined complexity.

3.3 The Complexity of Conjunctive Queries

We showed that the naive algorithm of evaluating a CQ implies that the data complexity is in P. In
fact, we can show that the data complexity for CQs (and actually any query in Relational Algebra)
is in the much weaker complexity class AC0.

Theorem 2

The data complexity of evaluating a boolean CQ is AC0.

Proof. (Sketch) We construct a Boolean circuit of constant depth (2) that simulates the naive al-
gorithm that checks whether every possible mapping is a valuation. We first encode our input
as a multi-dimensional Boolean matrix (tensor), where the dimension is equal to the arity of the
relation. In the first level of the circuit we have AND gates, where each AND gate corresponds to a
mapping of variables to constants and is connected with the corresponding inputs. All the AND
gates are connected to a single OR gate in the second level of the circuit.

In fact, the data complexity of every query in RA (so evaluating FO formulas in general) is AC0

(prove this more general result as an exercise!). This means that the data complexity for evaluating
any SQL query (without recursion) is AC0, a complexity class that as we discussed is easy to
parallelize. This is why it is commonly said that SQL is embarrassingly parallel.

We have already shown that the combined complexity of evaluating a general CQ is NP-complete.
This follows directly from the homomorphism theorem. In the next lecture, we will consider CQs
for which we can have faster evaluation.

References

[Alice] S. ABITEBOUL, R. HULL and V. VIANU, “Foundations of Databases.”

	A Short Introduction to Computational Complexity
	Complexity Notions for Queries
	The Complexity of Conjunctive Queries

