
The Quest for Faster Join Algorithms

Paris Koutris

Joins are a core relational operator

The Long History of Join Algorithms

3

• typically computed via a query plan of binary join operators

• many different algorithms to compute binary joins
• nested loop join
• hash join
• sort-merge join
• .. and a lot more!

R(A, B) ⋈ S(B, C) ⋈ T(C, D)

R

⋈

S

T

⋈

T

⋈

S

R

⋈

But haven’t we already solved everything?

4

But haven’t we already solved everything?

4

1. Query optimizers are notoriously sensitive to cardinality estimation
errors leading to suboptimal plans

2. Binary join plans perform well for most joins, but poorly for others:
• pattern matching on graphs
• cyclic joins

3. There is a large gap between theory and practice!

No!

What is the fastest algorithm to compute a
join query?

We still don’t know!

What is the fastest algorithm to compute a
join query?

But we have made some amazing progress!

In this talk:

the story about the progress and a few key ideas behind it

Roadmap

8

Roadmap

8

Yannakakis’ algorithm

1980

Roadmap

8

Yannakakis’ algorithm

1980

2000

tree decompositions
generalized hypertree width

Roadmap

8

Yannakakis’ algorithm

1980

2000

tree decompositions
generalized hypertree width

AGM bound

2008

Roadmap

8

Yannakakis’ algorithm

1980

2000

tree decompositions
generalized hypertree width

AGM bound

2008

2012

WCOJs

Roadmap

8

Yannakakis’ algorithm

1980

2000

tree decompositions
generalized hypertree width

AGM bound

2008

2012

WCOJs

2017

PANDA algorithm
submodular width

Roadmap

8

Yannakakis’ algorithm

1980

2000

tree decompositions
generalized hypertree width

AGM bound

2008

2012

WCOJs

2017

PANDA algorithm
submodular width

future?

Roadmap

8

Yannakakis’ algorithm

1980

2000

tree decompositions
generalized hypertree width

AGM bound

2008

2012

WCOJs

2017

PANDA algorithm
submodular width

future?

5 Key Ideas:

1. tree decompositions
2. data partitioning
3. using statistics
4. enumeration
5. the algebraic lens

Some background

9

this talk: queries with natural joins + projections

A

B

Cπ∅(R(A, B) ⋈ S(B, C) ⋈ T(C, A))

R(A, B, C) ⋈ S(B, C, D) ⋈ T(A, D)
A

B

C

Boolean: project out everything

Full: no projectionsD

Yannakakis’ Algorithm

10

R(A, B) ⋈ S(B, C) ⋈ T(C, D) ⋈ U(C, E)

R

S

T

join tree

U

[Yannakakis - ’81]

Yannakakis’ Algorithm

11

R(A, B) ⋈ S(B, C) ⋈ T(C, D) ⋈ U(C, E)

R

S

T

S ← S ⋉ T

R ← R ⋉ S

1 - semijoin phasejoin tree

U

R

S

T U

S ← S ⋉ U

[Yannakakis - ’81]

Yannakakis’ Algorithm

12

R(A, B) ⋈ S(B, C) ⋈ T(C, D) ⋈ U(C, E)

R

S

T

S ← S ⋉ T

R ← R ⋉ S

1 - semijoin phase 2 - join phasejoin tree

⋈

SR

⋈

T

U

R

S

T U

S ← S ⋉ U

⋈
U

Key property: any intermediate join size is bounded by the output size

[Yannakakis - ’81]

Yannakakis’ Algorithm

13

Yannakakis’ algorithm comes with runtime guarantees for acyclic joins

O(N + OUT)

input output

Full

O(N)

Boolean

O(N ⋅ OUT + OUT)

General

[Yannakakis - ’81]

joins that have a join tree

Predicate Transfer: Yannakakis in Practice

14

• Yannakakis can be slow because of the high cost of a semi-join
• We can replace the semi-joins by (approximate) Bloom filters
• We obtain speedup + robustness to bad query plans

1 - transfer phase 2 - join phase

⋈

SR

⋈

T

R

S

T U

⋈
U

R(A, B) ⋈ S(B, C) ⋈ T(C, D) ⋈ U(C, E)

forward-backward
transfer of Bloom filters

[Yang et al. - ’24]

15

Robustness Factor := max execution time / min execution time

worst join order best join order
[Zhang et al. - ’25]

Predicate Transfer: Yannakakis in Practice

15

Robustness Factor := max execution time / min execution time

worst join order best join order
[Zhang et al. - ’25]

Predicate Transfer: Yannakakis in Practice

Roadmap

16

Yannakakis’ algorithm

1980

2000

tree decompositions
generalized hypertree width

AGM bound

2008

2012

WCOJs

2017

PANDA algorithm
submodular width

future?

5 Key Ideas:

1. tree decompositions

2. data partitioning
3. using statistics
4. enumeration
5. the algebraic lens

1 - Tree Decompositions

17

• Acyclic joins have plans where the intermediate size is bounded by the
output size.

• What can we do for cyclic joins?

IDEA: make the join acyclic by
computing larger intermediate relations

A

B

C

D

E

T1(A, B, C) T2(C, D, E)⋈

O(N2) O(N2)
O(N2 + OUT)

Tree Decompositions - Definition

18

• Like a join tree, but each node is an intermediate relation (bag)
• Every relation must be included in some bag

A

B

C

D

E

T1(A, B, C) T2(C, D, E)⋈

A, B, C

C, D, E

Generalized HyperTree Width

19

A

B

C

D

E

A, B, C

C, D, E

integral edge cover w: smallest subset of
relations that “covers” all attributes in a bag

A

B

C

C

E

D

w = 2

w = 2

Generalized HyperTree Width

20

A

B

C

D

E

A, B, C

C, D, E

integral edge cover w: smallest subset of
relations that “covers” all attributes in a bag

A

B

C

C

E

D

w = 2

w = 2

ghw(Q) := min
decomp T

max
bag B

w(XB)

ghw = 2

Runtime Result

21

If Q is a full join, we can evaluate it in time

A

B

C

D

E

T1(A, B, C) T2(C, D, E)⋈

O (Nghw(Q) + OUT)

O(N2 + OUT)

The algorithm can be expressed as a join-project plan!

Roadmap

22

Yannakakis’ algorithm

1980

2000

tree decompositions
generalized hypertree width

AGM bound

2008

2012

WCOJs

2017

PANDA algorithm
submodular width

future?

5 Key Ideas:

1. tree decompositions
2. data partitioning

3. using statistics
4. enumeration
5. the algebraic lens

2 - Data Partitioning

23

Join-at-a-time algorithms are suboptimal!

best binary join algorithm: O(N2)

we can do better: O(N3/2)

We can do better by partitioning the input data and applying a different
join plan to each partition

A

B

C

Data Partitioning: Example

24

R(A, B) ⋈ S(B, C) ⋈ T(C, A)

SL = {S(b, c) ∣ |σB=b(R) | ≤ N}

R

⋈

SL

T

⋈

SH = S∖SL

light

≤ N3/2

πA,C
R

⋈

SHT

⋈

≤ N3/2

πA,B

O(N3/2)

heavy

Fractional Hypertree Width

25

A

B

C

D

E

A, B, C

C, D, E

fractional edge cover f: assign weights to
relations to “cover” all attributes in a bag

A

B

C

C

E

D

f = 3/2

f = 3/2

0.5

0.5

0.5

0.5

0.5

0.5

Fractional Hypertree Width

26

A

B

C

D

E

A, B, C

C, D, E

fractional edge cover f: assign weights to
relations to “cover” all attributes in a bag

A

B

C

C

E

D

f = 3/2

f = 3/2

fhw(Q) := min
decomp T

max
bag B

f(XB)

fhw = 3/2

0.5

0.5

0.5

0.5

0.5

0.5

Runtime Result Revisited

27

If Q is a full join, we can evaluate it in time

A

B

C

D

E

T1(A, B, C) T2(C, D, E)⋈

O (Nfhw(Q) + OUT)

O(N3/2 + OUT)

The algorithm can be expressed as a join-project-partition plan!

[Ngo, Re, Rudra - ’13]

(Worst-case Optimal Joins)

28

• WCOJs have a running time matching the worst-case output size
• They often work in a attribute-at-a-time manner

• Leapfrog Triejoin
• GenericJoin
• FreeJoin

AGM bound

A lot of successful practical implementations!

[Veldhuizen - ’14]

[Wang, Willsey, Suciu - ’23] [Atserias, Grohe, Marx - ’08]

[Ngo, Re, Rudra - ’13]

Data Partitioning Again

29

A

B C

D

A, B, D

B, C, D

fhw = 2

A, B, C

A, D, C

We can partition data to use different tree decompositions!

Runtime Result (Re)Revisited

30

If Q is a full join, we can evaluate it in time

Õ (Nsubw(Q) + OUT)

O(N3/2 + OUT)

subw(Q) := max
submodular h

min
decomp T

max
bag B

h(XB)

A

B C

D

PANDA algorithm

[Khamis, Ngo, Suciu - ’17]

subw ≤ fhw ≤ ghw

Output-Sensitive Yannakakis

31

• When we have projections in an acyclic join, Yannakakis runs in time

• We can design faster join algorithms by taking the output size OUT
into account (using data partitioning again)

O(N + N ⋅ OUT)

πA,C(R(A, B) ⋈ T(B, C)) O(N + N ⋅ OUT1/2)

[Deep, Zhao, Fan, Koutris - ’25]

[Hu - ’25]O (Nfhw(Q) + OUT)
If Q is an acyclic join, we can evaluate it in time

O(N + N ⋅ OUT1−ϵ)

Roadmap

32

Yannakakis’ algorithm

1980

2000

tree decompositions
generalized hypertree width

AGM bound

2008

2012

WCOJs

2017

PANDA algorithm
submodular width

future?

5 Key Ideas:

1. tree decompositions
2. data partitioning
3. using statistics

4. enumeration
5. the algebraic lens

3 - Using Statistical Information

33

By using more statistical information, we can design faster join algorithms

R(A, B) ⋈ S(B, C) ⋈ T(C, A)

R

⋈

T

T

⋈ primary key

≤ N

πB,C

runs in time only O(N)

3 - Using Statistical Information

33

By using more statistical information, we can design faster join algorithms

R(A, B) ⋈ S(B, C) ⋈ T(C, A)

R

⋈

T

T

⋈ primary key

≤ N

πB,C

runs in time only O(N)

Using more detailed statistics
• restricts what is the worst-case behaved input
• closes the gap between theory and practice

3 - Using Statistical Information

34

cardinalities

input/output
functional
dependencies

degree constraints

degree sequences

 normsℓp

partition constraints
PANDAAGM bound

Yannakakis

Gottlob et al. - ‘12

Deeds, Merkl - ‘25

more info

Roadmap

35

Yannakakis’ algorithm

1980

2000

tree decompositions
generalized hypertree width

AGM bound

2008

2012

WCOJs

2017

PANDA algorithm
submodular width

future?

5 Key Ideas:

1. tree decompositions
2. data partitioning
3. using statistics
4. enumeration

5. the algebraic lens

4 - Enumeration

36

We can design join algorithms with stronger enumeration guarantees
• useful for LIMIT queries
• constant delay enumeration

O(N + OUT)
After preprocessing time, we can enumerate
the output while spending only constant time
between two consecutive outputs

O(N)
vs

[Bagan et al. - ’07]

4 - Enumeration

36

We can design join algorithms with stronger enumeration guarantees
• useful for LIMIT queries
• constant delay enumeration

O(N + OUT)
After preprocessing time, we can enumerate
the output while spending only constant time
between two consecutive outputs

O(N)
vs

preprocessing

[Bagan et al. - ’07]

4 - Enumeration

36

We can design join algorithms with stronger enumeration guarantees
• useful for LIMIT queries
• constant delay enumeration

O(N + OUT)
After preprocessing time, we can enumerate
the output while spending only constant time
between two consecutive outputs

O(N)
vs

preprocessing enumeration

[Bagan et al. - ’07]

4 - Enumeration

36

We can design join algorithms with stronger enumeration guarantees
• useful for LIMIT queries
• constant delay enumeration

O(N + OUT)
After preprocessing time, we can enumerate
the output while spending only constant time
between two consecutive outputs

O(N)
vs

preprocessing enumeration
t1

[Bagan et al. - ’07]

4 - Enumeration

36

We can design join algorithms with stronger enumeration guarantees
• useful for LIMIT queries
• constant delay enumeration

O(N + OUT)
After preprocessing time, we can enumerate
the output while spending only constant time
between two consecutive outputs

O(N)
vs

preprocessing enumeration
t1
t2

[Bagan et al. - ’07]

4 - Enumeration

36

We can design join algorithms with stronger enumeration guarantees
• useful for LIMIT queries
• constant delay enumeration

O(N + OUT)
After preprocessing time, we can enumerate
the output while spending only constant time
between two consecutive outputs

O(N)
vs

preprocessing enumeration
t1
t2
t3

[Bagan et al. - ’07]

Runtime Result Revisited

37

If Q is a full join, we can do constant delay enumeration with preprocessing time

Õ (Nsubw(Q))

Acyclic queries only need linear preprocessing time!

Factorized Databases

38

preprocessing constant delay enumeration

t1
t2
t3

The intermediate data structure can be viewed as a
compressed (factorized) representation of the join
output that can be decompressed efficiently

[Olteanu,Zavodny - ’16]

Joins with Ranked Order

39

1. Joins where we only want top-ranked results (ORDER BY + LIMIT)
2. We can construct algorithms with strong enumeration guarantees
3. Works well in practice - it avoids intermediate expensive materializations

For acyclic joins, after preprocessing time, we
can enumerate the output while spending only
logarithmic time between two consecutive outputs

O(N)
SELECT *
FROM R, S
WHERE R.A = S.B
ORDER BY S.C + R.D
LIMIT 10

[Deep, Koutris - ’21]

[Tziavelis et al. - ’20]

Roadmap

40

Yannakakis’ algorithm

1980

2000

tree decompositions
generalized hypertree width

AGM bound

2008

2012

WCOJs

2017

PANDA algorithm
submodular width

future?

5 Key Ideas:

1. tree decompositions
2. data partitioning
3. using statistics
4. enumeration
5. the algebraic lens

5 - The Algebraic Lens

41

Most existing join algorithms can be lifted to work on general algebraic
structures called semirings

• aggregation becomes simple - sum, count, min, max
• extremely useful for ML pipelines (FAQs, factorized databases)

41

• join: multiplication ()
• project, union: addition ()

×
+

[Green, Karvounarakis, Tannen - ’21]

Triangles with Semirings

4242

A

B

C + Boolean semiring = is there is a triangle?

A

B

C + tropical semiring = minimum weight triangle

A

B

C + arithmetic semiring = how many triangles?

({0,1}, ∨ , ∧ ,0,1)

(ℕ, min , + ,∞,0)

(ℕ, + , ⋅ ,0,1)

The Algebraic Lens

43

R

S

T

1. semijoin 2. join + (partial)
aggregation

43

R(A, B) ⋈ S(B, C) ⋈ T(C, D)

S ← S ⋉ R

T ← T ⋉ S

If Q is an acyclic full join, we can compute it over any semiring it in time

O (N + OUT)

and many other results…

FAQs [Khamis, Ngo, Rudra - ’16]

[Khamis et al. - ’19]

What comes next?

Towards Even Faster Joins

We can join faster using Fast Matrix Multiplication (FMM)

45

πA,C(R(A, B) ⋈ S(B, C))

×A

B

B

C

• combinatorial:

• FMM:

O(n3)
O(nω), ω = 2.371339

π∅(R(A, B) ⋈ S(B, C) ⋈ T(C, A)) combinatorial:
with FMM:

O(N3/2)
O(N 2ω

1 + ω)
[Alon, Yuster, Zwick - ’97]

Towards Even Faster Joins

46

• FMM can be incorporated as a new operator in a query plan
• Using MM can also help in practice

Q1: Are there other ways to use FMM in query plans?
Q2: What other non-combinatorial techniques can we use?

[Khamis, Hu, Suciu - ’25]

[Deep, Hu, Koutris - ’22]

Joins for any Semiring - how do we count?

• The PANDA algorithm cannot count!
• The key problem is the overlap of output tuples in tree decompositions

• We can count the join size in time O(N#subw)

47

Q3: What is the best algorithm that counts the size of a join?

[Khamis et al. - ’19]

subw ≤ #subw ≤ fhw

Lower Bounds for Joins

48

• To show that join algorithms are optimal, we need lower bounds
• Not (currently) feasible to show unconditional bounds
• We use conditional lower bounds by reducing from problems where we
believe we have an optimal algorithm

k-clique problem
on n vertices

Ω(nk)

(conditional) lower bounds for all joins

Ω(Nclemb)

clemb ≤ subw ≤ fhw

[Fan, Koutris, Zhao - ’23]

Q4: What other conditional lower bounds should we use?

Lower Bounds for Joins

49

• Another approach is to restrict the algorithm
• In particular, we ask that the algorithm structure is encoded via a circuit

• We can show matching upper + lower bounds for any join

U(a4, a1)

⊗

⊕

T(a3, a4)

R(a1, a2)

⊗

S(a2, a3)

U(b4, a1)

⊗

T(a3, b4)

⊗

R(c1, c2)

⊗

U(c4, c1) S(c2, c3)

⊗

T(c3, c4)

⊗

⊕

14

134

1434 34

134

13

12 23

123

13

12 14 23 34

124 234

24

[Fan, Koutris, Zhao - ’24]

From Theory to Practice

• some have already been successful: WCOJs, predicate transfer
• for some it is still unclear: enumeration?
• … and others are only theoretical (and will remain)

50

Q5: Which theoretical developments can be effective in practice?

Thank You!

51

Yannakakis’ algorithm

1980

2000

tree decompositions
generalized hypertree width

AGM bound

2008

2012

WCOJs

2017

PANDA algorithm
submodular width

future?

5 Key Ideas:

1. tree decompositions
2. data partitioning
3. using statistics
4. enumeration
5. the algebraic lens

