COAP: A Software-Defined Approach for Managing
Residential Wireless Gateways

Ashish Patro, Suman Banerjee
Department of Computer Sciences, Univeristy of Wisconsin Madison
{patro, suman}@cs.wisc.edu

ABSTRACT

In dense residential deployments, such as apartment
buildings, neighboring wireless gateways (e.g., Access
Points) share the same unlicensed spectrum by deploying
consumer-grade access points in their individual homes.
In such environments, WiFi networks can suffer from
intermittent performance issues such as wireless packet
losses, interference from WiFi and non-WiFi sources due to
the increasing diversity of devices that share the spectrum.
In this demo, we present an OpenFlow-based vendor-neutral
cloud-based centralized framework called COAP to configure,
co-ordinate and manage individual home wireless gateways
using an open API implemented by these gateways.

1. OVERVIEW

Wireless gateways (e.g., Access Points, wireless Set-Top
Boxes) act as the primary mode of internet access in most
residential network deployments today. A diverse set of WiFi-
capable devices access Internet-based services through these
gateways, e.g., laptops, tablets and other handhelds, game
controllers (XBox, Wii), media streaming devices (Apple TV,
Google TV, Roku), and many more. Given its central role
in these home networks, the performance and experience of
users at homes depend centrally on efficient and dynamic
configuration of these gateways.

Using SDNs for residential Wireless Gateways. Most
enterprise WiFi solutions today (including some recent SDN-
style efforts [4]) adopt a centralized approach (including
vendor-specific cloud based solutions [2]) for managing a set
of homogeneous Access Points in a uniform and coordinated
manner. We believe that a SDN based approach (using an
open API) is important in home environments where each
wireless neighborhood has a diverse set of these wireless
gateways. Unlike enterprise environments, homogeneity in
such environments is likely hard to achieve.

In our proposed service, called COAP (Coordination frame-
work for Open APs), participating wireless gateways (e.g.,
Access Points) are configured to securely connect to a
cloud-based controller (Figure 1). The controller provides
all necessary management services that can be operated
by a third-party (potentially distinct from the individual
ISPs). In the context of large apartment buildings, we

Access Point (APs 1...n)

—

| l |

[APConfigManagerj [DiagnosticStatsReporterj [BasicStatsReporter j

OpenFlow |modules

Floodlight modules

ConfigManager - COAPManager - StatsManager

f A

- AP Configuration

- Link Statistics
- Traffic Statistics
- Non-WiFi activity

Cloud Based COAP Controller

Figure 1: Components of the COAP framework. The
different modules implemented by the home gateways
(e.g., Access Points) and the controller are shown.
envision that the apartment management contract with a single
controller service and all residents are asked to utilize the
designated controller service within the building. This service
would be no different than many other utilities distributed to
residents, e.g., water, electricity, etc., which is arranged by the
apartment management. Individual residents can also pick
different controller services to realize many of our proposed
benefits. However, some advanced features, e.g., interference
management and mitigation, are better served if neighboring
gateways participate through the same service.

2. FRAMEWORK COMPONENTS AND
IMPLEMENTATION

To participate in the COAP framework, home gateways
need to expose a vendor-neutral open API to communicate
with the COAP controller. In this model (Figure 1), gateways
need to implement three different modules that expose a differ-

Utilization (percent)

WiFi Channel Utilization

Current WiFi Channel Status

WiFi Channel

Figure 2: Devices used for the demo (left), Web UI snapshots for timeseries airtime usage (center) and channel (right).

Function Description
SetAP Configures the channel and/or
transmit power.
ManageAirtime Manage the airtime access by throttling

airtime or slotting the transmissions.
UpdateFlowPriority Update a flow’s priority level to manage
contention at the gateway’s transmit queue.

Table 1: Examples of configurations performed at the
COAP APs.

ent set of functions (related to configuration, diagnostics and
statistics collection) to the controller. Following are additional
implementation details about the COAP framework.
Controller. The COAP controller is implemented over the
Java based open source SDN controller, Floodlight and cur-
rently runs on a standard linux server for our deployment. All
the COAP controller modules (StatsManager, COAPEngine
and ConfigManager) are implemented as modules within
Floodlight. The controller uses OpenFlow with COAP-
specific protocol extensions to collect data from the gateways
as well as apply the configuration updates.

Protocol extensions for OpenFlow. The OpenFlow commu-
nication protocol currently consists of capabilities to exchange
switch related statistics (e.g., statistics per switch port, flow,
queue etc.). We augment this feature to also exchange different
COAP related wireless specific statistics (e.g., airtime usage,
link performance, non-WiFi activity). We omit the details
here for the sake of brevity. To transmit wireless configuration
updates to gateways (e.g., switch channel, throttle airtime), we
extend the OpenFlow protocol to use a mechanism analogous
to the one used to send switch configuration updates (e.g.,
adding a flow-related rule).

Wireless Gateways. In our current implementation using
OpenWrt based WiFi gateways, we use the open-source
click [1] framework to implement the WiFi and non-WiFi
statistics gathering capabilities of the BasicStatsReporter and
DiagnosticStatsReporter modules. Airshark [3] provides the
non-WiFi device detection capabilities using commodity WiFi
cards. The OpenFlow module interfaces with Airshark and
click as well as communicates with the SDN controller.

We have instrumented the ath9k wireless driver to support
APIs related to airtime management. For example, to throttle
the airtime access of a gateway, we disable the transmit queue
(using the AR_Q_TXD register) to block packet transmissions
for the required duration. Across vendors, the underlying

implementation of this feature can be driver specific and
transparent to the COAP API.

The APConfigManager module interfaces with the Open-
Wrt configuration tool ({uci) to perform AP level configura-
tions (e.g., channel, transmit power and traffic shaping). This
interface can easily be modified for other platforms.

3. DEMO APPLICATIONS

In the demo, we plan to present two motivating applica-
tions enabled by the COAP framework using configurations
described in Table 1. Figure 2 shows the demo components
and couple of UI snapshots: a laptop acts as a WiFi client
for video streaming and the OpenWrt based gateways use the
COAP API to communicate with the controller. The cordless
phone acts as a non-WiFi interferer.

1. Mitigating non-WiFi interference. In this scenario, a
WiFi link streaming an HD video is interfered by a neigh-
boring cordless phone on the same WiFi channel. The
cordless phone’s transmissions causes a high degradation
of the link’s video quality. One or more neighboring
COAP enabled gateways detect the presence of the cordless
phone and report the instance to the COAP controller.
The controller leverages this information to infer link
degradation due to the cordless phone’s activity and
switches the affected link’s channel.

2. Airtime management. We demonstrate a technique
for mitigating WiFi interference by coordinating airtime
access between neighboring gateways. In this example, the
performance of a WiFi link serving video traffic degrades
in the presence of a neighboring link due to excessive
airtime utilization and/or packet losses due to interference.
The controller mitigates this problem by scheduling trans-
missions of the two links in non-overlapping time slots
(e.g., 10-20 ms). This example motivates one aspect of
how co-operation and co-ordination between neighboring
gateways can mitigate WiFi interference.

4. REFERENCES

[1] Click modular router. http://www.read.cs.ucla.edu/click/click.

[2] Meraki. Enterprise cloud management.
http://www.meraki.com/products/wireless/enterprise-cloud-
management.

S. Rayanchu, A. Patro, and S. Banerjee. Airshark: Detecting non-WiFi
RF devices using commodity WiFi hardware. IMC 11.

L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao.
Towards programmable enterprise WLANSs with Odin. HotSDN "12.

3

—_

[4

=

