
CS 784: Foundations of Data Management Instructor: Paris Koutris

Lecture 5: Query Decompositions

In the last lecture we showed that for the class of acyclic Conjunctive Queries, evaluation is in
polynomial time (combined complexity). It is logical to ask whether acyclic queries is the only
class of queries that can be evaluated in polynomial time. The answer to this question is that there
are other classes of CQs where polynomial time evaluation is possible as well.

Example 1

Consider the Boolean cycle query, which asks whether there is cycle of length k:

Ck() :- R1(x1, x2), R2(x2, x3), . . . , Rk(xk, x1)

Assume that for every i, |Ri| = N. As we showed in the last lecture, this query is not acyclic
and does not admit a join tree. However, we can apply a similar idea to evaluate this query in
polynomial time. We first perform the natural join R(x1, x2) ./ R(x2, x3), then project on x1, x3,
then join with R(x3, x4), project on x1, x4, and so on. The key difference from the algorithm that
evaluates the path query Pk is that we also keep x1 around. Observe that at every point the size
of the intermediate result is at most N2. Hence, we can implement the algorithm with running
time time O(kN2), and the running time is again polynomial in the size of the query and the
input!

The characterization of CQs that we can compute in polynomial time is based on the idea of
"decomposing" the hypergraph of the query. We start by presenting one such decomposition,
called the query decomposition. We can think of the query decomposition as a generalization of the
construct of a join forest for acyclic queries.

5.1 Tree Decompositions

We start by providing the definition of a tree decomposition.

5-1

Lecture 5: Query Decompositions 5-2

Definition 1: Tree Decomposition

A tree decomposition of a CQ q is a pair (T, χ), where (i) T = (V, E) is a tree, and (ii) χ is a
labeling function which associates to each vertex v ∈ V a subset of variables of q, χ(v), such
that the following conditions are satisfied:

1. For each atom A in the body of q, there exists a node v ∈ V such that χ(v) contains all
variables of A.

2. For each variable x ∈ vars(q), the set of nodes {v | x ∈ χ(v)} forms a connected
subtree.

The set χ(v) is also commonly called a bag. The second condition of the decomposition generalizes
the "connectedness" condition for join trees and is equivalent to requiring that for every two ver-
tices v1, v2 of the tree, the variables in χ(v1)∩ χ(v2) will appear in all the vertices along the unique
path that connects v1 to v2. When each bag of a tree decomposition consists of the variables of a
single relation, it is easy to see that the decomposition is exactly a join tree.

Given a node v in the tree decomposition, we define its width w(v) to be the minimum number of
atoms necessary to cover all variables in χ(v) (meaning that every variable must belong in some
atom).

Definition 2: Generalized Hypertree Width

Let (T, χ) be a tree decomposition of a CQ q. The generalized hypertree width (ghw) of the
decomposition is defined as maxv∈V w(v). The ghw of a query q is the minimum ghw over
all possible tree decompositions.

To give an example, consider the cycle query Ck of the initial example. We will construct three
different decompositions for this query:

1. The first decomposition is a tree with a single node v, and χ(v) = {x1, x2, . . . , xk}. It is trivial
to see that this decomposition satisfies both conditions. To compute the width of the node v,
observe that if we choose every second atom (i.e., R1, R3, R5, . . .), we can cover all variables
in χ(v). Hence, the width of v is dk/2e, and the ghw of the decomposition is dk/2e.

2. The second decomposition is a tree with two nodes v1, v2, and an edge {v1, v2}. The labeling
function is χ(v1) = {x1, x2, . . . , xk−1}, χ(v2) = {xk−1, xk, x1}. This is a correct decomposition
because v1, v2 share 2 variables and indeed there are connected. The ghw in this case is
max{dk/2e, 2} = dk/2e again.

3. The third decomposition has k vertices v1, . . . , vk that form a path, where χ(vi) = {x1, xi, xi+1}.
It is easy to see that the first condition of a tree decomposition is satisfied. For the second
condition, notice that every variable apart from x1 appears in consecutive vertices in the
path and that satisfies the connectedness property. Variable x1 appears in every vertex, so
it trivially satisfies the property. The ghw here is 2, since each bag can be covered by two
atoms.

Lecture 5: Query Decompositions 5-3

Can we construct a tree decomposition for Ck with ghw less than 2? The lemma below tells us that
it is not possible to do, which shows that the ghw of Ck is 2.

Proposition 1

A CQ q is acyclic if and only if ghw(q) = 1.

Tree decompositions can be interpreted as query plans for joins. Given a decomposition, we can
first compute one intermediate relation per bag/node, by computing the join restricted to the
variables of the bag. Formally, given a bag with variables U ⊆ vars(q), we define the query q[U]

as one obtained by first projecting each atom A on U ∩ vars(A), and then computing the natural
join. For instance, if U = {x1, x2, x3}, the query Ck[U] computes the natural join πx1(Rk) ./ R1 ./

R2 ./ πx3(R3). The intermediate relations can then be joined using Yannakakis algorithm.

Algorithm 1: Evaluation of CQ with ghw k
Input: Conjunctive Query q with ghw = k, instance I
Output: q(I)

construct a tree decomposition (T, χ) for q ;
for vertex v in T do

compute q[χ(v)](I) ;
end
Run Yannakakis using T as the join tree and q[χ(v)](I) as the input relations of each node ;

In the above algorithm, the key observation is that we need O(|I|k) time to compute the interme-
diate result for each node in the decomposition. Moreover, the size of each intermediate result is
bounded by O(|I|k). Hence, applying Yannakakis algorithm leads to the following results [CR00]:

Theorem 1
Let q be a boolean CQ with ghw(q) = k. Given a tree decomposition q of width k, we can
compute q with running time O(|I|k), where I is the input database.

Theorem 2
Let q be a full CQ with ghw(q) = k. Given a tree decomposition of q of width k, we can
compute q with running time O(|I|k + OUT).

This implies that we can efficiently evaluate a Conjunctive Query with bounded ghw, where
bounded means that the width is bounded by some constant. Unlike the case of acyclic CQs, no
efficient method for checking whether the ghw is bounded is known. In fact, deciding whether a
CQ has a decomposition with bounded width is NP-complete.

Lecture 5: Query Decompositions 5-4

5.2 Other Notions of Width

Apart from general hypertree width, several other notions of decompositions have been presented
in the literature:

• Hypertree-Width: Bounded hypertree-width implies evaluation in polynomial time [GSL02].
The hypertree-width is always larger than the generalized hypertree width, but we can al-
ways find a bounded hypertree decomposition, if one exists, in polynomial time.

• Fractional Hypertree-Width: This is a generalization of the hypertree-width that encom-
passes an even bigger class of CQs that can be evaluated in polynomial time. We will talk
more about these in subsequent lectures!

• Submodular Width: This is the currently best known width measure for a CQ.

We should note here that decompositions and the evaluation of CQs is very tightly connected with
the area of Constraint Satisfaction Problems (CSPs) in artificial intelligence; see the survey [GGS]
for more details on this connection and the applications of tree decompositions. In fact, a tree de-
composition is essentially the same notion as the junction tree used used in inference for graphical
models.

References

[Alice] S. ABITEBOUL, R. HULL and V. VIANU, “Foundations of Databases.”

[Y81] M. YANNAKAKIS, “Algorithms for acyclic database schemes,” VLDB 1981.

[CR00] C. CHEKURI and A. RAJARAMAN, “Conjunctive query containment revisited,” Theo-
retical Computer Science 239 (2000) .

[GLS02] G. GOTTLOB, N. LEONE and F. SCARCELLO, “Hypertree Decompositions and Tractable
Queries,” Journal of Computer and System Sciences 64 (2002) .

[GTS01] M. GROHE, T. SCHWENTICK and L. SEGOUFIN, “When is the evaluation of conjunctive
queries tractable ?,” STOC 2001 .

[GGS] G. GOTTLOB, G. GRECO and F. SCARCELLO, “Treewidth and Hypertree Width”.

	Tree Decompositions
	Other Notions of Width

