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ABSTRACT
Examining the validity or accuracy of proposed available band-
width estimation tools remains a challenging problem. A com-
mon approach consists of evaluating a newly developed tool using
a combination of simple ns-type simulations and feasible experi-
ments in situ (i.e., using parts of the actual Internet). In this paper,
we argue that this strategy tends to fall short of establishing a re-
liable “ground truth,” and we advocate an alternative in vitro-like
methodology for calibrating available bandwidth estimation tools
that has not been widely used in this context. Our approach relies
on performing controlled laboratory experiments and using tools
to visualize and analyze the relevant tool-specific traffic dynamics.
We present a case study of how two canonical available bandwidth
estimation tools, SPRUCE and PATHLOAD, respond to increasingly
more complex cross traffic and network path conditions. We ex-
pose measurement bias and algorithmic omissions that lead to poor
tool calibration. As a result of this evaluation, we designed a cal-
ibrated available bandwidth estimation tool called YAZ that builds
on the insights of PATHLOAD. We show that in head to head com-
parisons with SPRUCE and PATHLOAD, YAZ is significantly and
consistently more accurate with respect to ground truth, and reports
results more quickly with a small number of probes.

1. INTRODUCTION
Calibration strategies for Internet measurement tools are essen-

tial for detecting inaccuracy in the underlying data, and misconcep-
tions or errors in their analysis [23]. In this paper, we propose and
investigate a set of calibration techniques that can greatly increase
our confidence in the validity and accuracy of end-to-end available
bandwidth estimation tools (ABETs). Echoing the same sentiment
as expressed in [23], tool calibration is not meant to achieve per-
fection. Rather, it is to aid in our understanding of the tools and
their applicability by producing results that are close to the “ground
truth.” Calibration may also illuminate the circumstances under
which the tools may give inaccurate results.

There are two conventional and complementary aspects to cal-
ibration: comparison with a known standard, and (if necessary)
adjustment to match a known standard. The first notion encom-
passes the task of comparing the output of a measurement tool with
“ground truth”—a known quantity like the reading of an accurate
and precise device. For ABETs, this activity involves comparison
with measurements of AB that have been obtained through, e.g.,
packet traces with timestamps of sufficient quality. The second
facet of calibration involves changing some feature of a measure-
ment tool so its output matches a standard as closely as possible.
In the context of ABETs, this aspect of calibration may involve
adjusting parameters of a given algorithm, or the algorithm itself.

Traditional approaches for calibrating and validating ABETs al-

most always employ two basic strategies. One is the use of simple
ns-type simulations, and the second consists of small-scale experi-
ments in the “wild,” i.e., largely uncontrolled tests that use parts of
the live Internet. Ns-type simulations are attractive since they have
the advantage of simplified implementations and complete experi-
mental control. However, by definition they are an abstraction of
networking reality [10] which may render their results largely ir-
relevant in situations when the details of live system and protocol
implementations or traffic conditions have little in common with
their simulation-based counterparts. In contrast, experiments that
use parts of the live Internet encounter networking systems, proto-
cols and traffic conditions (depending on the part of the Internet to
which they are confined) similar to what would be expected in other
parts of the network. However, experiments run in the wide area are
largely uncontrolled and typically lack the necessary instrumenta-
tion for establishing a reliable standard against which results can
be compared and understood. While networking researchers have
been generally aware of the pros and cons of these two strategies,
the lack of realism in ns-type simulations and the lack of control
and instrumentation in the wide area cast serious doubts on these
predominant approaches to ABET calibration and validation, and
highlight the need for improved calibration strategies.

In this paper, we investigate an alternative ABET calibration
strategy based on conducting experiments in a laboratory setting
that is amenable to establishing the “ground truth” for a great vari-
ety of Internet-like scenarios. This setting should include, wherever
possible, the use of actual hardware found on end-to-end paths in
the Internet (e.g., routers, switches, etc.), the use of various versions
of the full TCP/IP protocol stack, workload generators capable of
exercising systems over a range of realistic conditions, and mea-
surement devices that provide a level of accuracy suitable for es-
tablishing ground truth. By advocating such an in vitro-like exper-
imental environment, we combine the advantages of ns-type simu-
lations (i.e., complete control and full instrumentation) with those
offered by experiments in the wide area (i.e., more realistic net-
work systems, protocols and traffic dynamics). Laboratory-based
calibration techniques are established in other scientific disciplines
such as chemistry and biology but they have not seen widespread
application to network measurement tools. While the focus of this
paper is on a calibration strategy in the context of ABETs, our fu-
ture plans include investigating generalizations to our approach to
additional active measurement-based tools that attempt to infer net-
work internal characteristics.

Estimating the available bandwidth (AB) along a network path is
a topic that has received considerable attention in recent years [6,
7, 12, 13, 17, 21, 22, 25, 26, 28]. Informally, end-to-end available
bandwidth (AB) is defined as the minimum spare capacity on an
end-to-end path between a sender and receiver. To calibrate and



validate ABETs, a detailed understanding of realistic queuing ef-
fects experienced by individual packets as they compete and inter-
act with other packets is essential, and requires fine-grained, time-
synchronized measurements of packets as they arrive at and subse-
quently depart from the different routers along the network path.

Using an openly available laboratory testbed [5], we apply our
calibration strategy through a series of experiments to two ABETs,
SPRUCE [28] and PATHLOAD [13], which we consider to be canon-
ical representatives of two basic methods for ABE. We analyze
the detailed arrival and departure measurements available in our
testbed using multiple tools and show why and how both tools
are prone to measurement bias and errors over a range of increas-
ingly complex cross traffic and network path conditions. With the
insights gained from analyzing the detailed arrival and departure
measurements, we designed and implemented a calibrated ABET,
called YAZ, that builds on the basic insights of Pathload. Through
an additional set of laboratory-based calibration tests, we show that
(1) YAZ compares well with respect to known measures of AB, (2)
it is significantly more accurate than both SPRUCE and PATHLOAD,
while remaining much less intrusive than PATHLOAD, and (3) it
produces available bandwidth estimates faster than the other tools.

2. AVAILABLE BANDWIDTH ESTIMATION
Dynamic estimation of end-to-end available bandwidth (spare

capacity) has important potential for network capacity planning
and network overlay monitoring and management. Active mea-
surement tools for estimating or inferring AB are designed to send
precisely crafted packet pairs or streams and—by measuring per-
turbations of the pairs or streams as observed at a receiver—to in-
fer the bandwidth available along a given end-to-end path. While
the development of fast and accurate ABETs is an active area of
research (see for example [6, 7, 12, 13, 17, 21, 22, 25, 26, 28]),
two recent tools, PATHLOAD [13] and SPRUCE [28], represent the
two most common strategies for probing and two appealing meth-
ods for AB inference. Thus, these tools are the focus of our ABET
calibration study.

2.1 Definitions and Overview of ABE
Techniques

The available bandwidth, A, of a single link is defined as the
amount of spare capacity over a given time interval, τ . If C is the
link capacity and U(x) gives the instantaneous link utilization (0
or 1) at time x, then the available bandwidth over the time interval
[t, t + τ] is

A = C
(

1− 1
τ

∫ t+τ

t
U(x)dx

)
. (1)

The end-to-end available bandwidth is then defined as the mini-
mum AB over all hops in the path:

A≡min
i

Ai, for i ∈ 1 . . .H, (2)

where H is the path length in (layer 3) hops.
The link with smallest AB is referred to as the tight link, while

the link with smallest capacity is called the narrow link. These def-
initions avoid the ambiguous term bottleneck link [13]. They also
help to avoid any implicit assumption that the tight link is necessar-
ily the narrow link. We use the term capacity in this paper to refer
to the maximum transmission rate at layer 3, assuming a maximum
frame size of 1500 bytes. For example, with standard Ethernet there
is a nominal (physical layer) transmission rate of 10 Mb/s. How-
ever, for each packet delivered from layer 3 for transmission, there
is an additional overhead of 38 bytes from layers 1 and 2. Thus, the
transmission rate available to layer 3 is reduced to ≈ 9.75 Mb/s.

Existing tools for measuring AB are generally focused on either
estimating the amount of cross-traffic on the tight link, or on di-
rect measurement of AB by sending probe streams at various rates.
Both methods are accomplished by specifying an initial set of pa-
rameters, sending a series of probes and measuring responses, and
then inferring an estimate of AB from the measurements. All meth-
ods for measuring available bandwidth assume, for simplification,
a relatively homogeneous environment. First, they assume FIFO
queuing at routers. Second, they assume that cross traffic is fluid
(cross traffic packets are infinitely small). Finally, cross traffic in-
tensity is assumed to be stationary over the measurement period.

2.2 SPRUCE

SPRUCE estimates AB by sending packet pairs spaced back-to-
back according to the capacity of the tight link1. Assuming fluid
cross traffic, the amount by which the packet pairs are expanded by
the tight link is proportional to the volume of cross traffic. If gin is
the spacing of back-to-back probe packets on the tight link and gout
the spacing measured at the receiver, the AB is calculated as:

A = C
(

1− gout −gin

gin

)
. (3)

SPRUCE sends, by default, 100 packet pairs at Poisson-modulated
intervals, and reports the average A over those samples.

2.2.1 SPRUCE Limitations
The above formulation assumes that the tight-link capacity (C)

is known a priori. Clearly, negative AB estimates are possible,
although SPRUCE reports zero AB when an estimate is negative.
Also, through the course of a measurement, it is unknown whether
the estimate has yet converged to the true AB (assuming some sta-
tionary average exists).

Liu et al. [19] use a single-hop setting to analyze SPRUCE-like
techniques and the bias introduced by the fluid assumption under a
range of cross traffic conditions. They claim that bias is minimized
when the input gap gin is set to less than or equal to the back-to-
back spacing on the tight link. However, a more complex topology
with cross traffic on the non-tight links may still introduce bias.

There are practical limitations when considering high-bandwidth
links. For the experiments discussed in the following section, the
fastest narrow link we consider is an OC-3 (155 Mb/s nominal
transmission rate), which requires SPRUCE to send its packet pairs
spaced by approximately 80 microseconds. While we will show
that modestly provisioned hosts in our testbed can accommodate
this requirement, emitting packet pairs to measure available band-
width on OC-12 links (622 Mb/s nominal), where packets must be
sent with spacing of 20 microseconds, borders on being infeasible
with commodity workstations2.

2.3 PATHLOAD

PATHLOAD attempts to create short-lived congestion conditions
in order to measure AB. It detects congestion through trends in
one-way probe packet delays. Specifically, an increasing one-way
delay (OWD) trend is equivalent to saying that there is an increas-
ing inter-packet spacing trend, and an average increase in spacings
causes the overall probe rate measured at the receiver (rout ) to be
less than that introduced at the sender (rin). Such a decrease is

1With SPRUCE, the tight link and narrow link are assumed to be the
same. Strauss et al. claim that the estimates may still be meaningful
even when this condition is not satisfied [28].
2Assuming frame sizes larger than 1500 bytes are not used. See
Shriram et al. [26] for additional issues with ABE on high speed
links.



taken as evidence that the end-to-end AB is less than the probe
stream rate. This relationship can be expressed as follows:

rin

rout
=

{ ≤ 1 rin ≤ A
> 1 rin > A (4)

PATHLOAD takes N measurements with probe streams of length
K packets, iteratively adapting its send rate to determine whether
or not there is an OWD trend. These N streams are referred to
as a fleet. Each stream within a fleet is separated by an amount
of time designed to allow the path to quiesce. By default, N is
set to 12 and K to 100. After each of the N streams, PATHLOAD
uses two separate metrics to estimate trends in OWD: the pair-wise
comparison test (PCT) and the pair-wise difference test (PDT). The
PCT and PDT metrics operate on blocks of Γ =

√
K packets from

each stream. For each block k, the median value, D̂k, is chosen as
a robust estimator of OWD. These metrics are defined as follows:

APCT =
∑

Γ
k=2 I(D̂k > D̂k−1)

Γ−1
, (5)

APDT =
D̂Γ− D̂1

∑
Γ
k=2 |D̂k− D̂k−1|

, (6)

where I(x) is a function returning 1 if the condition x is true, and 0
otherwise.

PCT returns a value between 0 and 1, where 0 indicates that the
stream has not experienced an increasing OWD trend, and 1 indi-
cates that, for k ∈ [2, . . . ,Γ], D̂k > D̂k−1; that is, there is a consistent
increasing trend in OWD. PDT detects whether there is a net in-
creasing trend, considering only the first and last OWD samples. It
returns a value between -1 and 1, where -1 indicates a strongly de-
creasing OWD trend (i.e., the probe rate was measured to be much
higher at the receiver than was sent), and 1 indicates a strongly in-
creasing OWD trend. For each metric, a threshold value is chosen,
above which the OWD trend is said to be increasing. These thresh-
olds are 0.55 for PCT and 0.4 for PDT . The two metrics must
agree (either increasing or non-increasing OWD) on a certain frac-
tion of the streams in a fleet for an overall judgment to hold (by
default, this threshold is 0.6). Otherwise, the result is inconclusive
and additional fleets are required.

2.3.1 PATHLOAD Limitations
The PCT and PDT metrics, along with the specific thresholds,

assume congestion only takes the form of increasing one-way de-
lays, i.e., expansion in intra-stream packet spacings. In [22], Pax-
son notes that while expansion is the predominant result of queu-
ing, compression events commonly occur. Moreover, compression
is the result of packets earlier in a stream being held up, allowing
subsequent packets to “catch up”. Such a situation is indicative of
a queue that is draining, which at least suggests that congestion ex-
isted in the very recent past. The PCT metric does not consider
compression, and the default threshold used for the PDT metric
eliminates compression as an indication of congestion.

Like SPRUCE, ABETs that use self-loading techniques may not
be able to produce streams on commodity systems that are suffi-
cient for detecting AB at OC-12 link speeds and above without us-
ing large frame sizes. Another potential problem is that congestion-
inducing measurement tools may cause significant and/or persistent
packet loss during use. To minimize impact, packet streams should
be short and should be spaced far enough apart for cross traffic
sources to recover from any losses. However, shorter streams result
in higher measurement variance, as noted in [13, 14]. An additional
problem with longer streams is that there is an increased possibil-
ity for operating system context switches, causing a disruption in

intended packet spacings and invalidating that stream.

3. CALIBRATION FRAMEWORK
Comparison with a standard and subsequent adjustment of an

ABET’s algorithm or parameters are complementary activities. The
basic task of comparing the output of an ABET with the actual AB
over a time interval requires relatively simple measurements. How-
ever, to gain insight into how an ABET arrives at a particular esti-
mate we require measurements and analysis suited to the packet
streams produced by an ABET and to the measurements collected.
We also require appropriate test environments to evaluate ABET
accuracy over a range of controlled conditions and to expose algo-
rithmic or parametric assumptions that may need adjustment.

As part of our framework, we offer a set of issues to consider for
ABET calibration:

1. There are performance and predictability limitations imposed
by the operating system (OS) and hardware (e.g., worksta-
tions with standard network interface cards) running the mea-
surement tools. Two key considerations are whether probe
packet streams (specifically spacing between packets) can be
generated with sufficient fidelity, and if timestamp accuracy
(and in some cases, synchronization) is sufficient.

2. Assumptions about and/or abstract models for the behavior
of routers and switches are the foundation for inference meth-
ods used to interpret active measurements. The diversity of
the implementation details of those systems can limit the ef-
fectiveness of the inference methods.

3. Probes and response packets generated during measurement
impose a load on the network which can change the condi-
tions on the path of interest and potentially skew results.

4. The heterogeneity and burstiness of traffic can extend beyond
the operating bounds of the tool.

5. Many active probe tools require specification of a set of pa-
rameters before they are used. A tool’s effectiveness can be
limited by its sensitivity to configuration parameters.

The first two issues imply that certain assumptions, while valid
in simulation, may lead to unexpected behavior when an ABET is
deployed in live Internet environments. The second two issues im-
ply that fully instrumented environments are key for understanding
the impact and reported measurements of ABETs. The final issue
identified above suggests that tool calibration should be performed
in a controlled, yet, as far as possible, realistic environment.

3.1 Calibration Strategy
To address the above issues, we advocate the use of laboratory-

based testbeds for calibrating available bandwidth estimation tools.
Such environments provide an important set of capabilities not of-
fered by standard simulation [20] or in situ settings such as Planet-
Lab [4], including repeatability, transparency, and the use of actual
systems and implementations of actual protocols. The essence of
our calibration strategy for this study consists of the following.

1. Design appropriate test environments where a standard can
be established over a range of increasingly complex, repeat-
able test conditions. Essential to this first step is the avail-
ability of hardware that provides measurements with a level
of accuracy greater than the ABET. Such accuracy is typi-
cally not available for in situ studies.



2. For the setups defined in the first step, identify relevant test
suites for assessing issues such as host system capabilities,
loading effects, and network system behavior over a range of
expected conditions. Real systems are generally required to
study such issues.

3. The evaluation of data collected in the testbed should be
aided by flexible analysis and visualization techniques that
provide insight into relevant traffic dynamics and, ultimately,
the available bandwidth process that the ABET attempting to
measure or infer.

Availability of open lab-based environments that deploy general-
purpose workstations and network systems is on the rise [1, 2, 5].
Although similar environments have been used successfully in re-
cent studies [18, 26], they have seen little use for calibration of
ABETs—an application for which they are ideally suited. A possi-
ble concern in this regard is the ability to conduct tests with “rep-
resentative” traffic conditions in a lab environment. However, tools
such as [8, 11, 27] have addressed this problem to some extent.

3.2 Calibration Measurements and Analysis
The interactions of ABET measurement probe packets with cross

traffic in the different routers along the end-to-end path occurs on
time scales that are typically in the range of tens to hundreds of
microseconds. To gain insight into ABET behavior, we capture
time-synchronized packet headers before and after interaction be-
tween probes and cross traffic at a congested queue. From these
measurements, we can compare how packet streams intended by
an ABET differ from the stream actually produced. From the ar-
rival measurements, we can construct a true measure of AB over a
given time interval as a standard by which to judge an ABET.

To analyze the probe arrival (ingress) and departure (egress) mea-
surements, we use a scatter or phase plot representation. To con-
struct the phase plot, we consider the time delay between consecu-
tive probe packets as they arrive at the router (Ingress_Spacing =
si) as the x dimension on the plot and consider the spacing of the
same packets as they exit the router (Egress_Spacing = se) as the y
dimension. From these measurements, there are three possibilities
for the ratio sr = se/si. If sr = 1 then spacing remained unchanged
by the router. If sr > 1 then other packets enqueued between the
two packets causing expansion. If sr < 1 then the first packet was
delayed because of a queue that has diminished by the time the
second packet arrives, causing compression.

Figure 1 depicts how we use phase plots for ABET calibration.
The ingress dimension of the plot should reveal any differences
between spacings that are intended by the ABET, and the spac-
ings actually produced. This provides the ability to assess bias in-
troduced into the measurement process by imprecise commodity
hardware and operating systems. The egress dimension of the plot
shows the spacings on which inferences are made by the receiver
after interaction with cross traffic, though they may differ from the
spacings actually measured by the receiver. Note that while some
ABETs do not make inferences directly from these spacings (e.g.,
PATHLOAD), they play a key role in what an ABET infers. There-
fore, these spacings enable calibration of both the inference method
as well as providing a baseline for calibrating the receiving host.

4. CALIBRATION EXPERIMENTS
The objective of our calibration study of PATHLOAD and SPRUCE

was to examine the tools under a number of increasingly more com-
plex traffic and path conditions to understand where they work well
and where they work poorly. In each experiment we evaluate the
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Figure 1: Application of phase plots to available bandwidth es-
timation tool analysis and calibration.

tool’s ability to report AB within a range of 10% of the tight link
capacity. This threshold is chosen as an arbitrary reference point
in the sense that a threshold would typically be chosen based on
specific requirements of a target application. We required that esti-
mates be consistently within this window of accuracy for a series of
estimates reported by an ABET over the duration of an experiment.
Without the property of consistent accuracy, ABETs are unlikely
to be used in applications such as in re-optimization of an overlay
network.

4.1 Testbed Setup
Our primary testbed configuration consisted of variations on a

dumbbell-like topology with an OC-3 narrow link as depicted in
Figure 2. We used a total of six setups, including three traffic
scenarios: constant bit-rate (CBR) traffic of 50 Mb/s (UDP traf-
fic with uniformly spaced 1500 byte packets), 19 long-lived TCP
flows in a single direction, 19 long-lived TCP flows in each direc-
tion, and three variants of a setup using web-like traffic using file
sizes drawn from a heavy-tailed distribution to produce self-similar
traffic. In all cases, the direction of interest was left to right in
the figure (i.e., CBR, single direction long-lived TCP connections,
and web-like traffic traveled left to right). Cross traffic was gener-
ated by hosts running Harpoon [27] (web-like traffic) or Iperf [29]
(infinite source and constant bit-rate traffic)3. We used an Adtech
SX-14 hardware propagation delay emulator configured to add a
delay of 10 milliseconds in each direction for all experiments.

To create increasingly more complex path conditions, we con-
sidered the following three topological setups.

Topology 1 (narrow and tight link are the same, homoge-
neous RTT): Probe traffic was configured to cross the GE link
directly connecting routers at hops A and C. No cross traffic was
routed across this link. CBR and long-lived TCP connection traffic
crossed the Cisco 12000 at hop B, while web traffic was configured
to use the two Cisco 7200’s and the Cisco 12000 at hop B, but not
the direct link to hop C. Our decision to route probe traffic direc-
tion from hop A to hop C caused the tight link and narrow link to
be identical in the CBR, long-lived TCP source, and basic web-like
traffic scenarios. When using web-like cross traffic in this setup,
we configured Harpoon to produce an average of 50 Mb/s.

Topology 2 (narrow and tight link are not the same, homoge-
neous RTT): Using web-like cross traffic, we routed probe traffic
across a Fast Ethernet link between hops A and B, but configured

3Our traffic generator hosts were identically configured worksta-
tions running either Linux 2.4 and FreeBSD 5.3. The workstations
had 2 GHz Intel Pentium 4 processors, 2 GB of RAM and Intel
Pro/1000 cards (with interrupt coalescence disabled). Each system
was dual-homed, so that all management traffic was on a network
separate from the one depicted in Figure 2. Probe traffic systems
were identical to the traffic generators and ran FreeBSD 5.3.
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Figure 2: Experimental testbed. Cross traffic scenarios con-
sisted of constant bit-rate traffic, long-lived TCP flows, and
web-like traffic. Cross traffic flowed across one of three routers
at hop B, while probe traffic normally flowed directly between
hop A and hop C. In a setup forcing the narrow and tight links
to be distinct physical links, probe traffic crosses a Fast Eth-
ernet link between hops A and B. In a setup considering addi-
tional web-like cross traffic, hosts shown attached at hops A,
C, and D generate traffic that persists on shared links for one
hop. Optical splitters connected Endace DAG 3.5 or 3.8 mea-
surement cards to the testbed between hops C and D, and hops
D and E. The bulk of cross traffic and probe traffic flowed left
to right.

cross traffic not to use this link. In this experiment, we also config-
ured the cross traffic sources to produce approximately 100 Mb/s
of traffic on the OC-3 link between hops D and E, causing the Fast
Ethernet link to be the narrow link, but the OC-3 to be the tight
link4.

Topology 3 (narrow and tight link are not the same, heteroge-
neous RTT): Using again web-like cross traffic, we configured our
Linux traffic generation hosts with Nistnet [3] to emulate round-
trip times of 20, 50, 80 and 110 milliseconds. We also attached
additional hosts at hops A, C, and D to generate cross traffic that
traveled across all links between hops A and C (sharing the link
with probe traffic) or the OC-12 link between hops C and D.

Critical to our calibration methodology was the ability to take
high accuracy measurements in our test environment. To do this we
attached optical splitters and Endace DAG 3.5 packet capture cards
(affording timestamping accuracy on the order of single microsec-
onds [9]5) to monitor the links between hops C and D, and hops
D and E. We used these monitoring points to create phase plots
and measure utilization on the tight OC-3 link. This configuration
gave us ground truth measurements well beyond the coarse-grained
SNMP measurements used in prior in situ studies of ABETs.

4.2 ABET Calibration: Comparison
The calibration framework described in § 3 directs our evalu-

ation process. We begin by assessing the capabilities of the end
hosts running the ABETs. Sources of potential bias introduced by
end hosts include OS context switches [13] and other system capa-
bility/OS effects such as network adapter interrupt coalescence [16,
24]. Our interest is not in untangling the details of each source of
host system bias, rather it is in understanding the overall impact.

4We verified in each experiment that, over each tool measurement
interval, the tight link was always the OC-3 link.
5As a consistency and calibration check, we also captured traces
using Endace DAG 3.8 cards, which employ a higher frequency
clock, and have somewhat different architectural features than the
DAG 3.5. The resulting phase plots were consistent with those pro-
duced using the DAG 3.5. Experiments described below employ
the DAG 3.5 cards unless otherwise specified.

In our experiments below, we considered topology 1 and col-
lected traces from a single PATHLOAD fleet (1200 probe packets
of 1309 bytes), and a series of 12 SPRUCE runs (1200 packet pairs,
each packet of length 1500 bytes) with constant bit rate cross traffic
of 50 Mb/s flowing across the narrow link during each test. If the
host systems emitted packets without bias, we would expect ingress
spacings for both tools to be tightly clustered around the intended
value of 80 microseconds.
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Figure 3: Phase plots of PATHLOAD and SPRUCE streams. Grid
lines are separated by 20 microseconds for each plot. CBR
cross traffic of 50 Mb/s, with uniform UDP packets of 1500
bytes (not shown in plots) causes bimodal output spacing dis-
tribution of probe traffic. Target input spacing for each tool is
80 microseconds. Note the slightly different scale for each plot.

The phase plots for these experiments shown in Figure 3 imme-
diately expose two potential sources of measurement bias. First, it
is easy to see that for each ABET there is a wide range of inter-
packet spacings on ingress which can be attributed to the sending
host. Second, it is also evident that an effect of the CBR cross
traffic is to cause a respacing of probe packets on egress to ei-
ther back-to-back (70 microseconds for PATHLOAD packets, 80 mi-
croseconds for SPRUCE packets) or with one cross traffic packet
interposed (150 microseconds for PATHLOAD, 160 microseconds
for SPRUCE). Closer examination reveals that packets spaced far-
ther apart by the ABET are more likely to experience expansion
by a cross traffic packet than to be transmitted back-to-back on the
tight link. This can be seen in Figure 3(a) by the perceptible shift
to the right in the upper cluster of points. A similar shift exists in
Figure 3(b). Finally, we note that points below the diagonal line
in Figure 3(a) represent evidence for compression in PATHLOAD
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Figure 4: Relative frequencies of error between send or receive packet spacings and spacings measured at DAG monitor.

streams. We quantify the prevalence of this effect below.
To further explore the problem of bias imposed by probe senders,

we collected a large quantity of packet spacing measurements from
SPRUCE and PATHLOAD and compared each spacing with the spac-
ing measured at the DAG monitor between hops C and D. Fig-
ure 4(a) shows a representative histogram of differences between
the spacing measured using gettimeofday() at PATHLOAD6.
From these measurements, we conclude that while the magnitude
of individual errors can be quite significant, the mean deviation is
close to zero.

Next, we examined the measurements at the receiving applica-
tion. PATHLOAD timestamps outgoing/incoming packets using the
gettimeofday() operating system call. SPRUCE timestamps
outgoing packets using the gettimeofday() system call and
incoming packets receive timestamps in the OS interrupt handler.
Timestamps used for both these tools are of microsecond precision
(though not necessarily microsecond accuracy). Comparing times-
tamps measured upon packet receive with timestamps measured at
the DAG monitor between hops D and E (i.e., the egress spacings
of Fig. 3 compared with application-measured receive spacings),
we obtain a result similar to the sender. Figure 4(b) shows a repre-
sentative histogram of differences in packet spacings measured at
the probe receiver versus the same spacings measured at the DAG
monitor. The magnitude of error is smaller than that on the sender
and the mean deviation is close to zero.

As a final calibration check, and to test whether these results
were unique to the hardware and OS configuration used, we at-
tached a DAG 4 (Gigabit Ethernet) monitor directly to the Intel
Pro/1000 on a Linux 2.4 workstation and collected additional mea-
surements using SPRUCE. A histogram of differences between
spacings measured at SPRUCE and spacings measured at the DAG 4
is shown in Figure 4(c). Again, the mean deviation is close to zero.
Packet receive errors on the Linux 2.4 system (not shown) are also
close to zero mean. Table 1 summarizes these results. Even though
the averaged behavior of probe streams tends toward the intended
value, bias on individual probes can still have a significant detri-
mental effect on the operation of PATHLOAD and SPRUCE.

4.3 ABET Calibration:
Algorithmic Adjustment

We have found the use of phase plots to be beneficial in our
ABET calibration study. They not only helped us to expose end-

6We modified SPRUCE and PATHLOAD to log these timestamps.

Table 1: Summary of errors between packet spacings measured
at application send and receive, and DAG monitors. All val-
ues are in microseconds. Negative values indicate that a larger
spacing was measured at DAG monitor than in the application.

DAG 3.5/3.8 (OC-3/12) DAG 4 (GE)
FreeBSD 5.3 Linux 2.4

Send Error Receive Error Send Error
Min -93.00 -20.00 -24.00

Median -2.00 0.00 -2.00
Mean -1.54 0.15 -0.61
Max 100.00 18.00 23.00

host limitations of generating precise streams and to identify the
resulting bias, but by studying the egress spacings, we were also
able to gain an expectation of what the receiving host should have
measured and realized that considering compression events is im-
portant. In summary, phase plot analysis resulted in the following
observations:

• The error introduced by end hosts has approximately zero
mean when multiple measurements are taken.

• The relationship between input and output probe rates and
available bandwidth described in Eq. (4) invites refinements.

• Both compression and expansion are indicative of congestion
along a measured path.

These observations lead us to propose a calibrated algorithm for
measuring available bandwidth. We first test how quickly the mean
deviation of measurements converges, on average, to zero. That is,
how many packets should comprise a stream, at minimum, in order
for the error to be less than some threshold? To answer this ques-
tion, we created a tool to send packet streams of length 100 at four
target spacings of 60, 80, 100, and 120 microseconds, in separate
experiments. We ran the tool under topology 1 with no cross traf-
fic to collect approximately 1000 packet stream measurements (i.e.,
about 100,000 packets per experiment)7. For each packet stream,
we counted the number of packets required for the mean deviation
between spacings measured at the DAG monitor and timestamps
generated by the application to be less than 1 microsecond. Fig-
ure 5 plots the cumulative distribution of stream lengths required
7Phase plots from these experiments are similar to those shown in
Figure 3 and are omitted due to space constraints.



for each target spacing. The distributions show that the mean error
converges to zero quite quickly and that packet streams of at least
length 20 appear to be sufficient. However, there remain trade-
offs for ABET methodologies using packet streams. While shorter
streams may reduce the intrusiveness of the tool, and may reduce
measurement latency, the averaging time scale is also reduced, the-
oretically resulting in greater measurement variance (Eq. (1)).

At the base of our proposed algorithm is a version of Equa-
tion (4), modified to consider absolute difference in average input
and output spacings. The absolute difference is used because both
compression and expansion must be considered as an indication of
congestion. Average spacings are used since we have shown that
individual spacings are subject to significant error. In the formula-
tion below, we consider the average difference in input and output
spacings as an indication of whether the input rate was above the
available bandwidth along the path (analogous to Eq. (4)):

|gin−gout |=
{ ≤ ζ ∗gin rin ≤ A

> ζ ∗gin rin > A.
(7)

The value ζ is a threshold parameter used to determine how far
apart the average send and receive spacings can be while still con-
sidering the input stream to be below the level of spare capacity
along the measurement path.

Like PATHLOAD, our algorithm for finding the available band-
width is iterative. First, we set the target send spacing to be some
minimum value (effectively setting the maximum available band-
width measurable), then proceed as follows.

1. Send probe stream, measuring gin and gout at send and re-
ceive hosts, respectively.

2. If the absolute difference in average input and output spac-
ings is above the ζ threshold of the input spacing (Eq. 7),
increase gtarget by |gin−gout |

2 , wait a configurable amount of
time, and go to previous step.

3. Otherwise, update an exponentially-weighted moving aver-
age (with parameter α) with the estimate rin. Report the up-
dated EWMA as the estimate of AB.

We consider the above algorithm to be a “calibrated Pathload”
and have implemented it in a tool called YAZ8. The source code for
YAZ will be available to the research community for evaluation.

4.4 Experimental Evaluation
We compared the accuracy of PATHLOAD, SPRUCE, and YAZ

using the different scenarios described in § 4.1. For the CBR and
long-lived TCP source experiments, we continuously collected AB
estimates from each tool for 10 minutes, discarding the first 30 sec-
onds and last 30 seconds. For the web traffic setups, we continu-
ously collected AB estimates from each tool for 30 minutes, also
discarding the first 30 seconds and last 30 seconds. For the com-
parisons below, we compute the actual available bandwidth using
the DAG monitor between hops D and E for the exact interval over
which a tool produces an estimate9. For each experiment, we con-
sider the fraction of estimates that fall within a range of 10% of
the tight link capacity. Since our tight link is OC-3 (149.76 Mb/s
before Cisco HDLC overhead), this window is ≈ 15 Mb/s.
8Although the name YAZ is reminiscent of tool names starting with
“yet another. . . ”, our tool is actually named after the baseball great,
Carl Yastrzemski.
9We include Cisco HDLC overheads (9 bytes per packet) in this
computation. Since we control packet payloads, we limit any hid-
den effects due to SONET character stuffing.

For all experiments, YAZ was configured with α = 0.3 in its
exponentially-weighted moving average and the threshold parame-
ter ζ was set to be equivalent to a rate of 1 Mb/s, which we found
to be a robust setting over our topologies and traffic scenarios. α of
0.3 produced minimum MSE over the collection of experiments10.
We set YAZ’s stream length to 50 packets. For SPRUCE, we use
149.76 Mb/s as the tight link capacity in Equation (3) for all ex-
periments except for the second web-like traffic scenario, in which
we set it to 97.5 Mb/s (the narrow link is Fast Ethernet) and use the
default value of 100 samples to compute an estimate of AB. For
PATHLOAD, we used default parameters, and in the initial compari-
son with YAZ, we set the stream length to 50 packets, while leaving
the number of streams per fleet at the default value of 12. We report
the midpoint of PATHLOAD’s estimation range as the AB estimate,
but comment below on the range estimates.

Results for all the experiments are shown in Figure 6. The results
for constant bitrate traffic in topology 1 (Figure 6(a)) show that
both YAZ and PATHLOAD perform with similar accuracy, coming
quite close to the true AB. However, fewer than 60% of SPRUCE
estimates are within the 10% acceptance range.
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Figure 5: Cumulative distribution of stream lengths required to
cause mean sending error to be within 1 microsecond of target.
Target spacings are 60, 80, 100, and 120 microseconds.

The two long-lived TCP traffic scenarios in topology 1, in some
ways, create the most pathological cross traffic conditions due to
the frequent traffic oscillations on the tight link. Figure 6(b) plots
results for the setup with TCP flows in a single direction. The
YAZ estimates are fully within the 10% threshold, while more than
90% of PATHLOAD’s estimates are within this bound. Only about
20% of SPRUCE estimates fall within the acceptable range. For
the bi-directional long-lived TCP flows, YAZ and PATHLOAD per-
form similarly, with approximately 90% of estimates falling within
the 10% acceptance range. Again, very few estimates produced by
SPRUCE fall within the 10% range.

For the web-like cross traffic in topology 1 experiment (Fig-
ure 6(c)), approximately 75% of estimates produced by YAZ are
within the acceptance range compared to about 50% of PATHLOAD
estimates and about 40% of SPRUCE estimates. We also ran PATHLOAD
in this setup again, setting the stream length to be 100 packets (the
default in the PATHLOAD source code). Figure 6(e) shows the result
of this experiment, comparing the YAZ and SPRUCE results from
Figure 6(d). We see that the accuracy of PATHLOAD improves by
about 15%.

The results for the case of web-like cross traffic in topology 2 are
shown in Figure 6(f). In this setup, PATHLOAD underperforms both

10Although it is an important calibration task, we omit an analysis
of the sensitivity of YAZ to its parameters due to space limitations.



YAZ and SPRUCE, with about 65% of YAZ estimates and about
55% of SPRUCE estimates falling within the 10% threshold, but
only about 40% of PATHLOAD estimates falling within this range.
A closer look at the PATHLOAD results revealed that it took longer
on average to converge on an estimation range, and convergence
times were more variable than in any other setup. Since AB is a
moving target, these increased convergence times led to poor es-
timates. Finally, Figure 6(g) shows results for the web-like cross
traffic in topology 3. In this setup, about 80% of YAZ estimates
are within the acceptance range, compared with about 50% for
PATHLOAD and 40% for SPRUCE.

Although we do not report detailed results, we also examined
how often the actual AB fell in the range reported by PATHLOAD.
For the constant bitrate and long-lived TCP experiments, the ac-
tual value is rarely within PATHLOAD’s range. The reason is that
its range was often a single point, but not equal to the actual AB.
For the three self-similar web-like traffic scenarios, the actual AB
is, at best, within PATHLOAD’s range 58% of the time (53/92 es-
timates, for topology 3). For these experiments, the width of the
range varies greatly, preventing general explanation. In the end,
our focus on comparing the midpoint of PATHLOAD’s estimation
range with the actual AB is favorable to PATHLOAD. We plan to
more carefully evaluate AB variation as future work.

To better understand the underlying reason for PATHLOAD’s im-
proved AB estimates with a larger number of probes, we examined
a series of streams emitted by PATHLOAD in the web-like traffic
scenarios. We calculated the PCT and PDT metrics for each stream
using the DAG monitor between hops C and D—before any interac-
tion with cross traffic. Table 2 summarizes these results. The mean
PCT for stream lengths of 50 is close to the threshold of 0.55 that
considers the stream to reflect an increasing trend in OWD. With
the longer stream length of 100, the mean PCT is further away from
the threshold. This shift suggests that the longer stream has an im-
portant side-effect on the PCT metric, and that there is substantial
bias introduced at the sending host. From the results in Table 2,
stream length appears to have less of an impact on the initial bias
of the PDT metric. For each stream length, at least 15% of the
streams departed the sending host with at least one of the metrics
exceeding its threshold.

Table 2: Mean and standard deviation of PCT and PDT val-
ues for streams of length 50 or 100 upon departure (prior to
interaction with cross traffic) for web-like traffic scenarios.

stream PCT PDT
length µ σ µ σ

50 0.4 0.14 0.04 0.28
100 0.26 0.14 -0.07 0.27

Table 3 quantifies the prevalence of compression in PATHLOAD
streams. We compared the spacing intended by PATHLOAD for
each stream with the spacings measured at the DAG monitor be-
tween hops C and D. The values for each traffic scenario in the
table show the fraction of streams for which there was an overall
effect of compression. We see that, in general, about 20% of all
streams are compressed. In the case of long-lived TCP flows in
one direction, the queue at the tight link is usually increasing as
the flows increase their windows until loss occurs. The fact that
a non-negligible fraction of streams over each scenario experience
compression supports Equation (7) as a key distinguishing feature
between YAZ and PATHLOAD. It also, in part, explains why YAZ
outperforms PATHLOAD.

For PATHLOAD, using the median OWD over a window of sam-
ples appears to be a critical component of at least the PCT formula-

Table 3: Prevalence of compression in PATHLOAD streams for
all six cross traffic scenarios.

Traffic Fraction of
Scenario Compressed Streams

CBR traffic of 50Mb/s (Topology 1) 0.212
Long-lived TCP, one direction (Topology 1) 0.077
Long-lived TCP, two directions (Topology 1) 0.260

Web-like traffic (Topology 1) 0.233
Web-like traffic (Topology 2) 0.220
Web-like traffic (Topology 3) 0.219

tion. A technique like SPRUCE, on the other hand, is not insulated
from individual spacing and measurement errors; even a difference
of a single microsecond (assuming a target spacing of 80 microsec-
onds) can lead to an estimation error of nearly 2 Mb/s. For example,
we ran SPRUCE in the testbed while not introducing any cross traf-
fic. In this setup, the tool should invariably report close to 149.76
Mb/s. Over 10 consecutive runs, SPRUCE produced estimates rang-
ing from 134.4 Mb/s to 153.8 Mb/s, with a mean of 149.4 Mb/s and
a standard deviation of 5.42. These inaccuracies are entirely due to
measurement error. While most estimates are close to the true AB,
the worst estimate is just beyond the desired 10% accuracy range.
(For similar zero cross traffic experiments using PATHLOAD and
YAZ, the estimates were consistently within 1-2% of the true AB.)

Lastly, we compare estimation latency, the average number of
probes emitted per estimate, and the number of estimates produced
during the first web-like traffic scenario. Table 4 summarizes these
results, which are qualitatively similar for other traffic scenarios.
We see that YAZ produces estimates more quickly, thus producing
many more estimates over the duration of the experiment. PATHLOAD
and YAZ operate in an iterative fashion, and we see from the table
that YAZ, on average, requires fewer cycles to arrive at an estimate.

Considering tool parameters and the mean number of iterations,
we arrive at the mean number of packets required for each estimate.
For much higher accuracy, YAZ uses packets roughly of the same
order of magnitude as SPRUCE, but at least an order of magnitude
fewer packets than PATHLOAD. If PATHLOAD and SPRUCE repre-
sent a tradeoff between measurement accuracy and overhead, our
results for YAZ suggest that this tradeoff is not fundamental.

Table 4: Comparison of number of estimates produced, latency,
number of packets emitted per iteration (PATHLOAD and YAZ),
and average number of packets emitted per estimate for each
ABET for web-like traffic in topology 1.

Estimates Latency Iterations Mean Pkts
Produced µ (σ ) per Estimate per

(seconds) µ (σ ) Estimate
PATHLOAD 96 17.7 (3.8) 8.4 (4.8) 10080
(K = 100)
PATHLOAD 97 17.6 (3.8) 8.8 (4.2) 5280
(K = 50)
SPRUCE 156 10.9 (0.9) NA 200

YAZ 446 3.8 (1.5) 6.1 (8.8) 366

4.5 Limitations of YAZ

There are some limitations to YAZ that we have yet to fully ex-
amine. First, since we use the mean spacing measured at sender and
receiver, we cannot detect intra-stream indications of congestion
that may be “washed out” over the duration of the stream. We can
only detect either persistent expansion or compression of a probe
stream. Given our current understanding of the nature of the er-
rors introduced by commodity end hosts, we may not be able to
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(a) Constant bit rate cross traffic of 50
Mb/s (topology 1).
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(b) Long-lived TCP sources in one direc-
tion (left to right in Figure 2) (Topology
1).
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(c) Long-lived TCP sources in two direc-
tions (Topology 1).
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(d) Web-like cross traffic produced by
Harpoon with average rate of 50 Mb/s
(Topology 1).
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(e) Comparison of YAZ, PATHLOAD,
and SPRUCE, for web-like traffic when
PATHLOAD is configured for streams of
length 100 (Topology 1). (YAZ and
SPRUCE curves are same as in Fig-
ure 6(d).)
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(f) Web-like traffic with narrow link (Fast
Ethernet) and tight link (OC-3) as distinct
physical links (Topology 2).
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(g) Web-like traffic with additional points
of cross traffic and a diversity of round-
trip times (Topology 3).

Figure 6: Comparison of available bandwidth estimation accuracy between YAZ, PATHLOAD, and SPRUCE for six cross traffic scenar-
ios. True available bandwidth is computed using DAG traces over the same interval on which a tool estimation is performed. Dashed
vertical line at x = 0.1 indicates 10% desired accuracy threshold.



do significantly better. Second, the initial minimum value of gin
is specified by the user. Determining how best to automatically
set this parameter for a range of environments is an area for future
work. Finally, our calibration study has focused on average AB
over a time interval. PATHLOAD reports a variation range for AB,
and Jain et al. [14, 15] have shown that the variation of AB is an
important measurement target. Extending our calibration study to
consider AB variation is a subject for future work.

5. SUMMARY AND CONCLUSIONS
The primary objective of this paper is to highlight calibration as

a key component in the design, development and rigorous testing
of available bandwidth measurement tools. We advocate the use
of controlled laboratory experiments as a means for partially over-
coming the limitations that are inherent in standard ns-type simu-
lations. While in vitro-like testing is unlikely to fully replace ex-
periments in situ in the wide area, it offers complete control, full
instrumentation and repeatability which are all critical to tool cal-
ibration. We note that the laboratory setups used in our study can
be recreated by other researchers [5].

We propose a framework for the calibration of ABETs. Our case
study exposes potential biases and inaccuracies in ABE due to the
use of commodity systems for high fidelity measurement and/or
inaccurate assumptions about network system behavior and traffic
dynamics. As a result of these observations, we developed a cal-
ibrated Pathload-like tool called YAZ, which is consistently more
accurate than prior ABETs. We believe that YAZ is representative
of the type of active measurement tool that can be expected as a
result of insisting on more stringent calibration.

We also advocate the use of phase plots to analyze and visualize
the fine-grained measurements resulting from our ABET experi-
ments. We show how phase plots were instrumental in exposing
existing ABET bias and errors, and the qualitative insight rendered
by them was key to the resulting design of YAZ. We do not claim
that such plots are a panacea, exposing all sources of bias and error
for all active measurement tools. However, we believe that there
is an outstanding need for new flexible analysis and visualization
tools capable of more fully exposing the enormous quantity of high
fidelity measurement data that can be collected in the calibration
framework we advocate in this paper. While the focus is on a cali-
bration strategy tuned to the problem of ABE in this paper, we in-
tend to generalize our approach to additional active measurement-
based tools that attempt to infer network internal characteristics.
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