
Efficient Network-wide Flow Record Generation
Joel Sommers∗, Rhys Bowden†, Brian Eriksson‡, Paul Barford‡, Matthew Roughan†, and Nick Duffield§

∗Colgate University (jsommers@colgate.edu), †University of Adelaide, ‡University of Wisconsin, §AT&T Labs–Research

Abstract—Experiments on diverse topics such as network
measurement, management and security are routinely conducted
using empirical flow export traces. However, the availability
of empirical flow traces from operational networks is limited
and frequently comes with significant restrictions. Furthermore,
empirical traces typically lack critical meta-data (e.g., labeled
anomalies) which reduce their utility in certain contexts. In this
paper, we describe fs: a first-of-its-kind tool for automatically
generating representative flow export records as well as basic
SNMP-like router interface counts. fs generates measurements
for a target network topology with specified traffic characteristics.
The resulting records for each router in the topology have
byte, packet and flow characteristics that are representative of
what would be seen in a live network. fs also includes the
ability to inject different types of anomalous events that have
precisely defined characteristics, thereby enabling evaluation of
proposed attack and anomaly detection methods. We validate fs
by comparing it with the ns-2 simulator, which targets accurate
recreation of packet-level dynamics in small network topologies.
We show that data generated by fs are virtually identical to
what are generated by ns-2, except over small time scales (below
1 second). We also show that fs is highly efficient, thus enabling
test sets to be created for large topologies. Finally, we demonstrate
the utility of fs through an assessment of anomaly detection
algorithms, highlighting the need for flexible, scalable generation
of network-wide measurement data with known ground truth.

I. INTRODUCTION

Careful and comprehensive evaluation is a critical step in the
process of developing new network algorithms, protocols and
systems. Standard evaluation objectives include testing over
a range of realistic operating conditions in a controlled and
repeatable fashion. To that end, idealized analytic models are
usually supplemented by more realistic tests. The most realistic
of these use live traffic traces gathered from operational
networks. While trace-based evaluation offers the benefit of
realism, the traces themselves are inherently inflexible, are
usually limited in their availability (e.g., to members of a
particular organization) and often lack meta-data (e.g., labels
of events like routing changes or anomalies). Also lacking is
the ability to control such data to answer “what if” questions.

As a result, research groups often turn to laboratory-based
testbeds or simulation to supplement data gathered from real
networks. However, existing methodologies do not satisfy
current requirements. Most simulations (and all testbeds) work
at the packet level. However, the traffic datasets that currently
appear to represent the best tradeoff between cost of collection
and level of detail are flow export traces. Empirical flow
export traces have been widely used in studies on traffic-matrix
estimation and anomaly detection, amongst other topics. In

principle it is trivial for a packet level simulation to generate
flow records, but simulating packets when all you really
require is flows is wasteful and limits scalability.

Our work is motivated by the need for representative flow
export traces for the evaluation of new network algorithms
and systems. Specifically, we desire flow export traces to be
(1) generated in a scalable fashion from arbitrary network
configurations, (2) representative in terms of packet/byte/flow
and IP address range characteristics, and (3) inclusive of
comprehensive meta-data on “anomalous events” that exist
within the data. We know of no prior existing sources of flow
export data that meet these goals.

Tools for traffic and workload generation [17] come closest
to meeting the above goals. These approaches generally create
realistic data sets or live traffic streams that can be used in
simulations or testbed-based experiments. Standard examples
are packet traffic generators (e.g., [27], [30]) that are used to
assess the performance and capacity of network systems such
as routers and firewalls. The key challenges in the development
of a workload generator is to identify a parsimonious foun-
dational model that enables the production of traces or traffic
streams with specific features. These features can be simple,
like fixed inter-packet spacing, or more complex, like self-
similarity [22], depending on the target applications. There
are many such models now, though it would be fair to say
that no one model has won universal acceptance. Thus, it is
important to be able to flexibly implement multiple models
for various tasks. The problem is that a workload generator
alone is not enough. A critical aspect of a traffic trace is
the surrounding network configuration. The challenge is to
implement the model in a system that is scalable and robust
so that it can be used over a range of configurations and
deployment scenarios.

In this paper we describe a new flow record generation
tool called fs that is designed to meet the above challenges
and requirements. fs is based on a modeling framework that
synthesizes file transfers into origin-destination (OD) flows for
a target network. fs also includes a flexible anomaly generation
capability that enables outages, volume anomalies and scans to
be injected into flow traces. While fs is technically a simulator,
it differs from prior simulation tools that are designed to enable
simulation for the sake of a controlled simulation setting.
fs, in contrast, is designed to generate flow export records
and SNMP-like byte, packet, and flow counts; it simply uses
simulation techniques to do so. Further, fs is designed to
efficiently use system resources, thereby enabling generation

of flow records for all nodes in large network topologies.
We validate the data generated by fs by comparing it with

data produced by the well-known ns-2 simulator [24] and
with data produced in a controlled laboratory environment
using the Harpoon traffic generator [27]. Our results show that
byte, packet, and flow volumes produced by fs are statistically
indistinguishable from those produced by ns-2 or Harpoon
over time scales of 1 second and longer. We also show that
measurement data can be generated using fs significantly faster
and with much lower memory requirements than in ns-2.

As one illustration of the value of fs we include an example
of its use in assessing anomaly detection algorithms. We
conduct 1000 independent simulations with fs, and show,
using statistically-derived confidence intervals, that two simple
anomaly detection techniques are indistinguishable unless one
uses a very large number of tests (nearly 800). This case study
underscores the need for fast, controlled trace generation. In
the area of anomaly detection, where techniques have evolved
toward whole network tests, trace generation must be highly
scalable but still provide the level of detailed information
needed for the current crop of anomaly detection algorithms,
i.e., the type of flow records produced by fs.

II. RELATED WORK

There are many possible definitions of a network traffic flow.
A widely embraced definition is described by Claffy et al.
in [11] in terms of traffic characteristics observed at internal
points in a network. Monitoring traffic flows is of significant
importance to Internet Service Providers who use this infor-
mation for both accounting and network management. To that
end, flow measurement has been the subject of standardization
efforts (e.g., [6], [12]) and is widely implemented in network
devices (e.g., Cisco’s Netflow [28]).

Over the past decade, there have been many studies on the
measurement, analysis and characterization of network traffic
flows (e.g., [15], [21], [32]). These studies have implications
for effective network management and capacity planning, and
provide a foundation for our work. A related topic is traffic
matrix estimation, which seeks to identify traffic volumes for
origin-destination flows through a network based on partial
information (e.g., [25], [29], [34]). A motivation for our study
is to develop a tool that could be used to systematically assess
and evaluate traffic matrix estimation techniques.

Another important motivation for our work is the recogni-
tion that certain research areas are under-served in terms of
the availability of tools and data for comprehensive analysis.
Ringberg et al. highlight some of the difficulties in assessing
anomaly detection algorithms, and make the case for improved
simulation capability [26]. That paper highlights the need for
data sets with ground truth, e.g., flow data that includes labels
that identify all anomalous events. fs is specifically designed
to enable generation of flow data with labeled anomalies
that could be used to assess either single node (e.g., [2]) or
network-wide (e.g., [21]) detection algorithms. Related to our
effort is that of Brauckhoff et al. [4] in which they describe
a tool called FLAME designed to augment an existing flow

export record trace with controlled anomalies. fs is more
general and comprehensive than FLAME in that it is designed
to generate new flow export traces with known characteristics.

Prior efforts in the area of workload generation also provide
an important perspective for our study. Network workload
generators can generally be divided into two categories, de-
pending on whether they are based on replaying empirical
traces (e.g., [10]) or based on distributional models of key
characteristics of a particular workload (e.g., [1], [27], [30]).
In each case, the general aim of workload generators is to be
able to reproduce a range of characteristics. fs is based on a set
of distributional models for traffic behavior using the model
for single node behavior specified in Harpoon [27]. However
fs differs from Harpoon since it is focused on flow record
generation and adds a broader framework to enable consistent
and scalable network-wide flow record generation.

Finally, our work builds on the various network simulators
that have been widely used in past studies [9], [13], [24]. fs
differs from these tools in its focus on flow record generation
for potentially large networks.

III. DESIGN AND IMPLEMENTATION

In this section we describe the design, configuration, and
implementation of fs.

A. Design Goals

fs is designed with three key considerations in mind. First
is the goal to generate representative network measurements
similar to those that can be collected from operational routers
today. In particular, fs generates flow export records (e.g.,
Cisco Netflow records) and SNMP-like counters (e.g., packet
and byte counters from router interfaces).

The second goal is to ensure sufficient realism in the
measurements that fs generates. fs is designed to generate
measurements from benign flows as well as particular types of
anomalous flows. For benign flows, fs builds on the Harpoon
model for traffic generation [27]. Similar to Harpoon, fs
creates flows between a given source and destination that have
particular distributional properties. Namely, flows are initiated
between a source and destination according to one distribution,
and flow sizes are drawn from another distribution.

The third goal of fs is to scale to large network config-
urations, not only to generate measurements quickly, but to
use modest memory resources while doing so. Because the
kinds of measurements that fs can generate do not contain
fine-grained information (e.g., packet-level timings), we ignore
many packet-level details. This design decision results in major
computational and memory savings while generating realistic
data over time scales of 1 second and longer, as shown below.

B. Configuration

Another design goal for fs is to provide a familiar and
easy-to-use method of configuration. To that end, fs uses a
declarative syntax based on Graphviz DOT files [3]. We now
describe through examples how fs is configured.

1) Node and link configuration: Listing 1 shows an exam-
ple that will create a simple three-node network. In the DOT
language, there are three basic entities: graphs, nodes, and
links. In this example, there is one graph (threenodenetwork),
three nodes (a, b, and c), and three links (a--b, b--c, and
a--c). Nodes are declared by simply providing an identifier
along with an optional set of attributes enclosed in square
braces. Links are declared by stating two node identifiers
separated by two hyphens (--). An optional set of square-
brace-enclosed attributes can also be specified for links. A
set of attributes in the DOT language essentially consists of
a series of key/value pairs, with the key and value separated
by the = symbol. Below, we describe various valid attributes
that fs supports for nodes and links. Note that since DOT is a
declarative language, the specific ordering of nodes and edges
within the file does not matter.

a) Node attributes: In fs, a DOT node and a router
are synonymous. Routers may be configured with a set of
IP destination prefixes that are reachable through the router;
observe that in Listing 1, each node has an ipdests attribute
for this purpose. This attribute can consist of multiple white-
space delimited address prefixes (either IPv4 or IPv6). These
prefixes may be considered, in a sense, as external sources or
destinations for the network being modeled. They are primarily
used in the traffic generation process to determine the egress
node of the network for a given flow.

Additional valid attributes for fs nodes relate entirely to how
network traffic is configured. We describe traffic generation
separately, below.

b) Link attributes: A link in fs can be considered either
a logical or physical link between two routers. Notice in
Listing 1 that for each link, weight, capacity, and delay

attributes are configured. Capacity is specified in bits per
second, and delay is specified in seconds. Presently in fs,
the configured weights are fed into Dijkstra’s algorithm for
computing shortest-path routes across the network (if there is
more than one egress node for a given destination address the
closest node is used, mimicking hot potato routing).

There are additional attributes that can be configured to
induce link (un)reliability. A reliability attribute can be
used to specify how and when a link can be disabled during
a simulation. One way that the reliability attributes can be
specified is to give a time after which a link should fail, as well
as how long the link should remain down. Listing 1 shows that
the link between routers a and b should go down 30 seconds
into the simulation and remain down for 10 seconds, after
which it will be reenabled. Another way that the reliability
attributes of a link may be specified is to supply a time
to failure (TTF) and a time to recovery (TTR). The link
between routers b and c in Listing 1 shows that the TTF is
exponentially distributed with a mean of 600 seconds between
outages. Once the link is down, the time to recover is also
exponentially distributed with a mean of 5 seconds. In fs, when
a link goes down, routes are instantaneously recomputed using
Dijkstra’s algorithm. In future work, we intend to investigate
more flexible and realistic routing behavior.

Listing 1. fs configuration example.
1graph threenodenetwork {
2// three node declarations, each with ipdest attributes
3a [ipdests="10.1.0.0/16 10.128.0.0/9" traffic="m1"
4
5// build up and withdrawal of source s1: 10 srcs
6// for 60 sec, followed by 20 sources for 60 sec ...
7m1="modulator start=0.0 generator=s1
8profile=((60,),(10,20,30,20,10))"
9
10// a basic Harpoon traffic setup
11s1="harpoon ipsrc=10.1.0.0/16 ipdst=10.3.1.0/24
12flowsize=pareto(10000,1.2)
13flowstart=exponential(100.0)
14sport=randomchoice(22,80,443)
15dport=randomunifint(1025,65535) mss=1460
16lossrate=randomchoice(0.001) tcpmodel=msmo97"];
17
18b [ipdests="10.2.0.0/16"];
19c [ipdests="10.3.0.0/16 10.0.0.0/8"];
20
21// three link declarations
22a -- b [weight=5, capacity=1000000000, delay=0.020,
23reliability="failureafter=30 downfor=10"];
24b -- c [weight=13, capacity=1000000000, delay=0.010,
25reliability="mttf=exponential(1.0/600.0)
26mttr=exponential(1.0/5.0)"];
27a -- c [weight=30 capacity=1000000000 delay=0.123];
28}

2) Network traffic: For traffic, there are three node-level
items that must be configured: a traffic definition, a traffic
modulator, and a traffic attribute. The traffic attribute
refers to one or more traffic modulators to be activated and
each modulator describes how a number of traffic sources
with identical characteristics should be varied over time. In
Listing 1, the traffic attribute for node a refers to the
identifer m1. m1 in turn refers to a traffic modulator that
manages a traffic generator source, identified by s1.

Traffic modulators in fs specify when a traffic source (or
multiple, identical sources) should start, and how a number
of these traffic sources should evolve over time. In Listing 1,
m1 specifies that traffic generator s1 will start at time 0, and
will have a modulation profile such that 10 sources will be
active for 60 seconds, then 20 sources will be active for 60
seconds, then 30 for 60 seconds, and so forth. The syntax for
specifying a traffic profile consists of two ordered lists of
numbers, enclosed in parentheses. (Jumping ahead to some
implementation details, these values must simply conform to
valid syntax for Python tuples.) The first list indicates a series
of 1 or more time durations (in seconds), and the second
list indicates the number of instances of a particular traffic
source that should be active. The time durations and number
of sources are matched in a circular fashion; in the example,
the time duration 60 is repeated for each of the five values for
number of sources.

The final piece is the description of how each traffic
generator instance should behave. In Listing 1, s1 is referred
to by the modulator m1 and describes the characteristics of a
Harpoon-like traffic generator [27]. The generator s1 has IP
source and destination address prefixes from which addresses
are chosen for new flows, a distribution of flow sizes, and
another distribution that determines when individual flows

start. While a Harpoon generator is active, a new flow is started
after a time duration chosen from the flowstart distribution;
that flow will have random IP source and destination addresses
chosen from the source and destination prefixes, and a random
flow size chosen from the flowsize distribution. The next
flow will start after another random value chosen from the
flowstart distribution, and so forth. The source and destina-
tion prefixes can be constructed in such a way as to recreate
a particular distribution, similar to the way that Harpoon can
be configured.

For one instance of a Harpoon flow, source and destination
ports are also chosen from the configured settings, e.g., in
Listing 1, a source port is a random selection from a list of
three choices, and a destination port is randomly chosen from
an integral range. For this example, each flow will have a fixed
TCP maximum segment size (MSS) (though the MSS may
also be randomly chosen). We note that the settings shown
are simply meant to be illustrative of how a Harpoon source
within fs can be configured.

One of the most important differences between Harpoon as
implemented in fs with the implementation in [27] is that the
fs version does not use a real implementation of TCP as a
transport. Moreover, fs does not even attempt to emulate any
detailed packet-level interactions of a flow. Instead, we employ
existing TCP throughput models to estimate the throughput
(and consequent time duration) of a given flow. Two remaining
configuration parameters for the generator s1 in Listing 1 are
used for this purpose: tcpmodel and lossrate. For each flow,
a random loss rate is chosen from the configured parameter (as
with other settings, this could just be a single value, if desired;
there are no restrictions placed on how this is configured).
This value, along with a computed round-trip time based on
the link configurations are used as input to a TCP throughput
model to estimate the average rate of the flow. The RTT
computed for input to the model only considers propagation
delay; transmission and queuing delays are ignored. For the
TCP throughput model, fs incorporates the simple Mathis et al.
model from [23] and the more complex Cardwell et al. model
from [8]. We used these two models in order to investigate
the sensitivity of fs to the TCP model used.

Once the average flow throughput and duration are com-
puted, an individual flow’s progress is simulated. At successive
time intervals, portions a flow’s volume are emitted along a
path from the source node to destination node. These portions
are referred to as flowlets in fs. Each flowlet represents the vol-
ume of the flow (bytes and packets) that would be transmitted
over a given time interval (e.g., over a 1 second interval).
For small flows, the entire flow may only consist of a single
flowlet and be completed within one interval. Longer flows
may consist of multiple flowlets, spanning multiple intervals.
Each flowlet has the appropriate TCP flags set (e.g., if a TCP
flow is broken into multiple flowlets, only the first flowlet has
the SYN flag set); when all flowlets comprising a flow have
been emitted, transmission of the flow is complete. Note that
similar to a packet being the main entity to be scheduled within
ns-2, a flowlet is the main entity to be scheduled and moved

Listing 2. More complex traffic generation example.
1graph morecomplextrafficexample {
2a [ipdests="10.1.0.0/16 10.128.0.0/9"
3traffic="m1 m2 m3 m4 m5"
4
5// very short TCP flows.
6m1="modulator start=0
7generator=s1 profile=((120,),(1,))"
8// flow consists of one flowlet; flows emitted
9// at exponential intervals, mean of 1 sec
10s1="rawflow ipsrc=10.1.1.0/24 ipdst=10.3.2.0/24
11sport=80 dport=randomunifint(1024,65535)
12ipproto=tcp flowlets=1 bytes=normal(3000,500)
13pktsize=normal(1000,200) tcpflags=SYN|FIN|ACK
14interval=exponential(1.0)"
15
16// UDP variable bitrate flow.
17m2="modulator start=0 generator=s2
18profile=((120,),(1,))"
19// flow consists of 100 flowlets, one emitted every
20// sec. variable bitrate comes from a random num
21// of packets and bytes for each emitted flow.
22s2="rawflow ipsrc=10.1.1.5/32 ipdst=10.3.2.5/32
23flowlets=100 ipproto=udp dport=4444
24sport=randomunifint(1024,65535) pkts=normal(10,1)
25bytes=normal(1000,100) interval=1.0"
26
27// SYN flood. at t=10 sec, ramp up as a step
28// function from 1 source up to 100, 10 new sources
29// at a time. sustain 100 sources for 30 sec, then
30// then withdraw down to 0, in similar way to start..
31m4="modulator start=10 generator=syns
32emerge=((1,),frange(0,100,10))
33sustain=((30,),(100,))
34withdraw=((1,),frange(100,0,-10))"
35syns="rawflow ipsrc=10.1.0.0/16 ipdst=10.4.5.0/26
36dport=80 sport=randomunifint(1,65535)
37ipproto=tcp pkts=1 bytes=40 tcpflags=SYN
38flowlets=1 interval=exponential(1/1.0)"
39
40// Randomly "subtracts" flow records along a path.
41m5="modulator start=30 generator=sub1
42profile=((10,),(1,))"
43sub1="subtractive dstnode=b
44ipsrcfilt=10.1.0.0/16 ipdstfilt=10.3.0.0/16
45ipprotofilt=tcp action=removeuniform(0.1)"];
46
47b [ipdests="10.3.0.0/16 10.4.0.0/16"];
48a -- b [weight=10, capacity=1000000000, delay=0.043];
49}

through the network in fs.
a) More complex traffic configurations and anomalies:

In addition to the Harpoon generator, there is another “raw”
flow generator that can work as a one-flowlet generator (the
entire flow is represented as one flowlet) or as a simple
constant or variable bit-rate flow (e.g., to mimic a UDP-based
media stream). Examples are shown in Listing 2 (see rawflow

generator configurations starting on lines 10, 22, and 35).
For some types of traffic, e.g., SYN floods, it may be

useful to separately describe how the traffic begins, how it
behaves once active, and how it ends. In other words, the
traffic emerges, is sustained for some time, then withdraws.
These behaviors may be specified in fs. An example is shown
on lines 31–34 of Listing 2. The values for each of the
settings emerge, sustain, and withdraw are the same as for
the Harpoon example, above. (The frange expression on line
50 is a shortcut for specifying (0,10,20,30,...,100). Note
also that sustain is synonymous with profile.)

This modulation capability enables the creation of traffic

whose onset and withdrawal have specific, controlled behav-
iors. In concert with the raw flow generation capability, SYN
floods, port scans, and a variety of other interesting traffic
flows are easily constructed in a controlled fashion.

Another type of anomaly that has direct support in fs is a
subtractive anomaly. A subtractive generator removes some
fraction of flow records stored at routers and can be used
to mimic problems with flow collection in a live network,
e.g., dropped or corrupted export packets. Such measurement
problems can have a significant effect on different algorithms.
Settings can be specified to only remove flows whose source
or destination addresses are within specified prefixes or that
match other criteria. For example, starting on line 43 of
Listing 2, the subtractor will probabilistically remove 90% of
flows that match the given criteria.

Finally, another sort of anomaly can arise from links going
in and out of service. When this happens, routes are auto-
matically recomputed within fs, and any flowlets in transit are
rerouted. However, the re-routing is done instantaneously in
fs, so at present there is no chance for looping or other types
of related anomalies. Incorporating a more realistic routing
model is the subject for a future enhancement of fs.

b) Measurement collection and export in fs: Flow
records are collected at each router by aggregating flowlets as
they traverse network paths. Routers in fs export flows when a
FIN or RST is observed in a flowlet, after a fixed duration, or
when the number of stored flows exceeds a certain threshold;
each of these behaviors are configurable. fs can currently
export records in a simple text format, or in Cisco Netflow
version 5 binary format [28]. There are plans to support (at
least portions of) the IPFIX standard [12].

Sampling can also be enabled in routers in fs. Currently
implemented are 1-in-n packet sampling (effectively, packets
within flowlets are sampled), and uniform probabilistic sam-
pling. fs could easily be extended to support additional types
of sampling, e.g., trajectory sampling [14].

A further measurement capability in fs is that routers can
be configured to collect and export byte, packet and flow
counters at each interface, similar to basic SNMP counters.
These counters can be exported at configurable intervals.

Finally, we note that the measurement capabilities described
above are presently configured on the command-line to fs,
outside the context of the DOT configuration file.

C. Implementation
At its core, fs is a discrete-event simulator and is im-

plemented in the Python programming language. The cur-
rent implementation consists of about 2,000 lines of Python.
fs is openly available to the research community (see
http://cs.colgate.edu/faculty/jsommers/).

As noted above, a key point of differentiation between fs
and other discrete-event network simulators like ns-2 is that
instead of simulation events revolving around packet-level
activity in a network, fs is concerned with flowlets. The key
issue that determines performance of a discrete-event simulator
is the rate at which events are fired in the simulator. Two

features of fs have an important effect on the number of
events scheduled, and thus the event rate. First, the use of
flowlets as an abstraction greatly reduces the number of events
required to simulate a single flow since individual packets
comprising a flowlet are not simulated, only the aggregate.
Second, specifically with respect to the Harpoon generator,
the configured interval at which flowlets that comprise a single
flow are emitted also has an important impact. For example,
with longer intervals, fewer flowlets need to be emitted for a
given flow (and thus fewer events).

IV. VALIDATION EXPERIMENTS

In this section we examine the behavior and performance
of fs, focusing on comparing results from running fs and the
widely used ns-2 simulator (version 2.34) with equivalent
configurations. We also evaluate the impact of different fs
configuration choices on the resulting measurements. Finally,
we have performed experiments in a laboratory emulation
setting using Harpoon. Due to space limitations, we do not
show results from those experiments, but they are qualitatively
similar to the results comparing ns-2 and fs.

A. Experiment Setup

For the majority of experiments described in this section,
we focus on measurements collected using a simple network
setting. In particular, the topology we use is the same as shown
in the example fs configuration in Listing 1. In this setup, there
are three nodes, each with 1 Gb/s links connecting them. Note
that because of the configured link weights, the shortest path
between a and c goes through node b (i.e., the direct link
between a and c is unused). (Note that we do not configure
reliability parameters for links in these experiments.)

For network traffic, we configured the Harpoon generator in
fs to generate 100 flows per second, started at exponentially
distributed intervals. We used two different flow size distri-
butions: exponentially-distributed and Pareto-distributed. The
latter distribution was configured to result in a heavy-tailed
distribution of flow sizes. ns-2 was configured in an equivalent
manner using the PackMime web-like traffic generator [7].

B. Traffic Volume Comparisons

We first compare traffic volumes produced by ns-2 and fs.
In this setup, we configured fs to use the Cardwell et al.
TCP throughput model [8] (referred to below as CSA00).
We used the SNMP-like data produced by fs. Figure 1 shows
cumulative distribution functions (CDFs) of byte and packet
volumes produced over 1 second bins for the scenario with
exponentially-distributed flow sizes, and Figure 2 shows CDFs
of byte volumes for the scenario with Pareto-distributed flow
sizes (CDFs for packet volumes are not shown but are qualita-
tively similar). Note that the x-axis is log scale. The plots show
a good match between ns-2 and fs. 95% confidence intervals
plotted for different quantiles of the ns-2 curve include nearly
all fs values at those quantiles. Due to space limitations, we
do not show results comparing the number of flows generated
per second in ns-2 and fs, but they are indistinguishable.

2e+05 5e+05 1e+06 2e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

byte counts per 1s bin

P(
X<

x)

−−−−
−−
−−
−−
−−
−−
−−
−−
−−−−
−−ns2

fs

500 1000 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

packet counts per 1s bin

P(
X<

x)

−−−−
−−
−−
−−
−−
−−
−−
−−
−−−−
−−ns2

fs

Fig. 1. Results with exponentially-distributed flow sizes for baseline setup.

2e+05 5e+05 1e+06 2e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

byte counts per 1s bin

P(
X<

x)

−−−−
−−
−−
−−
−−
−−
−−
−−
−−−−

−−ns2
fs

Fig. 2. Results with Pareto-distributed flow sizes for baseline setup.

For the previous plots, we used the CSA00 TCP throughput
model, with a configured loss rate of 0.001. In Figure 3,
we compare flow durations in ns-2 with three different TCP
throughput model settings in fs: the Mathis et al. [23] model
(MSMO97) with a configured loss rate of 0.001, the CSA00
model with a loss rate of 0.001, and the CSA00 model with
a loss rate chosen between 0.001 and 0.01 with uniform
random probability. (While there is no packet loss in the ns-
2 simulation, we found through a series of experiments that
a non-zero loss rate was needed with the CSA00 model in
order to achieve reasonable accuracy in matching the flow
durations measured in ns-2. Note also that using the MSMO97
model requires a non-zero loss rate since √

p, where p is the
loss rate, is a divisor in the throughput estimation formula.
Both of these issues are due to limitations with the CSA00
and MSMS97 TCP throughput models. Exploring modified or
new TCP models for fs is a subject for future work.) For this
plot, the flow durations are taken directly from the flow export
records generated by fs. We see that for the MSMO97 model,
there is a poor match for flows of short duration (consider
that the MSMO97 model only considers flows in congestion
avoidance). For the CSA00 configurations, the short flow
durations match well for each setup, but the configuration with

1e+00 1e+02 1e+04 1e+06

1e
−0

4
1e
−0

3
1e
−0

2
1e
−0

1
1e

+0
0

flow duration (milliseconds)

1−
P(

X<
x)

ns2
fs−msmo97 (0.001)
fs−csa00 (0.001)
fs−csa00 rand(0.001,0.1)

Fig. 3. Complementary cumulative distribution function (log-log scale) for
flow durations in ns-2 and fs for three different TCP throughput model settings
in fs and with Pareto-distributed flow sizes.

a fixed 0.001 loss rate tends to underestimate the tail of the
ns-2 durations. Surprisingly, the fs+CSA00 setup in which a
randomly chosen loss rate is used provides a good match to
ns-2 flow durations. Note that even if the flow durations do
not match well the overall flow volumes still closely match.

C. Volume aggregation effects

The baseline results compared packet and byte volumes over
fixed 1 second bins. Since fs does not attempt to model or
simulate low-level packet interactions, an important question
to consider is how packet and byte volumes match over shorter
bins, e.g., 100 milliseconds. We compared byte volumes for
bin sizes of 10 milliseconds, 100 milliseconds, and 1 second.
The results of these experiments showed that the match in
volumes becomes poorer as the the interval becomes shorter
(plots not shown due to space limitations).

Figure 4 plots variance estimates versus time scale for
a range of time aggregations of byte counts (1 millisecond
through 100 seconds) for both ns-2 and fs and each flow
size distribution. 95% confidence intervals are drawn for each
curve. Observe that at time scales below 1 second, the variance
estimates of ns-2 and fs differ substantially, but at 1 second
and greater aggregations they match very well. These results
suggest that measurements produced by fs at aggregations of
1 second and greater are statistically indistinguishable from
ns-2 (and also measurements produced in a laboratory setting;
results not shown due to space limitations). The plots referred
to above also highlight a boundary of fs, suggesting that one
should not use traffic volumes produced by fs for aggregation
levels below 1 second. Indeed, fs is not designed to accurately
capture sub-second traffic dynamics.

D. Network congestion effects

In this last set of traffic-oriented experiments, we compare
ns-2 and fs in a congested network scenario (i.e., there is
packet loss in the ns-2 simulation). In fs, if the aggregate
volume of flowlets crossing a given link exceeds the configured
link bandwidth, flowlets are queued. This queueing is clearly
a coarse approximation of what would happen in a live
or simulated router that operates on packets. Thus, in the

10−3 10−2 10−1 100 101 102108

109

1010

1011

1012

1013

time scale = 1.0 s

timescale (seconds)

va
ria

nc
e

es
tim

at
e

ns
fs
~1/N

10−3 10−2 10−1 100 101 1021010

1011

1012

1013

1014

time scale = 1.0 s

timescale (seconds)

va
ria

nc
e

es
tim

at
e

ns
fs
~1/N

Fig. 4. Variance/time plots for exponentially-distributed flow sizes (top) and
Pareto-distributed flow sizes (bottom).

experiments below we examine another implication of fs being
oriented around network flows rather than low-level packets.

Figure 5 compares byte volumes over two different aggre-
gation levels (1 second and 30 seconds), computed for ns-
2 and three configurations of fs. In these experiments, we
created a configuration with low-bandwidth links (1.5 Mb/s),
Pareto-distributed flow sizes, and an average flow arrival rate
such that in the ns-2 simulation there was a rather high
overall loss average of 10%. For fs, we plot results for
configurations in which we (1) ignore link bandwidths and
use the MSMO97 TCP throughput model, (2) respect link
bandwidths, implement flowlet queues, and use the MSMO97
TCP throughput model with a configured loss rate of 10%,
and (3) respect link bandwidths (with queues) and use the
CSA00 TCP throughput model with a configured loss rate of
10%. We see from the plot that for the finer aggregation level,
the fs results diverge from the ns-2 results, especially for the
simplistic configuration that ignores link bandwidths. For the
30 second aggregation plot, the fs results are much closer to
ns-2, as we should expect.

E. Scalability and performance of fs

Finally, we examine memory and runtime requirements for
a set of experiments with increasing number of simulated flow
arrivals per second. We use Pareto-distributed flow sizes and
a range of exponentially distributed flow arrival averages per
second: 100, 200, 400, and 800. These experiments were run
on a quad-core Intel Xeon host with 4 GB of memory.

Table I shows the memory consumed by ns-2 and fs for
these experiments and the runtime required to complete a 3600
second simulation. We see that for the scenario with an average

0 50000 100000 150000 200000 250000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

byte counts per 1 second bin

P(
X<

x)

ns2
fs−msmo97−noqueue
fs−msmo97
fs−csa00

4000000 4500000 5000000 5500000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

byte counts per 30 second bin

P(
X<

x)

ns2
fs−msmo97−noqueue
fs−msmo97
fs−csa00

Fig. 5. Comparison of byte volumes produced by ns-2 and fs in a highly
congested scenario, for 1 second and 30 second bins.

TABLE I
RUNTIME AND MEMORY COSTS FOR NS-2 AND fs USING

PARETO-DISTRIBUTED FLOW SIZES AND A RANGE OF AVERAGE FLOW
ARRIVAL RATES.

New flows Runtime Peak memory
per sec (seconds) consumption (kB)

ns-2 fs ns-2 fs
100 1358 149 163232 27956
200 4440 297 315800 27952
400 15894 597 623404 27956
800 59661 1185 1227900 27952

flow arrival rate of 400 per second, it takes ns-2 nearly 4
1/2 hours to complete the simulation while consuming nearly
600 MB of memory. fs generates data from a comparable
configuration in about 10 minutes and uses around 27 MB
of RAM. Note that the memory and runtime requirements for
ns-2 appear to scale linearly with the number of sources, while
for fs there is no increase in memory consumption and only a
modest increase in runtime.

Although we do not show detailed results here, fs also
performs well for larger topologies and traffic configurations.
We configured fs with a topology matching the Internet2
IP backbone, with origin-destination flows configured in a
full mesh across the network. fs was able to generate flow
records for a simulated hour with relatively low levels of
traffic (e.g., about 10 Mb/s between each pair of routers) in
about 5 minutes. Experiments to generate flow records over
an entire simulated day and with much higher traffic volumes
are still quite expensive, but we are strongly encouraged by
the performance of fs and its potential to handle significantly
more complex configurations.

V. APPLICATION: ANOMALY DETECTION

Automated detection of anomalies in computer networks has
been of interest for a number of years, e.g., [16], [18]–[20],
[33], [34]. However, quantitative assessment of anomaly detec-
tion algorithms remains challenging. The preferred approach in
the literature is to use ground-truth data, i.e., a list of manually
labeled “anomalies”, and to compare a detector’s output to this
list. However, manual labeling is insufficient for many reasons
[26]: it may be impossible to share the underlying traces due
to privacy concerns; domain experts are flawed and may miss
true anomalies; reliance on a fixed trace prevents a sensitivity
analysis, e.g., to determine how “large” an anomaly must be
for it to be detected; and manual processes do not scale to the
magnitude necessary to estimate sensitivity and specificity of
anomaly detection techniques accurately.

Only simulation can provide all of the features needed to
complement real data in the evaluation of anomaly detection1.
Much of the interesting recent work on anomalies has focused
on network wide measurements. Moreover, many techniques
aim to exploit the full detail of the measurements available,
which are often at the flow level. In this section, we expand
on the issue of accuracy of performance estimates for anomaly
detectors, and show that fs provides a suitable simulator
environment for many such tests.

Anomaly detection algorithms are often assessed using
two primary metrics: false alarm and detection probability.
Estimation of probabilities is a textbook problem: given N
trials and X successes, the estimated probability is p̂ = X/N .
However, estimates have errors and we cannot make valid
comparisons unless we account for these potential errors.

A common approach for quantifying errors is to use a
confidence interval. Confidence Intervals (CIs) are defined
with respect to coverage probabilities, i.e., we might specify
the 95th percentile CI to contain (or cover) the correct value
with coverage probability 0.95. The calculation of confidence
intervals for a probability estimate such as the detection prob-
ability appears in many textbooks, but much of the wisdom in
this area is outdated. Standard Gaussian confidence intervals
(on the assumption that the central limit theorem applies) have
been shown to be invalid. More recent careful consideration
has shown that even for large n, Gaussian CIs do not give
stable or accurate coverage probabilities [5]. There are a
number of reasons, but perhaps most telling is the fact that the
variance used in the Gaussian CIs is also an estimate. If one
replaces this estimate with the null estimate then a better CI
estimate is obtained, usually named the Wilson interval after
its first known proponent [31]. There are competing estimators
of such CIs, but the Wilson interval performs almost as well
or better for most cases, is simpler to calculate, and its width
is proportional to 1/

√
N for large numbers of tests N .

Note, however, that the intervals are wide. Given N = 100,
and a value of p = 0.1 the CI’s width is > 0.1, and this
decreases only with the square root of N . One hundred times

1Of course we do not suggest that only simulation should be used. Real
labeled data is still a valued component of evaluation.

as many trials are needed to reduce this interval width by a
factor of 10. The width of these intervals is a critical factor in
assessing anomaly detection algorithms. If we wish to make
comparisons between two detectors, then the width of these
intervals must be smaller than the difference between the
detection probabilities. In order to achieve this, we may need
to conduct a large number of trials. It would be very costly to
manually classify a large enough dataset to achieve the types
of results we require.

The situation is further complicated by the need for inde-
pendent trials. If the trials are correlated in some way (say
because they are datasets from the same network in a similar
time period), then the width of the confidence intervals should
increase yet further. The only practical way to generate a large
number of guaranteed independent trials is simulation.

In order to illustrate this problem we use fs to simulate
and test two simple anomaly detection algorithms. We use a
similar simulation setup to the previous examples with a small
and conceptually simple network with 3 nodes and 3 high
capacity links across which we generate traffic using Pareto
sources, but with the addition of a large but short-lived flow
at a randomly chosen time point.

We test two simple anomaly detection algorithms: (1) a
thresholded differencer, and (2) a thresholded high-pass filter.
We evaluated both the false alarms, and detection probabilities
for these two techniques, but for illustrative purposes we only
show detection probabilities. Note that we make no claims that
these are good approaches to anomaly detection. The point is
to illustrate the need for a tool like fs.

0 200 400 600 800 1000
0.85

0.9

0.95

1

Number of trials

D
e

te
c
ti
o

n
 r

a
te

Differencer CI

High Pass Filter CI

Overlap of CIs

Differencer MLE

High Pass Filter MLE

Fig. 6. A formal comparison of the accuracy of two detection probabilities
as a function of the number of trials.

Figure 6 shows the estimated probability of detection for
the two anomaly detection techniques with 95th percentile
confidence intervals. We can see that the confidence intervals
overlap up to 750 trial simulations. After that, we can see that
the difference outperforms the high-pass method but nearly
800 trials were required before this distinction could be made.

It is tempting to dismiss these types of results as a statistical
nicety; we eventually came up with the same result that we
might have after 100 trials. Consider, however, the perfor-
mance until about the 30th trial: the differencer detects every
anomaly. It would be tempting to call it perfect, but we later
see that it misses detections. The CIs convey the uncertainty
about our belief in the “perfection” of the estimator given only

30 trials, even though they are all successful. Likewise, we can
see that the estimators for both approaches jump around. This
high variation means we cannot be certain about performance,
and the CIs consistently allow for this variability.

The take-away point is that the number of trials needed
to discriminate the two detectors was very large. Add in the
requirement that they be independent, and it becomes clear that
measurement data derived from a tool such as fs are needed to
robustly and effectively assess anomaly detection algorithms.

VI. SUMMARY AND CONCLUSIONS

The ability to synthesize network measurement datasets
with known characteristics is critical for comprehensive evalu-
ation of anomaly detectors, traffic matrix estimators, and other
types of algorithms. In this paper, we describe the fs tool that
can generate network-wide flow export records and SNMP-like
measurements that are consistent with measurement collected
from live network systems. We described how fs can be con-
figured and examined its fidelity and sensitivity in relationship
to measurements collected from the ns-2 simulator. We then
demonstrated an application in which a tool like fs is highly
beneficial, anomaly detection.

There are a number of directions we are considering for
future work with fs. For example, while fs can easily produce
datasets for use in traffic matrix estimation studies, we are
considering how to use traffic matrix data for the purpose of
automatically parameterizing fs so that it can generate a new
set of measurements that are statistically similar to the original
TM data. This capability should enable fs to be used for
introducing particular anomalies into an existing traffic matrix
trace in realistic way, and for better understanding macroscopic
network behavior and performance.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants CNS-
0716460, CNS-0831427, CNS-0905186, an NSF CAREER
award, and ARC grant DP110103505. Any opinions, findings,
or conclusions are those of the authors and do not necessarily
reflect the views of the NSF or the ARC.

REFERENCES

[1] P. Barford and M. Crovella. Generating Representative Web Workloads
for Network and Server Performance Evaluation. In Proceedings of
ACM SIGMETRICS, Madison, WI, June 1998.

[2] P. Barford, J. Kline, D. Plonka, and A. Ron. A Signal Analysis of Net-
work Traffic Anomalies. In Proceedings of ACM Internet Measurement
Workshop, Marseilles, France,, November 2002.

[3] A. Bilgin, J. Ellson, E. Gansner, Y. Hu, Y. Koren, and S. North.
Graphviz-Graph Visualization Software, 2010.

[4] D. Brauckhoff, A. Wagner, and M. May. FLAME: a flow-level
anomaly modeling engine. In Proc. of the Workshop on Cyber Security
Experimentation and Test (CSET ’08), 2008.

[5] L.D. Brown, T.T. Cai, and A. DasGupta. Interval estimation for a
binomial proportion. Statistical Science, 16(2):101–133, 2001.

[6] N. Brownlee, C. Mills, and G. Ruth. Traffic Flow Measurement:
Architecture. IETF RFC 2063, January 1997.

[7] J. Cao, W. Clevelan, Y. Gao, K. Jeffay, F. Smith, and M. Weigle.
Stochastic Models for Generating Synthetic HTTP Source Traffic. In
Proceedings of IEEE INFOCOM ’04, Hong Kong, March 2004.

[8] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP Latency. In
Proceedings of IEEE INFOCOM ’00, Tel Aviv, Israel, March 2000.

[9] X. Chang. Network simulations with OPNET. In Proceedings of the
Winter Simulation Conference, volume 1, pages 307–316, 1999.

[10] Y. Cheng, U. Holzle, N. Cardwell, S. Savage, and G. Voelker. Monkey
See, Monkey Do: A Tool for TCP Tracing and Replaying. In Proceed-
ings of USENIX Technical Conference, Boston, MA, June 2004.

[11] K. Claffy, H-W Braun, and G. Polyzos. A Parameterizable Methodology
for Internet Traffic Flow Profiling. IEEE Journal on Selected Areas of
Communication, 13(8), October 1995.

[12] B. Claise and Editor. Specification of the IP Flow Information Export
(IPFIX) Protocol for the Exchange of IP Traffic Flow Information. IETF
RFC 5101, January 2008.

[13] J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski. Towards Realistic
Million-node Internet Simulations. In International Conference on
Parallel and Distributed Processing Techniques and Applications, 1999.

[14] N. Duffield and M. Grossglauser. Trajectory sampling for direct traffic
observation. IEEE/ACM Transactions on Networking (TON), 9(3):292,
2001.

[15] N. Duffield, C. Lund, and M. Thorup. Estimating Flow Distributions
from Sampled Flow Statistics. In Proceedings of ACM SIGCOMM ’03,
Karlsruhe, Germany, August 2003.

[16] C. Estan, S. Savage, and G. Varghese. Automatically inferring patterns
of resource consumption in network traffic. In ACM SIGCOMM, pages
137–148, Karlsruhe, Germany, 2003.

[17] S. Floyd. Traffic Generators for Internet Traffic.
http://www.icir.org/models/trafficgenerators.html, 2010.

[18] L. Huang, X. Nguyen, M. Garofalakis, J. Hellerstein, M. Jordan,
M.Joseph, and N.Taft. Communication-efficient online detection of
network-wide anomalies. In Proc. of IEEE INFOCOM, 2007.

[19] R.R. Kompella, S. Singh, and G. Varghese. On scalable attack detection
in the network. In ACM Internet Measurement Conference, pages 187–
200, New York, NY, USA, 2004.

[20] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic
feature distributions. In ACM SIGCOMM, pages 217–228, Philadelphia,
Pennsylvania, USA, 2005.

[21] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. Kolaczyk, and
N. Taft. Structural Analysis of Network Traffic Flows. In Proceedings
of ACM SIGMETRICS ’04, New York, NY, June 2004.

[22] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the Self-Similar
Nature of Ethernet Traffic (extended version). IEEE/ACM Transactions
on Networking, 2(1), February 1994.

[23] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The Macroscopic Behavior
of the TCP Congestion Avoidance aAlgorithm. ACM SIGCOMM
Computer Communication Review, 27(3):82, 1997.

[24] S. McCanne, S. Floyd, K. Fall, K. Varadhan, et al. Network Simulator
ns-2, 1997.

[25] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot.
Traffic matrix estimation: Existing techniques and new directions. ACM
SIGCOMM Computer Communication Review, 32(4):174, 2002.

[26] H. Ringberg, M. Roughan, and J. Rexford. The Need for Simulation
in Evaluating Anomaly Detectors. Computer Communications Review,
38(1), January 2008.

[27] J. Sommers and P. Barford. Self-Configuring Network Traffic Gen-
eration. In Proceedings of ACM Internet Measurement Conference,
Taormina, Italy, October 2004.

[28] Cisco Systems. Cisco Netflow. http://www.cisco.com/go/netflow, 2010.
[29] Y. Vardi. Network Tomography: Estimating Source-Destination Traffic

Intensities from Link Data. Journal of the American Statistical Associ-
ation, 91(433), 1996.

[30] K. Vishwanath and A. Vahdat. Realistic and Responsive Network
Traffic Generation. In Proceedings of ACM SIGCOMM ’06, Pisa, Italy,
September 2006.

[31] E.B. Wilson. Probable inference, the law of succession, and statistical
inference. Journal of the American Statistical Association, 22(158):209–
212, 1927.

[32] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the Characteristics
and Origins of Internet Flow Rates. In Proceedings of ACM SIGCOMM
’02, Pittsburgh, PA, August 2002.

[33] Y. Zhang, Z. Ge, A. Greenberg, and M. Roughan. Network anomogra-
phy. In ACM Internet Measurement Conference, Berkeley, California,
USA, October 2005.

[34] Y. Zhang, M. Roughan, W. Willinger, and L. Qui. Spatio-Temporal
Compressive Sensing and Internet Traffic Matrices. In Proceedings of
ACM SIGCOMM ’09, Barcelona, Spain, August 2009.

