
CS 784: Foundations of Data Management Instructor: Paris Koutris

Lecture 4: Acyclic Conjunctive Queries

Previously, we showed that the combined complexity of evaluating Conjunctive Queries is NP-
complete. In this lecture, we show how to obtain polynomial time algorithms for some classes
of CQs. Let us start with an example.

Example 1

Consider the Boolean k-path query:

Pk() :- R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1)

Assume that the size of every relation is |Ri| = N, hence the input is of size k · N. Consider
the following algorithm: we first project R1 on the attribute x2, then compute the semi-join with
R2, project the result on attribute x3, and so on. Observe that at every point the size of the
intermediate result is at most N. Hence, we can implement the algorithm with running time
time O(kN). The running time in this case is polynomial (in combined complexity)!

Let’s see now how we can generalize this intuition to compute a larger class of queries. Notice that
the output of a query may be in the worst case exponential in the input size; in this case, designing
an algorithm that runs in polynomial time in the size of the input is not possible. Thus, we want to
design an algorithm that is polynomial with respect to the input and the output size. We will show
that such an algorithm is possible for the class of Conjunctive Queries called acyclic CQs.

4.1 Acyclic CQs: Definition

We start by defining an alternative description of a CQ as a hypergraph.

Definition 1: Query Hypergraph

The hypergraphH(q) = (V, E) associated to a CQ q is defined as follows. The set of vertices
V consists of all variables in the body of q, vars(q), while the set E of hyperedges contains,
for each atom in the query, the set of variables that appear in this atom.

Below are the hypergraphs for the Boolean CQs q0(x, y, z) :- R(x, y), S(y, z), T(z, x) (the triangle
query) and q1() :- R(x, y), S(y, z), T(z, w) (path of length 3).

4-1

Lecture 4: Acyclic Conjunctive Queries 4-2

x y

z

x y

w z

Intuitively, a CQ is acyclic if the hypergraph contains no cycles. If the hypergraph is a graph
(which happens if every relation in the query is binary), then acyclicity coincides with the graph
being a tree. But the characterization is not as clear when the hyperedges have arity more than
2. To formally define acyclicity, we will apply the following algorithm, called the GYO algorithm
(from Graham-Yu-Ozsoyoglu).

Algorithm 1: GYO algorithm
Input: a hypergraphH
Output: isH acyclic?

while true do
remove a vertex v that is isolated (belongs to only one hyperedge) ;
remove a hyperedge e if it is contained in another hyperedge ;
if H has not changed then break;

end
ifH contains no vertices then

return YES ;
end
return NO ;

Example 2

If we apply the GYO algorithm to H(q0), we cannot remove anything from the hypergraph,
and thus the algorithm will return that it is not acyclic. For q1, the GYO algorithm will run as
follows:

V = {x, y, z, w} E = {{x, y}, {y, z}, {z, w}} w is isolated

V = {x, y, z} E = {{x, y}, {y, z}, {z}} {z} ⊆ {y, z}
V = {x, y, z} E = {{x, y}, {y, z}} x is isolated

V = {y, z} E = {{y}, {y, z}} {y} ⊆ {y, z}
V = {y, z} E = {{y, z}} y, z are isolated

V = {} E = {{}}

Since the resulting hypergraph has no vertices, the algorithm returns that the query is acyclic.

Lecture 4: Acyclic Conjunctive Queries 4-3

A powerful property of the GYO algorithm is that the resulting hypergraph at the end of the
while loop will always be the same, independent of the order with which we remove hyperedges
or vertices (prove this as an exercise!). We should note here that there are other variations of
the GYO algorithm with different implementation details. In fact, we can implement the GYO
algorithm in only linear time in the size of the query.

This above definition of acyclicity is called α-acyclicity. There are other definitions of acyclicity for
hypergraphs (Berge-acyclicity, β-acyclicity, γ-acyclicity), but they are more restrictive.

Next, we discuss some equivalent definitions of acyclic CQs. Recall that a forest is a graph that is
a collection of disjoint trees.

Definition 2: Join Forest

A join forest for a CQ q is a forest F = (V, E) whose vertices are the atoms in q and such that
for each pair of atoms R, S having variables in common the following conditions hold:

1. R, S belong in the same connected component of F; and

2. all variables common to R and S occur on the unique path from R to S.

In the case where F is a tree, it is called a join tree of the query q. It turns out that we can equiva-
lently characterize acyclicity by looking at whether a CQ admits a join forest.

Proposition 1

A Conjunctive Query q is acyclic if and only if it has a join forest.

In fact, we can obtain the join forest by running the GYO algorithm. Whenever we remove a
hyperedge e because it is contained in another hyperedge f , we simply connect e to f . Since once
we connect e we remove it from consideration, it is easy to see that the resulting graph will be a
forest. It can additionally be shown that it will be a join forest.

We next show a third equivalent characterization of acyclic CQs. Say that, given a CQ q, we want
to remove from a relation R the tuples that we are certain that they do not participate in the final
result of q, called dangling tuples. In other words, t is a dangling tuple if no valuation that leads to
an output uses t.

Example 3

Consider again the CQ q1() :- R(x, y), S(y, z), T(z, w), along with the following instance: I =

{R(a, b), S(b, c), T(c, d), R(a, b′), S(b′′, c′), T(c′, d′)}. In this example, R(a, b′), S(b′′, c′), T(c′, d′)
are all dangling tuples.

We can attempt to remove dangling tuples using the semijoin operator. A semijoin between rela-
tions R, S is defined as:

R n S = πatt(R)(R ./ S)

Lecture 4: Acyclic Conjunctive Queries 4-4

In other words, the result is the set of tuples from R that we are certain that they join with a
tuple from S. Semijoins are often used in distributed databases to reduce the communication cost
of joining two relations. An instance without any dangling tuples is called globally consistent. If
we can remove all dangling tuples by using only a (finite) sequence semijoin operations, such a
sequence is called a full reducer.

Example 4

Here is one full reducer for the query q1. You can check that it removes all dangling tuples!

S := S n R

T := T n S

S := S n T

R := R n S

The triangle query does not admit any full reducer. For example, consider the following in-
stance: {R(a, a), R(b, b), S(a, a), S(b, b), T(a, b), T(b, a)}.

Proposition 2

A Conjunctive Query q is acyclic if and only it admits a full reducer.

To prove this equivalence, we can again use the GYO algorithm. Whenever we remove a hyper-
edge e because it is contained in another hyperedge f , we compute the semi-join R f := R f n Re.
After the GYO algorithm terminates, we simply have to apply the semi-joins in the reverse order
as well.

4.2 Acyclic CQs: PTIME Algorithm

We will now use join forests and full reducers to evaluate an acyclic CQ q over a database in-
stance in polynomial time (combined complexity). Without loss of generality, we can assume that
q is connected (since we can compute each connected component separately and then take the

Lecture 4: Acyclic Conjunctive Queries 4-5

cartesian product). The algorithm works as follows:

Algorithm 2: Yannakakis algorithm
Input: Conjunctive Query q, instance I
Output: q(I)

apply a full reducer to I to obtain a globally consistent instance J ;
construct a join tree T for q and choose a root node ;
Let R1, . . . , Rn be a post-order traversal of the tree ;
for i = 1, . . . , n do

if Ri is a leaf then Ti ← RJ
i ;

S1, . . . , Sk are the children of Ri ;
for j = 1, . . . , k do

Ti ← πvars(Ri)∪head(q)(RJ
i ./ Tj) ;

end
end

Note that Yannakakis algorithm essentially produces a query plan that uses only joins and projec-
tions as its operators.

Theorem 1
The Yannakakis algorithm evaluates an acyclic Conjunctive Query q in time polynomial in
the size of the query, the input and the output.

Proof. Why is this algorithm correct? The key property is that if we have a variable x that appears
in a node and not its parent in the join tree, the variable will not appear at any ancestor (so it will
not be needed further in the evaluation).

To show that we obtain the desired complexity, we will prove that no intermediate result can grow
more than a polynomial in the size of the input and output. Consider some node with atom R and
children S1, . . . , Sn. Then the algorithm will replace this node with a new node T′ = πY∪Z(T),
where T = R ./ S1 ./ . . . Sn, Y are the variables in R, and Z are the variables in head(q) \Y. Since
Y, Z are disjoint, πY∪Z(T) ⊆ πY(T)×πZ(T). Now notice that πY(T) is at most the size of R. Also,
πZ(T) is bounded by the size of the output (but only because we took care of dangling tuples by
applying the full reducer).

Exercise 1

How does Yannakakis algorithm work for the following query?

q(x, t) :- R(x, y, z), S(y, v), T(y, z, u), U(z, u, w), V(u, w, t).

Run the GYO algorithm, find the join tree and explain what is the query plan produced by the
polynomial-time algorithm.

Lecture 4: Acyclic Conjunctive Queries 4-6

From Yannakakis algorithm, we can obtain stronger results if we consider CQs that are Boolean or
full (no projections).

Proposition 3

Let q be an acyclic CQ, and I an instance of size N. Then:

• If q is Boolean, we can evaluate the query in time O(N).

• If q is full, we can evaluate the query in time O(N + OUT), where OUT is the size of
the output.

References

[Alice] S. ABITEBOUL, R. HULL and V. VIANU, “Foundations of Databases.”

[Y81] M. YANNAKAKIS, “Algorithms for acyclic database schemes,” VLDB 1981.

	Acyclic CQs: Definition
	Acyclic CQs: PTIME Algorithm

