Observing Home Wireless Experience through WiFi APs

Ashish Patro*

*patro@cs.wisc.edu

Dense residential WLANs today...

Dense residential WLANs today...

Our goal: A measurement infrastructure

How can we capture the "wireless experience" in home WLANs?

- What is the wireless performance at any instant?
- How often is wireless experience "poor"?
- What are the causes of poor performance?

Potential causes of poor performance

Potential causes of poor performance

Measurement Framework: Capturing wireless experience

Our approach: Inline measurements at home APs

Why use WiFi APs as vantage points? 🧫

"Inline Measurements at APs"

Capture local link + channel conditions

Observe neighboring WiFi + non-WiFi transmissions

Monitor local settings (channel, tx power)

Easy to maintain and deploy due to no additional infrastructure overhead

WiSe measurement infrastructure

Wireless infrastructure for inline Sensing (WiSe)

WiSe deployment

WiSe deployment (30 APs)

Building 1: APs 1 – 14 Individual Access Point per apartment Building 2: APs 25 – 30 Deployment in common areas Others: APs 15 – 24 Across different homes

Ran deployment over 8 months

Data usage across WiSe APs

Highly variable data usage across different locations Median of 30 MB – 5.6 GB per day

Outline

- Introduction
- WiSe analytics toolkit
- Quantifying wireless performance (Witt metric)
- Measurement Results
- Related Work and Summary

Hardware

- OpenWrt based APs
 - ALIX 2d2 platform: (500 MHz AMD Geocode CPU, 256 DDR RAM, flash storage)

- Two mini-PCI WiFi NICs
 - Primary NIC acts as AP
 - Secondary NIC as backup for additional measurments

What do these "WiSe APs" collect?

Aggregate Statistics

Non-WiFi activity

Interference analysis

Aggregate Statistics

Non-WiFi activity

Interference analysis

Airtime Utilization
Observed beacons
CRC errors

AP Statistics

Client Signal Strength
Packets sent + retried
PHY rates statistics

Client Statistics

Aggregate Statistics

Non-WiFi activity

Interference analysis

WiSe AP

Generate signature

Identify device

Airshark (IMC 2011)

Device Type,
Start time + duration
Signal strength

Non-WiFi Statistics

Aggregate Statistics

Non-WiFi activity

Interference Analysis

WiSe AP

MAC timestamp (in microseconds)

Packet length

PHY rates + RSSI

Success/Loss

Per-Link WiFi Header Summaries

Outline

- Introduction
- WiSe analytics toolkit
- Quantifying wireless performance (Witt metric)
- Measurement Results
- Related Work and Summary

Characterizing wireless performance

At a given time instant, what is the expected wireless throughput of my different wireless links?

Goal: Metric for wireless performance

Capture impact of link and external wireless properties on performance

Only Passive + Coarse local measurements
(10 sec local measurements at APs)

Witt
(WiFi based estimated TCP throughput)

Application agnostic

Computed per AP – Client pair

Building the Witt metric

 Ground Truth: Active TCP throughput measurements (wireless downlink) under different conditions

Determining candidates for Witt metric

Correlated wireless statistics with actual TCP throughput

Feature	Correlation Coefficient (Absolute value)	
Busy airtime	0.321	
CRC Errors	0.345	
Local contention	0.463	
Signal strength	0.536	
Effective rate	0.882	
"Link_exp" model (Preferred)	0.958 Best ove	ra

Determining candidates for Witt metric

Correlated wireless statistics with actual TCP throughput

Feature	Correlation Coefficient (Absolute value)	
Busv airtime	0.321	
Use "Link experience"	model as candidate for Witt metr	ic
Signal strength	0.536	
Effective rate	0.882	
"Link_exp" model (Preferred)	0.958 Best overall	

Inputs for the Witt metric (using link experience)

Airtime Utilization (a)

Local contention (c)

Effective rate (r)

$$r = \frac{1}{\sum_{i} p_i} \sum_{i} s_i \cdot r_i, \ 1 \le i \le n$$

Busy airtime due to external sources

Cross-traffic from other clients

Capture impact of successful packet (s_i) over total packets (p_i) sent at each PHY rate (r_i)

Creating the Witt metric

- Estimating per-link performance ("Link Experience")
 - Using busy airtime (a), local contention (c), effective rate (r)

$$link_exp = (1 - a) * (1 - c) * r, 0 \le a \le 1, 0 \le c \le 1$$

• Use linear regression to obtain coefficients ($\beta_{0,}$ β_{1}) from ground truth TCP throughput values

$$Witt = \beta_1 * link_exp + \beta_0$$

Use "Witt" as a passive estimate of TCP throughput (per link)

Prediction Errors

Compare Ground truth TCP throughput with predicted values

802.11g (Max. tput ~ 19 Mbps)

802.11n (Max. tput ~ 34 Mbps)

Prediction Errors

Compare Ground truth TCP throughput with predicted values

802.11g (Max. tput ~ 19 Mbps)

80% of errors within 1.5 Mbps and 3Mbps for 802.11g and 802.11n respectively

802.11n (Max. tput ~ 34 Mbps)

Outline

- Introduction
- WiSe analytics toolkit
- Quantifying wireless performance
- Measurement Results
- Related Work and Summary

How often was performance "poor"?

 Active periods: 10 sec intervals with > 500 downlink packets per AP-Client pair

	Indicators			В	Bldg 1		Bldg 2	
$A \uparrow$	$S\downarrow$	$oldsymbol{L}\uparrow$	$R\downarrow$	V. Poor	· Po	oor	V. Poor	Poor
\checkmark	×	×	×					
×	×	\checkmark	×					
\checkmark	×		X					
×	✓							
×	✓	High		e usage				
	O		(> 60%	o)				

Ind	icators		Ble	Bldg 1		Bldg 2	
$A \uparrow (S \downarrow$	$L\uparrow$	$R\downarrow$	V. Poor	Poor	V. Poor	Poor	
✓ × × × ✓ ×	×	× × ×					
× ✓ × ✓		ignal s -70 dE	trength 3m)				

Indicators				BI	dg 1	Bldg 2	
$\overline{A}\uparrow$	$S\downarrow$	$(L\uparrow)$	$R\downarrow$	V. Poor	Poor	V. Poor	Poor
✓ × ✓ ×	× × √ ✓	_	× × × MAC > 50%	losses			
		,	7 507	- -			

	Indi	cators		Bldg 1		Bldg 2	
$\overline{m{A}\uparrow}$	$S\downarrow$	$L\uparrow$ ($R\downarrow$	V. Poor	Poor	V. Poor	Poor
\checkmark	×	×	×				
×	×	\checkmark	×				
\checkmark	×	\checkmark	×				
×	✓						
×	✓	Low					
	O	(< 12 Mbps)				,	

Indicators				Bldg 1	Bldg 2
$\overline{A\uparrow}$	$S\downarrow$	$L\uparrow$	$R\downarrow$	V. Poor Poor	V. Poor Poor
\checkmark	×	×	×		
×	×	✓	X	(
√	×	✓	X		
×	\checkmark	\checkmark	×		
×	\checkmark	\checkmark	\checkmark		
	Ot	hers			

Poor: Witt < 4 Mbps

	Indi	cators		Bldg 1	Bldg 2
$\overline{A\uparrow}$	$S\downarrow$	$L\uparrow$	$R\downarrow$	V. Poor Poor	V. Poor Poor
\checkmark	×	×	×	18.4%	1%
×	×	✓	×	49.5%	78.1%
\checkmark	×	/	×	26.7	1.4%
×	\checkmark		×	1.1%	15.8%
×	\checkmark	/	✓	007-	2 100
				4	Client-side 10
	Hig	h MAC	losses	re	eception issues, —
		. •	signal		Interference
		streng	tns	atro / Wiso / MohiCom 2012	

Very Poor: Witt < 1 Mbps

Indicators					Bldg	j 1	Bldg 2		
$\overline{m{A}\uparrow}$	$S\downarrow L\uparrow R$		$R\downarrow$	V.	Poor	Poor	V. Poor	Poor	
\checkmark	×	×	×						
×	×	\checkmark	×						
✓	×	✓	×	()				
×	✓	✓	×						
×	\checkmark	\checkmark	\checkmark						
	Ot	hers							

Very Poor: Witt < 1 Mbps

	Indi	cators	Bldg 1			Bldg 2									
$A\uparrow$	$S\downarrow$	$m{L}\uparrow$	$R\downarrow$	V	. Poor	Po	or	V .	Poo	r		Poo	r		
\checkmark	×	×	×		0%										
×	×	\checkmark	X	2	24.2%										
✓	×	\checkmark	×	6	1.8%		I	Den	se A	Pc	dep	ploy	ym	ents	
×	√	✓	X		2.3%				In l	Bui	ild	ing	1		
×	\checkmark	√	\checkmark		9.4%		С	han	nel d	cor	nge	esti	on	main	
					2.3%		ca	use	of p	00	rp	erf	or	mance	e
	Hig	gh Airt	ime +												

Packet Losses

Very Poor: Witt < 1 Mbps

	Indi	cators		Bldg	g 1	Bldg 2		
$\overline{A\uparrow}$	$S\downarrow$ $L\uparrow$ $R\downarrow$		V. Poor	Poor	V. Poor	Poor		
\checkmark	×	×	×	0%				
×	×	\checkmark	×	24.2%				
\checkmark	×	\checkmark	×	61.8%				
×	\checkmark	\checkmark	×	2.3%				
×	✓	✓	✓	9.4%		()		
	Ot	hers		2.3%				

Very Poor: Witt < 1 Mbps

	Indi	cators		Bldg	g 1	Bldg 2		
$\overline{m{A}\uparrow}$	$S\downarrow$	$oldsymbol{L}\uparrow$	$R\downarrow$	V. Poor	Poor	V. Poor	Poor	
Wea	k Signa	l + Hig	h Loss		0%			
	+ Low	_		4.2%		25.2%		
V		v	Х	υ 1.8%		2.1%		
×	•	\checkmark	X	2.3%		20%		
×	\checkmark	\checkmark	✓	9.4%		51.6%		
	Otl	hers		2.3%		1.1%		

Centralized AP deployments in Building 2 Weak signal main cause of poor performance

Very Poor: Witt < 1 Mbps

The nature of the wireless deployment impacted the causes of the degraded wireless performance

Centralized AP deployments in Building 2
Weak signal main cause of poor performance

Results 2: Microwave oven interference (30 day period)

Results 2: Microwave oven interference (30 day period)

Outline

- Introduction
- WiSe analytics toolkit
- Quantifying wireless performance
- Measurement Results
- Related Work and Summary

Related Work

- Measuring home broadband performance
 - BISMark (SIGCOMM'11)
- Enterprise sniffer deployments
 - Kotz et al. (MobiCom'02)
 - Jigsaw (SIGCOMM'06)
- Urban scale WiFi deployments
 - TFA-Rice Mesh networks (MobiCom'08)

Summary

- Deployed an infrastructure that uses APs to study home WLANs
- Presented a simple wireless performance metric
- Overall poor performance periods of 2.1% in our deployment
 - Wireless problems dependent on the nature of deployment
- Observed short (1 20 minutes) but recurring instances of interference
 - Bursty nature of link and interferer activity

Thanks!

