
A System for Audio Signalling Based NAT
Traversal

Ashish Patro, Yadi Ma, Fatemeh Panahi, Jordan Walker, and Suman Banerjee
Department of Computer Sciences, University of Wisconsin-Madison

{patro, yadi, fatemeh, jwalker, suman}@cs.wisc.edu

Abstract—Mobile users often connect through WiFi access
points and frequently find themselves behind NATs that are
built into common off-the-shelf home access points or enterprise
wireless deployments. Punching a hole through the NATs to
establish a P2P connection can be a challenging task for lay
users. We present our system, ANT, that utilizes Audio signaling
for NAT Traversal. With ANT, unlike other NAT traversal
approaches, two mobile clients can establish a direct connection
with minimal user intervention and without connecting to an
intermediate server. ANT uses UPnP to obtain configuration
information for NAT traversal which is then encoded using
different audio frequencies and converted to audio sounds that
are transmitted through the users’ phones. Upon receiving the
audio samples through the phone, the remote client converts them
back into NAT traversal configuration data. Error correction
is added to enhance the reliability of ANT and eliminate the
need for retransmissions. Experimental results show that a TCP
connection can be swiftly established between mobile clients
behind NATs with no manual configuration, even in existence of
heavy noise. We believe that ANT can be proved to be a simple,
yet practical scheme for NAT traversal, which is as simple as
dialing a phone number.

I. INTRODUCTION

Assume two friends want to set up a connection for a peer to
peer application (file sharing, instant messaging, etc.). These
friends are both using their wireless laptops, and are located
behind different NATs. The specific application is not able
to setup an appropriate connection because it does not know
that the NAT blocks any unknown incoming connections. The
individuals may not be immediately aware of their own public
IP and port number to be used on the external side of the
NAT to set up a connection. Currently, to set up a connection
they need to either manipulate their routers’ configuration, go
through a relay server which will transfer the application’s
data back and forth between the peers, or perform a handshake
through an external server in order to get each other’s IP and
port pair. In fact, except for very savvy users, few others can
quickly figure out this information, and may find this process
all too complicated. The goal of this paper is to make this
process quite simple for lay persons using tools and technology
that we are all familiar with — phones that are always within
our reach at any given time. More specifically, we propose a
system for Audio signaling based NAT Traversal, or ANT.

Today, majority of people have cell phones that they carry
around with them. These friends who want to share data very
likely know each other’s cell phone numbers and can call each

other. ANT proposes leveraging this existing opportunity for
setting up a connection when both peers are behind NATs.
With ANT, all this is very easy. One friend calls the other.
Subsequently a lightweight application installed on their lap-
tops extracts their public IP and port number of the local NAT.
This and some other associated information is encoded using
an audio form and communicated over the audio connection
between the two phones (local laptop speaker to local cell
phone, to remote cell phone over the phone network, and to
remote laptop audio receiver). Once the configuration data is
successfully communicated in both directions, the appropriate
configurations are made by each laptop on their local NATs
enabling the application to establish a direct connection. The
process completes without the intervention of any server or
the need for special configuration.

A. NAT traversal and P2P applications

Network Address Translation (NAT) is a technology by
which endpoints’ IP address or IP address and port number are
translated from private address realm to public address realm
and vice versa. NAT techniques hide private hosts, thus hosts
in private address realms cannot be reached directly from the
public Internet. More over, NAT updates IP addresses and port
numbers in IP packets as they are forwarded and thus breaks
the common end-to-end semantics.

Figure 1 shows a simple NAT scenario. As shown in the
figure, NAT allows a single device, such as a router, to act
as an agent between the Internet and a local network. This
means that a single IP address represents an entire group
of computers. The NAT device is responsible for translating
traffic coming into and leaving the private local network.

Fig. 1. A NAT Scenario978-1-4244-8953-4/11/$26.00 c© 2011 IEEE

In normal client-server connections, NATed environments
do not present a significant problem. In these connections,
the client almost always initiates the connection with a server
in the public address space, with a dedicated IP address.
As services move from servers in static locations to mobile
devices that are required to accept connections wherever they
may be, NATs present a bigger issue, for example, when one
mobile client is having a cup of coffee in a coffee shop and
trying to set up a connection with another mobile client who
is waiting for his airplane in an airport. In this scenario, these
two mobile clients are likely both connected to routers in
their respective locations, such that both of them are behind
NATs. If they attempt to set up a peer-to-peer (P2P) connection
directly, NAT traversal is non-trivial. In NATed environments,
general NAT rules do not allow incoming connections to
private hosts unless the private hosts initiate the connection or
the NAT is specifically configured to forward the connections
to the hosts. In P2P connections, where peers may act as both
client and server, the burden of accepting connections falls
equally to all peers.

An ideal NAT traversal technique should satisfy the follow-
ing two requirements:

• Require minimal user involvement. Manual configuration
requires user-intervention and is error-prone. Moreover,
users may not have the technical knowledge nor the
privileges to change NAT configurations.

• Does not depend on the availability, security, and the
resources of intermediate servers.

Cell phone usage has increased dramatically in the United
States and worldwide in the last ten years. According to
research from Wireless Intelligence [16], in a single year
period (from September 2005 to September 2006) the world’s
cell phone subscribers increased by 25% (from 2 billion to 2.5
billion). The UN’s agency for information and communication
technologies estimates that by end of 2008, the number of
worldwide mobile users exceeded 4 billion, which is more
than half the planet’s estimated inhabitants [2].

In this paper, we ask this question: Given the large avail-
ability of cell phones, can we perform NAT traversal for clients
behind NATs through audio telephony without the involvement
of any intermediate server or requiring the clients to perform
router configuration changes?

We believe that our ANT system will provide a unique and
interesting solution for NAT traversal, one that can be easily
used by any lay person, and is as simple as dialing a phone
number (of a friend). After all, people world wide are very
conversant in making phone calls today.

B. Design overview of ANT

In this section, we present an overview of ANT and how it
can be used in the mobile settings to ensure P2P connectivity.
Figure 2 shows the ANT framework.

As shown in Figure 2, mobile clients A and B are using
laptops which are behind NATs. Both A and B have cell
phones and they know each other’s phone numbers. The

Fig. 2. Framework of ANT

following steps describe ANT’s NAT traversal technique so
that A and B are able to set up a P2P connection.

1) A dials B’s phone number and B picks up her phone.
2) A’s laptop automatically gathers the necessary infor-

mation for NAT traversal. The traversal information
includes A’s external IP address and a mapped port
number. We employ UPnP as a technique to automati-
cally open a port on a gateway router so that A’s laptop
becomes accessible to the Internet via that port.

3) A’s laptop encodes the traversal information and gener-
ates sound waves accordingly. The traversal information
is encoded using N (N is a power of 2) different
frequencies, with each frequency representing log2N
bits. A sinusoidal audio tone is generated for each
frequency.

4) A’s cell phone transmits the generated sound to B’s cell
phone. Simultaneously, B’s laptop captures the sound.

5) B’s laptop converts the audio sounds into frequencies
and decodes the frequencies to get back the traversal
information. A Fast Fourier Transform is used to obtain
the original frequencies given off by the sound waves.
Because of the existence of noise and distortion of the
sound, an error correction mechanism is needed. We
use Reed-Solomon error correction codes [14], which
are able to recover errors by adding redundancy to the
original data.

6) Now that B gets the correct traversal information for
NAT traversal, B connects directly to A.

C. Other potential applications of ANT

The idea of ANT can also be applied to other applications
such as password exchange, product key exchange, and etc.

Password exchange. Suppose a user forgot his password of
an online bank account, the common practice nowadays is that
the user requests the password and the online banking system
either sends his password through email or through phone
message (SMS). Emails encounter variable amount of delays
and sometime the delay could be long. SMS is considered
instant, however the user has to enter the password by hand.

While ANT can provides an alternative that involves minimal
user involvement. Once a user requests a password, the online
banking system calls the user and sends the encoded password
through voice, which is received by the user’s phone and
decoded by a light-weight software running on the user’s
computer. The only thing the user needs to do is picking up
his phone.

Product key exchange. ANT could be extremely useful
for those applications such as product key exchange where
complicated keys are exchanged between the product company
and authorized users. If a user somehow lost the product key
for a software (e.g., Microsoft office suite), he needs to obtain
a new product key if he need to reinstall the software. The
process can be tedious and frustrating. First of all, the user
needs to find out the Support telephone number for his area
and make a phone call. Once his identity is identified through
the phone call, the product key exchange process between the
user and a support person usually will be something like: A
as in apple, B as in Bob, ..., and etc, which is quite error-
prone. While in this situation, ANT can help to alleviate the
pain greatly. If the user registered his phone number when he
bought the software suites, then his phone provides a good
way to verify the user’s identity. The user can request a new
product key online by providing his phone number. Once the
phone number matches the company’s database, a product key
is encoded and transmitted to the user’s phone, which is in turn
decoded by the user’s computer. Even if the user still needs to
call to verify his identity, ANT can be used to exchange the
product key between the user and the support person.

We believe there are many other existing or future applica-
tions for which ANT provides a good solution or an alternative
worth considering.

The rest of the paper is structured as follows. The details of
how to convert binary data into audio sounds and how to get
the data back from audio sounds in ANT is given in Section II.
Section III presents how we perform NAT traversal using
ANT. We evaluate the performance of ANT and summarize
the experimental results in Section IV. Finally we discuss the
extensibility and usage of ANT in Section V.

II. DESIGN OF ANT

In this section, we present the core idea behind ANT. We
explain how binary data is converted into audio samples which
are sent over actual phones. Such binary data can be IP
addresses and port numbers in the case of NAT traversal, or
password and keys in the case of applications such as password
and key exchange.

Once the sending side obtains data to be transmitted, it
first converts the data into audio samples through modulation,
then these samples are transmitted to the receiving side over
phones. Upon receiving and capturing these audio samples, the
receiver converts them back to get the original binary data.
The audio samples received can be distorted due to noise,
reflection, diffraction and refraction during transmission. To

retrieve the original data, an error correction mechanism is
built into ANT to correct errors and erasures caused by
distortions.

A. Modulate binary data to audio signals

The first question to ask in designing ANT is how to
modulate binary data over an analog audio carrier. Keying is
a traditional modulation technique. Keying techniques, such
as Amplitude Shift Keying (ASK), Frequency Shift Keying
(FSK) and Phase Shift Keying (PSK), modify the amplitude,
frequency and phase of audio signals, respectively. In ANT,
we explore a modulation technique analogous to Frequency
Shift Keying, in which different audio frequencies are used
to represent different binary bit sequences. While this scheme
may not be particularly bandwidth efficient, it is adequate for
our needs of communicating a small amount of data.

1) Frequency range: While the range of frequencies that
any individual can hear varies for each person, the generally
accepted standard range of audible frequencies is 20 to 20,000
Hertz (Hz).

We tested a variety a sound cards and phones to determine
the frequency range that works well with all of them. Our
experiments showed that 1000-4000 Hz is a good range that
works well for all the sound cards we tested, while newer
sound cards may have broader frequency range. Attenuation
is especially prevalent at the higher frequency end of the
spectrum. For most sound cards in normal laptops, the upper
frequency limit for which the sound card generated audio
without high attenuation was between 7000 Hz and 10000 Hz.
The lower bound for the generated frequency was observed to
be between 800 Hz and 1000 Hz. When testing on phones to
determine their operating frequency range, we observed that it
is narrower compared with sound cards of laptops and desktop
machines. The phones performed especially poorly at high
frequencies (greater than 4000 Hz). This is due to the fact
that phones are designed to exchange human voices, whose
maximum is below 4000 Hz for most people. To accommodate
both phones and sound cards, we used frequencies in the range
of 1200-3100 Hz, which worked adequately on all the devices
we tested.

2) Encode binary data: In ANT, the binary data to be
transmitted is encoded using N (N is a power of 2) different
frequencies, with each frequency encoding log2N bits of the
binary data. For example, by using 8 different frequencies,
each frequency represents 3 bits of the binary data. The
distance between two consecutive frequencies times N − 1
gives us the frequency range needed for audio transmissions.
Suppose the distance between two consecutive frequencies is
200 Hz and N = 8, 200 × (8 − 1) = 1400. In this case, the
frequency range is 1400 Hz. When starting from 1000 Hz, the
frequencies will be 1000, 1200, 1400, 1600, 1800, 2000, 2200
and 2400 Hz. As seen here, the number of frequencies required
for the audio transmission is exponential to the number of bits
encoded in each symbol (audio signal).

To reduce errors at the receiver, we would like the frequen-
cies to be far away from each other. We observed that the

consecutive frequencies had to be separated by at least 30 Hz
for the receiver to decode these frequencies with a manageable
number of errors. We considered different schemes to encode
binary data to frequencies. For example, if each frequency rep-
resents 8 bits, 256 different frequencies are needed. As such,
using 256 frequencies requires a large frequency band (with a
30 Hz gap, a frequency band of 7650 Hz is required) which
does not work properly for many devices. Phones especially
can not handle this broad range. Finally we decided to use
16 different frequencies, with each frequency representing 4
binary bits. Thus, each byte of data required two symbols for
transmission. With 16 frequencies we can spread them out over
our spectrum better, and it leaves room for more frequencies.

We also considered other algorithms for encoding the bi-
nary data into audio signals. One such scheme transmits N
frequencies simultaneously, where N different frequencies are
used to encode N bits in each symbol. Thus, by using N
different frequencies, each symbol could encode 2N bits. Thus,
this scheme could send 2N bits within each audio signal.
This method is more efficient but it complicates the decoding
process by being more prone to errors caused by noise or
when the receiver looses one of the frequencies during the
capturing/decoding process.

3) Generate audio signals: Once the binary data is encoded
into a sequence of different frequencies, a sinusoidal audio
tone is generated for each frequency. To generate an accurate
copy of the original signals on the receiving side, the original
signals are sampled at discrete instants and they are usually
sampled at uniformly spaced intervals. The sampled version
is eventually used by the receiver to generate a copy of the
original signal. Each sampled signal has a frequency spectrum.
Let us assume that the highest frequency component in the
signal is fmax. To reproduce a signal with fmax, the sampling
frequency (the frequency at which samples are taken) must
be at least twice the highest frequency component. In other
words, the signal cannot be reproduced accurately unless the
sampling frequency is at least 2fmax, which is referred to as
the Nyquist frequency for the signal. If the sampling frequency
is lower than the Nyquist frequency, that is referred to as
under-sampling. Since the highest frequency an individual can
hear is 20,000 Hz, a sample frequency of 44K should be
enough, and that is what we use as our sampling rate (44k
samples per second). A high sampling frequency gives us more
information about the original signal but also increases the
decoding overhead.

4) Synchronization: When the binary data is successfully
modulated into audio samples, they are ready to be transmitted.
The sending and receiving entities need to know the start and
end of the data transmission.

In ANT, we use two distinct frequencies as synchronization
frequencies to start a transmission. These synchronization
frequencies are used by the sender to inform the receiver that
an audio transmission has started. The receiver checks for a
known pattern of synchronization frequencies to determine
when the actual data begins. This method is similar to the
preamble used in wireless transmissions.

The synchronization stage has another use: the receiver uses
the synchronizing tones to infer timing information about the
audio transmission. It takes the average of the differences
between the arrival times of the consecutive synchronization
frequencies in the preamble to get an estimate of the rate at
which the receiver is receiving the audio signals. For example,
we send two synchronization frequencies, say f1 and f2, in a
pattern such as f1f2f1f2f1f2. Suppose the receiver receives
them at times t1, t2, t3, t4, t5 and t6, respectively. The average
time difference between two consecutive arrival times, T , is
calculated as:

T =
(t2 − t1) + (t3 − t2) + (t4 − t3) + (t5 − t4) + (t6 − t5)

5
From our observations, T is relatively constant for a specific

laptop (depending on its sound card, CPU, and etc). We use
T × C as the timing information to infer the missed audio
samples in the following data transmissions, where C is a
constant. If the time difference between the arrival times of
two audio signals is above T×C, we infer that an audio sample
is lost. Experimental results show that C = 1.5 works well for
all the devices we tested. If the location of an error is known,
which is called an erasure, the ability of error correction is
enhanced by a factor of two, as shown in Section II-D. After
the transmission of the synchronization, data transmission can
start.

An end tone (using a unique frequency) is used to determine
the end of audio transmission.

5) Separate consecutive audio signals: Each transmitted
audio signal consists of multiple sinusoids of the same fre-
quency so that the receiver can receive correctly. Due to this
fact, it is difficult for the receiver to distinguish two or more
consecutive audio signals from one if they are of the same
frequency. The timing information obtained from the preamble
is not enough as the audio signals are usually not evenly
spaced out. The timing information is only used as a lower
bound to detect missing audio signals.

One way to separate two consecutive audio signals is to
send a “separation beep” after every audio signal, where a
separation beep is an audio signal of a pre-defined frequency
different from other frequencies used for data transmissions.
However, the use of a separation beep would halve the data
rate as each transmitted audio symbol requires a separation
beep.

We decided to use two non-overlapping bands of frequen-
cies, a higher frequency band and a lower frequency band,
with each band containing 16 different frequencies. Instead of
transmitting a separation beep, we transmit consecutive audio
signals using frequencies in alternating frequency bands. For
example, to transmit 0110, the first 1 is transmitted using a
frequency in the lower frequency band while the second 1 is
transmitted using a frequency in the higher frequency band.
This makes it much easier for the decoder to recognize and
differentiate between consecutive audio signals.

Even after using the two bands of 16 frequencies, ANT
requires an overall frequency range of less than 2000 Hz.

This approach provides the same throughput compared to the
method where each frequency represents 8 bits and separation
beeps are used between consecutive symbols, while using a
narrower frequency range.

ANT’s current design uses a total of 35 frequencies, two
non-overlapping bands, each consisting of 16 frequencies (sep-
arated by 50 Hz each), plus two synchronization frequencies
for the preamble and one end-tone frequency.

B. Convert audio signals into binary data

At the receiver, the captured audio samples are decoded to
obtain the original data. We do it by using Fourier transforms,
specifically Fast Fourier Transform (FFT). The main advantage
of FFT in our case is that it enables us to efficiently compute
the Fourier transfer on the received sound samples in real-time.

ANT repeatedly applies the FFT to the most recent sound
samples in the receiver’s sound buffer to extract various
frequencies out of the sound samples. We scan the frequencies
and check for the presence of synchronization frequencies.
In case of the presence of synchronization frequencies, the
receiver saves the sequence of synchronization frequencies
received to determine whether it has received the preamble
sequence. Once it receives the preamble, the receiver gets
ready to receive the data audio samples. The receiver also
uses the arrival times of the synchronization frequencies at
the receiver to estimate the rate at which audio signals are
received at the receiver.

After synchronization, the receiver looks for the presence of
data frequencies in an alternating order in the two frequency
bands. Each frequency is decoded to a particular sequence of
bits. The end tone signals the end of data transmission.

C. Noise filtering

An important requirement for the proper functioning of
ANT is noise filtering. We filter out all the noise outside the
frequency band (in our case, 1200 Hz to 3100 Hz) being used
for transmission of the audio signals. We also set a lower
bound on the intensity of the audio signals to filter out most
of the background noise.

When converting audio signals back to frequencies, we
observe that each frequency lies in a very narrow frequency
band. We set it to (F − 15, F + 15) Hz , where F is the
frequency being observed, and 15 is called the “Frequency
Error Bandwidth”. This range is used to reduce the overhead
for the Fourier transform as the buffer size required for a
Fourier transform increases with the increase in precision
requirements. Also, the maximum intensity of the received
audio signal is not always at the center frequency F due
to distortion during transfer. By combining these parameters,
ANT becomes robust to noise as it is only sensitive to noise in
small frequency bands and only if that noise is above a certain
intensity.

D. Error correction

After the receiver converts the sounds to binary data, the
binary data may differ from the original data. This is is due to

the error introduced by noise in the environment or the errors
during audio transmission/reception.

Therefore an error correction mechanism is needed to
correct errors observed at the receiver. We decided to use
Forward Error Correction (FEC) because FEC avoids using a
back-channel. One advantage of FEC is that retransmission of
data can often be avoided (at the cost of higher bandwidth
requirements during each transmission). FEC is applied in
ANT because retransmissions are relatively costly and difficult
to do (the users need to tell the application to send/receive the
tones again).

There are many types of FEC codes, but amongst the
classical ones the most notable is Reed-Solomon coding [14]
because of its widespread use on the Compact disc, the
DVD, and hard disk drives. ANT employs Reed-Solomon
error correction codes. A good property of Reed-Solomon is
that the error-correcting ability of any Reed-Solomon code is
determined by n− k (k is the number of actual data symbols
per n transmitted symbols), the measure of redundancy in
the block. If the locations of the erroneous symbols are not
known in advance, then a Reed-Solomon code can correct
up to (n − k)/2 erroneous symbols, i.e., it can correct half
as many errors as there are redundant symbols added to the
block. Sometimes error locations are known in advance (these
are called erasures). A Reed-Solomon code is able to correct
twice as many erasures as errors, and any combination of
errors and erasures can be corrected as long as the relation
2E +S < n− k is satisfied, where E is the number of errors
and S is the number of erasures in the block.

We use Reed-Solomon codes to generate a set of redundant
samples corresponding to a set of actual samples. As discussed
above, it increases the overhead of transmitting data but
nevertheless removes the overhead of a back-channel from the
receiver to the sender to acknowledge the received data. This
greatly simplifies ANT as a single channel from the sender to
the receiver is sufficient to send the binary data using audio
samples.

Since we encode 4 bits at a time within each audio signal
(symbol), we use Reed-Solomon error correction algorithm
over a field of GF(16). There is a trade-off between higher
throughput and greater robustness to noise. We generated two
redundant 4-bit nibbles per four actual 4-bit data nibbles. We
found that this level of redundancy was sufficient for most of
the cases and could handle 2 erasures or 1 error at a time
per six transmitted signals. A majority of the errors in our
experiments were caused due to erasures when the decoder
could not capture an audio signal at a given time, and errors
in captured audio signals were comparatively less frequent.
In our experiments, we increased the redundancy in some
non-conducive situations but we never required more than 4
redundant symbols per 4 data symbols at a time.

III. USING ANT FOR NAT TRAVERSAL

Network Address Translation (NAT) maps addresses on a
local network segment to the global IP address space. This
is done by modifying the IP address and TCP port fields of

the packets as they pass through a NAT device. NAT devices
introduce unique problems to the regular Internet connection
model as special steps need to be taken to connect with
machines behind a NAT.

The primary issue with NATs is that computers attached
to a NAT device can only make outbound connections, unless
they perform complicated configuration changes on the router.
These machines are unable to listen for peers trying to connect
to them, and they cannot connect to other computers behind a
NAT, as the problem applies to both machines. Because neither
of the peers are able to accept inbound connections, it is not
possible to establish a connection using normal techniques.

There are four different configurations for NAT port map-
pings that must be considered when developing a NAT traver-
sal technique [6].

• Full cone mapping. In full cone mapping, there is a
well established mapping and anyone from the public
Internet that wants to reach a client behind a NAT only
needs knowledge of the mapping scheme in order to send
packets to it.

• Restricted cone mapping. In a restricted cone NAT, the
external address and port pair is only opened up when the
internal computer sends out data to a specific destination
IP.

• Port restricted cone mapping. A port restricted cone type
NAT is almost identical to a restricted cone. It differs
in that the NAT blocks all packets unless the client had
previously sent out a packet to a matching IP and port.

• Symmetric mapping. The last type of NAT symmetric is
different from the first three in that a specific mapping of
internal address and port pair to the NAT’s public address
and port pair is dependent on the destination IP address
that the packet is sent to. As in the case of the restricted
NAT, the external address and port pair is only opened
up once the internal computer sends out data to a specific
destination.

STUN [8] and NUTTS [7] address the NAT traversal in
peer to peer applications for the first three types of NAT port
mappings. By connecting to an external server, peers are able
to exchange their IP:port pair and then communicate directly.
These approaches do not work for the symmetric NATs as
the port mapping is specific to the destination IP address.
However, studies over the years show that symmetric NAT
is becoming less common since it cannot effectively support
online gaming or similar applications [9].

Popular P2P applications today address the NAT traversal
problem in different ways. Usually an intermediate machine
is used to transfer information between the two peers. In any
NAT traversal approach, to get around the limitations added
by the NAT mapping scheme some communication is required
between endpoints so that they can at least be informed of each
others public IP and port pair.

The NAT device must be aware of the port on which to
accept the connection, and of the local address to forward the
request to. We need a mechanism to automatically open a port
on a NAT router so that it becomes accessible from the Internet

without the need to change the router configuration manually.
This is essential because many users do not have the technical
knowledge to modify the router’s configuration. One option
that we considered for this purpose was SNMP [11]. Unfor-
tunately, SNMP has some pitfalls which makes it unsuitable
for this approach. SNMP is not always implemented on entry
level routers. Furthermore, SNMP’s interface for opening ports
on a router is not standardized. Therefore, one would need
to develop specific SNMP routines for each vendor’s SNMP
aware routers.

Universal Plug and Play (UPnP) [4] is an alternative that has
a significant advantage over SNMP. There is a defined interface
in Internet Gateway Devices (IGD) [4] for the purpose of
mapping ports to clients. Therefore, all IGDs can work with
the same piece of code. The IGD Protocol is implemented
via UPnP. Many routers and firewalls expose themselves
as Internet Gateway Devices. This allows any local UPnP
controller to perform a variety of actions, including retrieving
the external IP address of the device, enumerating existing port
mappings, and adding or removing port mappings. By adding
a port mapping, an internal client allows an external client to
connect to it.

UPnP was established as a standard in 1999 and benefits
from wide scale adoption. Most new broadband routers are
UPnP capable, and a growing number of devices have it
enabled.ANT performs UPnP calls to get the required traversal
information and to punch a hole in the NAT device from which
it will accept data sent from the other peer. We use Java UPnP
libraries from sbbi website [13].

a) Getting IP address information: There are two im-
portant IP addresses that must be found in the discovery
process. First, the private IP of the peer is looked up from
the local interface information. This address is used as part
of the mapping, in order to set up the forwarding table in
the NAT device. Second, the public IP seen by the outside
world must be found to be sent to the other peer for a P2P the
connection. To get this address, UPnP is leveraged to query
the external address of the IGD without requesting it from an
external server.

b) Getting port information: UPnP is used to create a
mapping on the NAT device. A port is chosen in the allowed
range, and a mapping is attempted. If the port is already
taken by an application, another port will be tried. When this
goes through, the same port is used locally to accept new
connections. When this port information along with the public
IP address is transmitted to the other peer, it will have all the
information needed to establish a connection.

c) Setting up Peer to Peer connection: Once one peer
gets its IP address and creates a port mapping, it converts its
IP address and port number into audio sounds as stated in
Section II. The other peer captures the sound from his cell
phone, decodes it to get back the traversal information and set
up a direct connection with the other peer.

IV. EVALUATION

In this section, we evaluate the performance of ANT using
different laptop models, cell phones models, and under various
noise conditions.

As shown in Figure 2, we set up two different NATed net-
works using two wireless routers, with one client behind each
NAT. This setting prevents the two clients from establishing
a connection directly. To establish a direct P2P connection
across the NATed networks, client A calls client B using his
cell phone, and client B answers the phone. Then client A
starts transmitting sound waves when B is ready to capture.
The only thing client A needs to do is to click a “Start” button,
while client B only needs to click a “Capture” button. By
running ANT, client A’s laptop automatically opens a port,
prepares a socket that listens to the port, converts its external
IP address and port number into audio sounds, and transmits
the sound waves from his cell phone to client B’s cell phone.
Upon receiving the audio signals at B’s cell phone, B’s laptop
automatically captures the sound waves, converts them back
to get configuration information, and starts a connection to A
by sending a hello message. Once the message is received by
A, A replies with a hello message. If both A and B get a hello
message, this means a P2P connection behind NATs is set up
successfully.

A. Experiment setup

We used the standard router models from Linksys, Belkin
and D-Link in our experiments to setup separate NATs for the
two clients. The experiments were performed under various
noise conditions. We used SPL (sound pressure Levels) to
characterize the background noise. The noise level was mea-
sured on a scale of 0 to -80 dB where a value closer to 0 dB
represented a high amount of noise and a value closer to -80
dB represented a very low level of noise.

In our experiments, we categorized the background noise
conditions into three general types:

• No or Light noise. A client was located in a quiet
environment without noticeable external noise or very
low background noise. To observe this kind of noise, we
performed the experiments in quiet offices and conference
rooms. The noise was observed to be around -55 dB to
-50 dB.

• Medium noise. A client was located in an environment
where there is some constant noise. This kind of noise
could be caused by people chatting occasionally or con-
stantly, people walking around and occasionally opening
or closing doors or some desktop machine generating
noise in the background. To observe these kind of noise,
we performed experiments at home, in hallways and
offices of the department building and in conference
rooms when there are people talking to each other. The
noise was observed to be around -32 dB.

• Heavy noise. A client was located in an environment
where there is heavy noise. To observe this kind of noise,
we performed experiments in a computer lab where there

TABLE II
A SUMMARY OF CELL PHONES USED FOR THE EXPERIMENTS

Name Brand Model Sound condition
C1 Sony Ericsson W580i bad
C2 LG CF360 very good
C3 Nokia N95 good
C4 HTC P4600 fair

are a large number of servers running making continuous
background noise, plus students working in the lab talking
to each other. The noise was observed to be around -20
dB.

Table I summarizes the laptops we used for the experi-
ments (brands, models, sound card conditions and operating
systems). Table II summarizes the cell phones we used, their
brands and models. As seen from the tables, we test ANT
using a variety of devices with various sound card conditions.
In addition, the laptops are running on different operating
systems: Windows XP, Windows 7, Windows Vista, etc.

B. Experimental results

We performed experiments using various combinations of
noise conditions, laptops, and cell phones. For the 3 types of
noise conditions used, altogether, there were 9 possible noise
combinations for two clients. For example, if client A was
located in a medium noise environment, B could be present in
a no/light noise, medium noise or a heavy noise environment.
We did our experiments using a number of representative
settings that covered the majority of the common scenarios.
We discussed in Section II that phones were the limiting factor
in ANT’s performance for the chosen range of frequencies, so
we concentrated on the environmental conditions and the cell
phones used in the experiments. The laptops worked well for
all the experiments in this section.

For a given noise combination for clients A and B, we
randomly chose a number of laptops and cell phones, and
repeated the experiment for each setting for around 4-6 times.
For each setting, we reported the percentage of times that
data was transmitted correctly on the first attempt and a
connection between two clients was set up successfully. In this
section, we report the percentage of successes by transmitting
configuration data only once. In ANT, we can always increase
the number of attempts (transmit data multiple times) if
failure occurs until a connection is successfully setup or the
number of unsuccessful attempts exceeds a number, since each
transmission only takes seconds to finish.

1) No/Light noise: Figure 3 shows the percentage of suc-
cesses when both clients were in a quiet environment. The
x-axis represents different phone settings, in the format of A
→ B, where A is the name of the cell phone at the generating
side, and B is the name of the cell phone at the receiving
side. The y-axis shows the percentage of successes for each
setting. This set of experiments were performed when the two
clients were located either at home or in conference rooms.
The background noise at each side was about -52 dB.

TABLE I
A SUMMARY OF LAPTOPS USED FOR THE EXPERIMENTS

Name Brand Model Sound card model Sound condition OS
L1 Lenovo T60 SoundMax Integrated Digital HD fair Windows XP
L2 Sony VAIO Intel HD Audio very good Windows Vista
L3 Lenovo T400 Conexant 20561 SmartAudio HD good Windows 7

 0

 20

 40

 60

 80

 100

Sony->LG

LG
->Sony

H
TC

->LG

LG
->H

TC

Sony->N
okia

N
okia->Sony

P
e
rc

e
n

ta
g

e
 o

f
s

u
c

c
e

s
s
e

s
 (

%
)

Fig. 3. Percentage of successes when both clients are in quiet environments
with no/light noise

We observed that ANT performed really well in the presence
of little or no noise. The only pair that failed the test was the
LG → Sony pair. This occurred because the Sony phone had a
bad speaker and was unable to reproduce the sounds properly,
which caused more erasures than that could be corrected at
the receiving side.

2) Heavy noise/Light,Medium noise: We did this experi-
ment in a scenario where one of the peers was present in a
server room with constant loud background noise caused by
the servers running in the room. For the other peer, we used
two different scenarios. In one of them, the second peer was
present in a department office shared by 3 people. There was
some constant noise caused by the desktop machines in the
room, people occasionally talking and a few disturbances from
outside the office room. In the other scenario, the second peer
was present in a quiet room representing light noise/no noise
conditions.

Figure 4 shows the experimental results for the two scenar-
ios:

1) First Peer (with LG, Nokia) in heavy noise environment
and the second peer in the light noise environment (with
Sony, HTC).

2) First peer (with LG, Nokia) in heavy noise environment
and the second peer in the medium noise environment
(with Sony, HTC).

As just mentioned, the LG and Nokia phones were used
by the first peer in the heavy noise conditions and the Sony
and HTC phones were used by the second peer in the light or
medium noise conditions.

For each cell phone combination A → B (transmission from
A to B) , we present two results in Figure 4. Light heavy
scenario is used to denote the scenario when the first peer is
in the heavy noise condition and the second peer is in the light
noise conditions. Medium heavy scenario is used to denote the

 0

 20

 40

 60

 80

 100

Sony->LG

LG
->Sony

H
TC

->N
okia

N
okia->H

TC

P
e

rc
e
n

ta
g

e
 o

f
s
u

c
c
e

s
s

e
s
 (

%
)

Light heavy scenario
Medium heavy scenario

Fig. 4. Percentage of successes in noisy environments with heavy/light or
medium noise

scenario when the first peer is in the heavy noise condition
while the second peer is in the medium noise conditions.

The LG phone had a good Loudspeaker and was generating
the received signals at a good volume, so ANT worked great
when the LG phone was at the receiving side, even though
it was present in a environment having heavy background
noise. The other combinations except LG → Sony worked
well under these conditions. The failures could be caused by
either erasures at the receiving side due to the heavy noise,
and/or corruption of the signals at the generating side due to
the noisy conditions. Also the Sony phone’s loudspeaker was
not good at reproducing the received tones at a high volume,
so ANT was more susceptible to erasures in this case.

3) Speak test (people talking): In this experiment, ANT was
tested against errors when there were human speakers close to
the laptop. We observed that the speakers in the background
did not cause problems, so we tested for the situation when
users with cell phones themselves were talking while the
transmissions were going on. We tested ANT in four scenarios:

1) S1: The generating peer is speaking with a soft voice, the
receiving peer is quiet with no/light background noise.

2) S2: The generating peer is speaking with a loud voice,
the receiving peer is quiet with no/light background
noise.

3) S3: The generating peer is speaking with a soft voice,
the receiving peer is quiet with heavy background noise.

4) S4: The generating peer is speaking with a loud voice,
the receiving peer is quiet with heavy background noise.

Figure 5 shows the results under these conditions. The loud
voice was around -15 to -20 dB while the soft noise was
around -30dB. Under these scenarios, due to the speaking
person’s voice, the transmitted audio signals got corrupted
at the generator which resulted in problems while decoding
the sound samples at the receiver. ANT eventually succeeded

 0

 20

 40

 60

 80

 100

HTC->Nokia Nokia->HTC

P
e
rc

e
n

ta
g

e
 o

f
s

u
c

c
e

s
s
e

s
 (

%
)

S1
S2
S3
S4

Fig. 5. Percentage of successes in speak tests

in establishing a connection in about 2-3 attempts of the
audio transmission. We concluded through this experiment
that, ANT’s performance gets affected when there is a speaker
close to the laptop while the transmissions are going on.
ANT is more sensitive to nearby speakers compared to the
background noise.

The only situation where ANT encounters major problems
is in the presence of background music, which is expected
because music generates a vast range of frequencies and this
interferes with ANT by inserting spurious symbols into the
audio transmissions which causes problems for the decoder.

V. DISCUSSION

In this section, we discuss the throughput of ANT, its
extensibility and usage, and the distinction between ANT and
dial-up modems.

a) Throughput: The throughput of audio data is depen-
dent on the amount of redundancy used and the rate at which
the transmitter is generating the audio signals. We observed
that the rate at which the transmitter generates the audio
signals is dependent on the sound card used by the transmitter.
For the same set of parameters used for audio signal genera-
tion, different sound cards reacted differently. The rate ranged
from 1 beep per second to 7-8 beeps per second. Due to the
use of a unidirectional communication channel and a variety of
factors(noise, sound cards), employing the necessary amount
of redundancy is essential to successfully transmit the data in a
single attempt. The slow data rate should not be an issue as the
audio signals are only used to transmit the initial configuration
information in order to setup a P2P network connection, which
just takes a few seconds.

b) Extensibility of ANT: Not only mobile users with cell
phones and laptops can benefit from ANT, but also can other
users. As long as a user has a computer (no matter its a laptop,
desktop or PDA) and a phone (cell phone or landline phone),
they can use ANT. Other than automatic NAT traversal, ANT
can be extended to other applications. For example, ANT
provides an alternative for file transfers when users do not have
Internet access. Small files can be converted to audio sounds
and transmitted through phones. ANT is especially useful for
transmitting a small amount of data. If we require a secure
data channel to minimize security risks, ANT can be used as

a building block. Public key and password exchange would be
examples of this types of smaller data that would be possible
to transmit through ANT by providing a secure channel.

c) Using ANT more effectively: There are some precau-
tions that can be taken to maximize the performance of ANT.
For example, the person at the receiving end of the phone
connection should turn on the cell phone speaker and use it
at the maximum volume, so that it is easy for the decoder
software to process the audio signals. Also, at the receiving
end, the phones should be kept close to the laptop microphone
for good performance. The sender should generate the audio
signals at an intensity greater than the background noise to
reduce the number of erasures at the receiver.

d) UPnP considerations: UPnP is a standard which
should be available on any new Internet gateway router, but
it may not be enabled. While it is easy to enable, many users
may not want to enter the router configuration to do this.
Mobile users have the added problem that they do not have
the flexibility of enabling it on the router they are connected
to. Since many applications use UPnP and public providers
want to provide good service to their users, we believe that
a good majority of routers either have UPnP enabled or the
service providers can be convinced to enable it.

e) ANT versus dial-up modems: The high level approach
of exchanging signaling information for NAT configuration in
ANT can be considered similar to the high level approach for
establishing communication by dial-up modems. In a sense,
both systems use the phone network to communicate some
data. However, the applications are quite different. ANT pro-
vides NAT traversal, while dial-up modems provide basic In-
ternet access services. Dial-up modems use the phone network
as the primary data path. Hence, the encoding of data in the
case of dial-up modems is quite efficient. In contrast, ANT’s
requirement and use of the phone network is really minimal,
because ANT used it to communicate a minuscule amount of
control messages. Hence, the data encoding mechanism we
use in ANT is quite simple, but is adequate for the specific
needs of our system.

VI. RELATED WORK

In this section, we discuss some of prior approaches for
NAT traversal (including those commonly used by various P2P
applications) and Audio based data transmissions.

A. NAT traversal techniques

Our approach utilizes UPnP for opening a port and getting
a mobile client’s public IP and port pair without the use of
an intermediary server. Instead the client exchanges this pair
through sound waves over an audio channel. STUNT [8] and
NUTSS [7] enable the clients to get the public IP and port pair
that the outermost NAT assigns to them by sending a request
to an external server. Peers perform a handshake through this
server to get the IP and port pair and subsequently connect
directly to each other. These approaches do not require any
specific configuration on the router. However, by relying on an
external server for negotiating a connection, these approaches

are more prone to attack. Moreover, a successful peer-to-peer
connection is dependent upon the availability of the server.

TURN [12] allows a host to select a globally-addressable
TCP relay, which can subsequently be used to bridge a
TCP connection between two NATed hosts. The advantage of
TURN is that it works for all types of NATs, while the above
approaches are not effective for symmetric NATs. However,
TURN does not allow direct connectivity between NATed
hosts, and all the data is transferred through the external
server. Aside from security issues present here, this approach
requires extensive resources on the server for handling many
connections transmissions, so scalability and cost is a concern.

All the above approaches assume that both peers set up a
connection to a secure external server, while our method works
independent of this intervention.

B. Peer-to-Peer applications and NAT traversal

Different peer-to-peer applications have chosen different ap-
proaches for solving the NAT traversal issue. In Kazaa [10], if
only one peer is NATed, it requires the NATed peer to initialize
the connection. This approach will not work if both peers are
behind NATs. Some applications such as BitTorrent [1] recom-
mend users configure their NAT boxes to forward incoming
requests on specific ports to one computer behind the NAT.
This approach is not effective as many users do not have the
technical knowledge to change the router configuration, and
in mobile settings users do not have control over the router
to make configuration changes. Groove [5] routes peer-to-peer
communication through central relay servers, and Skype [15]
routes connections through instances of the application that are
running on open non-NATed computers. In these scenarios the
burden of the communication will be on the central servers or
on other clients. Compared to these approaches, our approach
has no scalability issues as it only uses the resources of the
two clients. Furthermore, setting up the connection over cell
phones works even when both peers are behind NATs.

C. Audio based data transmissions

In recent concurrent work, Hermes [3] presents a technique
for data transmission through audio encoding over voice
channels. Our technique is similar to this technique as we
encode initial NAT traversal information into audio signals
and transmit them over a voice channel. But, we mainly use
the voice channel as a control channel for transmitting a small
number of audio signals. We focus more on creating a robust
and effective mechanism for audio transmissions (through
synchronisation, error correction). We test ANT in the wild
in a variety of conditions and with a variety of devices to
validate the performance of the audio transmissions in these
conditions.

VII. CONCLUSION

In this paper, we presented a system for NAT traversal
by transmitting out-of-band information through phones by
converting it into audio signals. Mobile users are relieved
from the pain of, if possible, configuring a NAT manually.

The only user intervention required in ANT is the process
of dialing the phone number of the other peer and keeping
the phone connection open for a short duration while the
connection is being set up. ANT performs well in most
of the scenarios that we tested. These scenarios represent
common environmental situations and standard equipment in
use today. In environments where the noise is low, ANT is
able to successfully transmit the audio information in only one
attempt in almost all cases. In cases with medium and heavy
noise, ANT is resilient to erroneous conditions and is able
to successfully transmit the audio information in two to three
attempts, as long as the received audio signals have a higher
intensity than background noise. We believe such an overhead
is tolerable as the duration of audio transmissions for NAT
traversal information is short and the potential benefits are
great for mobile users. We believe that our relatively simple
approach of audio signaling based NAT traversal is actually
quite effective. The system can also be used as a building
block for systems where the audio channel is used for short,
robust and secure data transmissions.

A video demonstrating the working of ANT is made pub-
licly available at:

http://www.cs.wisc.edu/wings/projects/ant

VIII. ACKNOWLEDGEMENT

Yadi Ma and Suman Banerjee were supported in part by
US NSF awards CNS-1040648, CNS-0916955, CNS-0855201,
CNS-0747177, and CNS-0627589.

REFERENCES

[1] BitTorrent. Bittorrent faq. http://www.dessent.net/btfaq.
[2] U. N. Centre. Number of cell phone subscribers to hit 4

billion this year. http://www.un.org/apps/news/story.asp?NewsID
=28251&Cr=Telecommunication&Cr1, 2008.

[3] A. Dhananjay, A. Sharma, M. Paik, J. Chen, T. K. Kuppusamy, J. Li,
and L. Subramanian. Hermes: data transmission over unknown voice
channels. In MobiCom ’10: Proceedings of the sixteenth annual
international conference on Mobile computing and networking, pages
113–124, New York, NY, USA, 2010. ACM.

[4] U. Forum. Upnp devices. http://www.upnp.org/.
[5] Groove. Get into the groove: Solutions for secure and

dynamic collaboration. http://technet.microsoft.com/en-
us/Magazine/2006.10.intothegroove.aspx.

[6] S. Guha and P. Francis. Characterization and measurement of tcp
traversal through nats and firewalls, 2005.

[7] S. Guha, Y. Takeda, and P. Francis. Nutss: A sip-based approach to udp
and tcp network connectivity. In SIGCOMM’04 Workshops, 2004.

[8] T.-C. Huang, C.-K. Shieh, and W.-H. L. Y.-B. Miao. Smart tunnel union
for nat traversal. In NCA’05, 2005.

[9] C. Jennings. Nat classification test results. http://tools.ietf.org/html/draft-
jennings-behave-test-results-04.

[10] J. Liang, R. Kumar, and K. W. Ross. The kazaa overlay: A measurement
study. Computer Networks Journal (Elsevier), 2005.

[11] Net-SNMP. Snmp protocol. http://www.net-snmp.org/.
[12] J. Rosenberg, R. Mahy, and C. Huitema. Traversal using relay nat (turn).

http://www.jdrosen.net/midcom turn.html, 2005.
[13] SBBI. Upnplib. http://www.sbbi.net/site/index.html.
[14] B. Sklar. Reed-solomon codes. http://ptgmedia.pearsoncmg.com/images/

art sklar7 reed-solomon/elementLinks/art sklar7 reed-solomon.pdf.
[15] Skype. P2P telephony explained for geeks only.

http://www.skype.com/help/guides/p2pexplained.
[16] WIREFLY. Cell phone facts. http://www.wirefly.org/news/cell-phone-

facts.php.

