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ABSTRACT

The collection of classical inbred mouse strains displays heritable variation in a large number of
complex traits. Many generations of historical recombination have contributed to the panel of classical
strain genomes, raising the possibility that quantitative trait loci could be located with high resolution by
correlating strain genotypes and phenotypes. Although this association mapping framework has been
successful in several empirical applications, its expected performance remains unclear. We used computer
simulations based on a publicly available, dense single-nucleotide polymorphism (SNP) map to measure
the power and false-positive rate of association mapping on a genomic scale across 30 commonly used
classical inbred strains. Expected power is (i) often low for phenotypic effect sizes that are realistic for
complex traits, (ii) highly variable across the genome, and (iii) correlated with linkage disequilibrium,
aspects of the allele frequency distribution, and haplotype characteristics, as predicted by theory.
Simulations also demonstrate clear potential for spurious associations to be generated by unequal
relatedness among the strains. These findings suggest that association mapping in the classical strains is
best applied in combination with other procedures, such as QTL mapping.

CLASSICAL inbred mouse strains provide powerful
model systems for dissecting the genetic basis of

complex phenotypes. The collection of widely available
strains displays dramatic genetic variation in many
quantitative traits, and the association of phenotypes
with molecular markers in controlled crosses can reveal
chromosomal regions that contain the causal loci. This
strategy, quantitative trait locus (QTL) mapping, pro-
vides essential information about the genetic basis of
complex phenotypes, including locus positions, effect
sizes, and modes of action. However, standard QTL
designs involve only one generation of recombination,
so that phenotypic variation is typically associated with
large genomic regions. This low level of mapping re-
solution has left the genes underlying most mouse QTL
unidentified (Flint et al. 2005). Populations of lines
formed by additional generations of recombination, in-
cluding recombinant inbred lines, advanced intercross
lines, and heterogeneous stocks, allow finer mapping
resolution (Mott et al. 2000; Williams et al. 2001;
Churchill et al. 2004; Yalcin et al. 2005; Valdar et al.
2006), but narrowing the resulting genomic intervals to
small numbers of contributing genes still constitutes a
formidable challenge.

The recent ability to genotype strains at markers from
across the genome and the low resolution of most cross-
ing studies has led some investigators to pursue an al-
ternative approach to mapping complex trait variation.
In this method (originally referred to as ‘‘in silico map-

ping’’), genotypes and phenotypes from groups of
classical inbred strains are compared to identify geno-
mic regions that correlate with phenotypic variation
(Grupe et al. 2001; Pletcher et al. 2004). Because the
collective genomes of classical strains have experienced
many generations of recombination during their histo-
ries, loci can be located with higher precision than in
typical crossing designs. Additionally, in contrast to F2 or
backcross experiments, where each mouse has a unique
genome, large numbers of animals with the same geno-
type can be measured, increasing the precision and
accuracy of phenotypic estimates. Finally, the classical
strains need be genotyped only once, accelerating the
identification of genotype–phenotype associations.

Researchers have successfully applied this approach
to fine map loci underlying complex trait variation in
the classical strains. Some studies have used association
mapping to narrow genomic intervals previously deter-
mined to contribute to phenotypic variation (through
crosses), including metastasis (Park et al. 2003), blood
pressure (DiPetrillo et al. 2004), and plasma cholesterol
(Wang et al. 2004; Cervino et al. 2005). Other studies
have conducted association mapping on a genomewide
scale and recovered associations that overlap with strong
candidate genes (Grupe et al. 2001; Liao et al. 2004;
Pletcher et al. 2004; Wang et al. 2005; Liu et al. 2006).

Despite these successful applications, serious con-
cerns about the validity of this method as a general
approach for dissecting the genetic basis of complex
traits have been raised (Chesler et al. 2001; Darvasi

2001; Cuppen 2005). The number of available strains is
small, suggesting that the ability to detect contributions
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from loci with small to moderate effects might be
compromised. Additionally, the classical strains have a
complex history that includes several forms of non-
random mating: admixture between divergent natural
populations, inbreeding, and other biases (Silver 1995;
Beck et al. 2000; Wade and Daly 2005). This history has
led to unequal relatedness among the strains, a phe-
nomenon with the potential to produce correlations
between genotype and phenotype in the absence of
QTL (Lander and Schork 1994; Ewens and Spielman

1995; Pritchard and Rosenberg 1999; Risch 2000;
Cervino et al. 2005; Mhyre et al. 2005). The history of
the strains also affects allele frequency spectra, patterns
of linkage disequilibrium, and the distribution of hap-
lotypes across the genome. The contributions of these
variables to the performance of association mapping in
the classical strains have not been examined. Here, we
use computer simulations based on publicly available
SNP genotypes to quantify the expected performance of
this approach across classical strain genomes.

MATERIALS AND METHODS

Strain and marker selection: We selected genotypes for all
single-nucleotide polymorphisms (SNPs) (n¼ 70,656) that had
complete data for and were variable across 30 classical strains
(Table 1) from the Inbred Laboratory Mouse Haplotype Map
(‘‘HapMap’’) (http://www.broad.mit.edu/personal/claire/
MouseHapMap/Inbred.htm; February 2006 version; Wade

and Daly 2005), which features the most dense genotype
information currently available. These strains were selected on
the basis of two criteria: (i) inclusion in the HapMap and (ii)
designation as priority strains by the Mouse Phenome Project
(Bogue and Grubb 2004; Grubb et al. 2004; http://aretha.jax.-
org/pub-cgi/phenome/mpdcgi?rtn¼docs/home), a large-
scale effort to collect and collate phenotypic information for
the classical strains. Although the strain sets examined in
empirical studies might vary on the basis of the phenotype of
interest, we reasoned that the availability of genotypic and phe-
notypic information for this strain collection makes it a likely
focus for association mapping studies. We did not consider wild-
derived strains because their divergent evolutionary histories
have strong potential to generate spurious associations between
genotype and phenotype (Mhyre et al. 2005).

Power simulations: Phenotypes for individual strains were
created from SNP genotypes. To simulate an additive QTL
mapping to a particular genomic region, one SNP was
designated as the causal locus. Genotypes at this SNP were
recoded as 0 or 1 (the additive effect, a), and the variance
across this set of recoded genotypes was assumed to be the
additive genetic variance (Va). Strain phenotypes determined
by particular fractions of variance at this locus (proportion of
variance explained, PVE, analogous to a locus-specific herita-
bility) were generated by calculating the variance contributed
by effects outside this locus, which could include those from
the environment or loci mapping elsewhere in the genome, as

Ve ¼ Va
1

PVE
� 1

� �
;

drawing a random effect from a normal distribution (mean¼ 0;
variance ¼ Ve), and adding this effect to a for each strain. In
separate simulations, we considered the following PVE values:
0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 0.50.

We assigned marker haplotypes in a genomic window by
removing the causal SNP and concatenating contiguous sets of
SNPs flanking the causal SNP. In separate tests, we considered
haplotypes composed of two, three, four, five, six, and seven
marker SNPs. Tests of association were performed by com-
paring phenotypes across haplotypic classes using a one-way
ANOVA. P-values were estimated by comparison of the
observed F-test to a distribution of 1000 (chosen to allow
exploration of many parameter values across the genome) F-
tests obtained by randomly permuting phenotypes across
strains. For each genomic window, 1000 separate phenotypic
simulations were performed. Power was estimated as the
fraction of simulations with P , 0.05. We followed this
procedure for each window in the genome (allowing each
SNP to act as the causal SNP). Pseudocode for the power
simulation procedure could be written as:

For each window size (number of SNPs in haplotype)
For each SNP in the genome

For each PVE
For 1000 replicates

Remove causal SNP
Obtain P-value for ANOVA association test

Loop
Loop

Loop
Loop

TABLE 1

Classical inbred mouse strains used for simulations of
association mapping

Strain Classification

A/J Castle
AKR/J Castle
BALB/cByJ Castle
BTBR T 1tf/tf Castle
BUB/BnJ Other
CBA/J Castle
CE/J Castle
C3H/HeJ Castle
C57BL/6J C57 related
C57BLKS/J C57 related
C57L/J C57 related
C57BR/cdJ C57 related
C58/J C57 related
DBA/2J Castle
FVB/NJ Swiss
I/LnJ Castle
KK/HIJ Japanese
LP/J Castle
MA/MyJ C57 related
NOD/LtJ Swiss
NON/LtJ Swiss
NZB/B1NJ New Zealand
NZW/LacJ New Zealand
PL/J Other
RIIIS/J Other
SEA/GnJ Castle
SJL/J Swiss
SM/J Castle
SWR/J Swiss
129S1/SvImJ Castle

Classification is based on Beck et al. (2000).
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By calculating power separately for each genomic window, our
approach did not directly simulate genomic scans for genotype–
phenotype associations. Several factors motivated this decision.
First, performing full genomic scans and accounting for these
tests in each simulation replicate would be computationally de-
manding and would drastically reduce the number of genomic
regions and parameter combinations (PVE and number of
markers) that could be explored. Second, the power of genomic
scans depends critically on the manner in which corrections for
multiple testing are performed. The best method for adjusting
for the very large number of tests performed in genomic as-
sociation testing is not currently obvious and is an active area of
research (Pletcher et al. 2004; Hirschhorn and Daly 2005;
Balding 2006; McClurg et al. 2006). Third, our power esti-
mates describe important variation among genomic regions and
should be directly relevant to the increasingly common ap-
proach of finely localizing associations in the classical strains that
were first identified with another method, such as QTL map-
ping. Finally, our general conclusion that association mapping
in the classical strains is underpowered is conservative: account-
ing for multiple tests would only further reduce power.

False-positive simulations: The false-positive rate of associ-
ation mapping could be estimated by setting phenotypic
effects to zero and performing association tests. Instead, we
sought to model the more realistic scenario of a phenotype
that does not map to the genomic region being tested, but still
displays heritable variation across the classical strains in a
manner that reflects their unequal relatedness.

To accomplish this goal, we used genomic similarity be-
tween strains to create phenotypes. Our measure of similarity
was the fraction of SNPs from across the genome at which each
of the 30 strains differed from a common strain, WSB/EiJ. We
selected this strain because (i) it was included in the Inbred
Strain HapMap, (ii) it is fairly closely related to the tested
classical strains (which are predominantly descended from
Mus domesticus; Wade and Daly 2005), and (iii) it was not
included in the strain set used for the power simulations. This
simplified approach assumes that two very closely related
strains will show more similar genomic SNP distances from
WSB/EiJ than will two strains with longer divergence times.

To simulate phenotypes, the variance in this distance was
treated as the total additive genetic variance, Va. For each sim-
ulation, phenotypes with particular heritabilities—but no locus-
specific effects—were generated from this (constant) Va using
the approach described above. Association testing was then con-
ducted separately for each genomic window. Phenotypes with
total heritabilities of 0.4, 0.6, and 0.8 (assumed to come from
loci outside the window under consideration) were considered
in separate simulations. We selected these heritabilities to span a
realistic range for complex phenotypes likely to be subject to as-
sociation mapping in the classical strains. We considered hap-
lotypes composed of two, three, and four neighboring SNPs in
separate simulations. This approach recognizes that the poten-
tial for unequal relatedness among strains to produce spurious
genotype–phenotype associations varies among genomic re-
gions and allows this potential to be quantitatively measured.

Measuring marker characteristics: We examined correla-
tions between power and several measures of genotypic
variation, including linkage disequilibria, allele frequencies,
haplotype number, and haplotype diversity. Linkage disequi-
librium was estimated as the average value of R2 (Hill and
Robertson 1968) or D9 (Lewontin 1964) among all pairs of
marker SNPs in a genomic window. Haplotype diversity across
the k observed haplotypes was measured as

n

n � 1
1�

Xk

i¼1

p2
i

 !
;

where pi is the frequency of the ith haplotype (Nei 1987). The
size of each genomic interval was calculated as the difference
between the physical positions of the first and last markers
in a window.

RESULTS

Power: Genomic distributions of power to detect
genotype–phenotype associations across the classical
strains show several patterns (Table 2). First, as expected,
average power increases steadily with increasing PVE
(Figure 1). Second, power is generally low for PVE
values , �0.25 (Figure 1). For example, assuming a
PVE of 0.10, the average power across the genome using
3-SNP haplotypes is only 0.266 and the maximum is just
0.464. Third, similar power distributions are observed
when haplotypes are composed of different numbers of
marker SNPs (within a given PVE level; Figure 2). This
pattern indicates that haplotype block sizes generally
exceed the window sizes considered here, suggesting
that the inbred strain HapMap has sufficient SNP den-
sity to capture most common haplotypic variation among
the classical strains. Finally, power varies substantially
among genomic locations (Figure 1). Some genomic
windows retain little power to detect associations, even
when PVE is large, while other regions display consis-
tently higher power.

To understand the determinants of variation in power
across classical strain genomes, we compared power to
several characteristics of the SNP markers. Here, we fo-
cus on results assuming PVE ¼ 0.10, which is a reason-
able effect size for QTL underlying many quantitative
traits. Similar results were observed for other PVE
values.

The power to associate marker genotypes with com-
plex trait variation is expected to increase with linkage
disequilibrium. Positive correlations between power and
average pairwise linkage disequilibrium support this
prediction for the classical strains (Figure 3; Table 3).
R2 shows stronger correlations with power than does D9;
this difference is predicted by theory (Devlin and Risch

1995; Pritchard and Przeworski 2001).
Increased power is also expected when allele fre-

quencies at marker and causal SNPs are more similar
(Zondervan and Cardon 2004). Accordingly, power is
negatively correlated with the absolute value of the dif-
ference between the causal SNP minor allele frequency
and the average minor allele frequency of the marker
SNPs (Figure 4; Table 3). These correlations are similar
in magnitude to observed correlations between power
and linkage disequilibrium.

Additionally, power should depend on the distribu-
tion of marker haplotypes. As the number of haplotypes
grows, phenotypes for each haplotypic class are esti-
mated (less accurately) from fewer strains and the num-
ber of degrees of freedom for the between-class test in
the ANOVA increases. As predicted, genomic regions
with fewer haplotypes exhibit significantly greater power
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(Table 3). This pattern underlies the apparently bi-
modal power distributions observed for lower PVE
values (Figure 1): genomic regions harboring only two
haplotypes show clear increases in power relative to
regions with higher haplotype numbers. Power is also
negatively correlated with haplotype diversity (Table 3),
suggesting effects of both haplotype number and
frequency.

Finally, the amount of historical recombination in an
interval will differ across the genome because of
variation in recombination rate and SNP density. As a
result, power should be related to the size of the
genomic interval. This prediction is supported by the
results: window size and power are negatively correlated
(Table 3).

Linkage disequilibrium, the difference between causal
and marker SNP frequencies, haplotype number, haplo-
type diversity, and window size all contribute to the power
to detect genotype–phenotype associations. We used
multiple regression to (i) determine whether each vari-
able influences power when effects of the other variables
have been taken into account and (ii) estimate how
much of the variation in power can be explained by
combining these measures of marker variation. To satisfy
assumptions of linear regression, all proportions, in-
cluding power, R2, D9, differences in marker-causal SNP
frequency, and haplotype diversity were arcsine-square-
root transformed prior to analysis. We selected the set of
variables that explain the most genomic variation in
power using the step function in the R statistical software
(Ihaka and Gentleman 1996), with default settings. We
report the results of analyses using 3-SNP marker
haplotypes (similar patterns were seen with alternative
marker numbers). Both forward and backward stepwise
procedures selected all variables (P , 0.05), indicating
that each measure contributes independently to power

TABLE 2

Summary statistics of power to associate genotypes with
complex trait variation in classical inbred strains

Parameters

Power

PVE Marker SNPs Average
Standard
deviation

Range
(minimum,
maximum)

0.05 2 0.155 0.051 0.025, 0.272
3 0.148 0.045 0.024, 0.276
4 0.142 0.041 0, 0.269
5 0.137 0.039 0, 0.275
6 0.132 0.037 0, 0.277
7 0.128 0.036 0, 0.269

0.10 2 0.278 0.106 0.024, 0.472
3 0.266 0.092 0.021, 0.464
4 0.255 0.083 0, 0.469
5 0.245 0.079 0, 0.465
6 0.236 0.075 0, 0.486
7 0.228 0.073 0, 0.464

0.15 2 0.406 0.158 0.019, 0.650
3 0.393 0.137 0.014, 0.642
4 0.380 0.124 0, 0.642
5 0.366 0.116 0, 0.643
6 0.354 0.111 0, 0.652
7 0.343 0.108 0, 0.642

0.20 2 0.528 0.203 0.009, 0.790
3 0.518 0.175 0.012, 0.791
4 0.506 0.157 0, 0.782
5 0.491 0.147 0, 0.781
6 0.477 0.141 0, 0.783
7 0.464 0.138 0, 0.785

0.25 2 0.634 0.237 0.005, 0.892
3 0.632 0.204 0.006, 0.888
4 0.623 0.182 0, 0.885
5 0.610 0.170 0, 0.889
6 0.596 0.162 0, 0.886
7 0.582 0.160 0, 0.884

0.30 2 0.719 0.259 0.004, 0.957
3 0.726 0.223 0.003, 0.954
4 0.723 0.197 0.001, 0.956
5 0.714 0.184 0, 0.957
6 0.702 0.175 0, 0.950
7 0.690 0.173 0, 0.954

0.35 2 0.782 0.270 0.001, 0.986
3 0.799 0.232 0, 0.986
4 0.803 0.205 0, 0.987
5 0.798 0.190 0, 0.986
6 0.790 0.181 0, 0.986
7 0.780 0.179 0, 0.985

0.40 2 0.826 0.274 0, 0.998
3 0.850 0.235 0, 0.998
4 0.860 0.207 0, 0.999
5 0.860 0.191 0, 0.999
6 0.856 0.182 0, 0.999
7 0.849 0.180 0, 0.998

(continued )

TABLE 2

(Continued)

Parameters

Power

PVE Marker SNPs Average
Standard
deviation

Range
(minimum,
maximum)

0.45 2 0.854 0.272 0, 1
3 0.882 0.234 0, 1
4 0.897 0.205 0, 1
5 0.901 0.189 0, 1
6 0.901 0.180 0, 1
7 0.897 0.178 0, 1

0.50 2 0.872 0.269 0, 1
3 0.903 0.230 0, 1
4 0.920 0.201 0, 1
5 0.926 0.185 0, 1
6 0.929 0.176 0, 1
7 0.927 0.176 0, 1
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(despite strong intercorrelations between variables).
Although this pattern was consistent across PVE values,
the relative contributions of each variable differed. Total
adjusted R 2-values decreased with increasing PVE, rang-
ing from 0.562 (PVE ¼ 0.05) to 0.215 (PVE ¼ 0.5).
Potential issues with stepwise multiple regression suggest
that these estimates should be viewed with caution
(McCullagh and Nelder 1989). Nevertheless, the
conclusion that combinations of the measured genotypic
variables provide predictive information about power
seems warranted.

Because different groups of strains have different
histories, strain choice is expected to affect the power of
association mapping. As a preliminary investigation into
the effects of strain choice on method performance, we
measured power across all intervals of chromosome 1
using 10 randomly selected subsets of 20 strains (from
the original 30). Power is reduced relative to the 30-
strain set across all 20-strain subsets and parameter
combinations (results not shown). Pairs of strain sets
show correlations in power (Table 4), suggesting that
haplotype structure is reasonably conserved. However,
correlations are moderate in magnitude and vary
among strain set pairs (Table 4), indicating that associ-
ations identified in one strain set are not necessarily
expected to replicate in a different group of strains.

False-positive rates: Results from simulations of
phenotypes with heritable variation across the strains

but without locus-specific effects reveal two key patterns
(Figure 5). First, there is clear potential for the gen-
eration of spurious genotype–phenotype associations in
the classical strains and this potential varies substantially
across the genome. Although most genomic regions
show acceptable false-positive rates of #0.05, many
regions show higher rates, including false-positive
frequencies of 1 when trait heritability is 0.8. For ex-
ample, the mean false-positive rate assuming 3-SNP
haplotypes and a heritability of 0.8 is 0.257. Second, the
risk of false positives is higher for traits with higher
heritabilities.

DISCUSSION

Reduced power: Association mapping in classical
strains of mice can localize QTL of large effect to narrow
genomic intervals. Our estimates suggest that, on aver-
age, a locus with PVE of 0.35 can be detected with�80%
power using available SNP maps. Therefore, association
mapping in the classical strains will often be useful
for dissecting phenotypes with simpler genetic bases.
However, our results point to the generally low power
of this approach for finding loci underlying complex
traits. First, most loci that contribute to the genetic
basis of complex traits are expected to explain ,35% of
the phenotypic variance and will therefore often go
undetected. For example, recovering loci with PVE of

Figure 1.—Genomic distributions of power for association tests using 3-SNP haplotypes.
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0.10, which could be interpreted as a relatively large
effect size for some phenotypes, with an average power
of �0.25 is simply not adequate for a general approach
to mapping QTL. Second, these estimates have not been
adjusted for multiple testing, suggesting that further
reductions in power will accompany genomic scans for
genotype–phenotype associations. Finally, our simula-
tions assumed a simple additive model of quantitative
variation. Although the inbred nature of the strains
precludes dominance from contributing to phenotypic

variance, associations generated by epistatic interac-
tions will be even more challenging to find.

The low average power of association mapping in the
classical strains is primarily attributable to the small
number of strains (Darvasi 2001). In fact, empirical
studies applying this approach have typically used fewer
than the 30 strains assumed here. For comparison,
standard QTL mapping usually employs hundreds of
mice and association mapping in humans often involves
thousands of individuals. Although estimates of genetic

Figure 3.—Scatterplots of power vs.
linkage disequilibrium. PVE ¼ 0.10
and association tests were performed
with 3-SNP haplotypes.

Figure 2.—Genomic distributions of power for association tests when the causal variant has PVE ¼ 0.10. The label above each
histogram is the number of contiguous marker SNPs combined to construct haplotypes. Note that the scale of the y-axis differs
from that in Figure 1.
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effects are improved by using inbred strains (in which
measurement error and environmental contributions
can be minimized), finding loci with small to moderate
genetic effects on complex traits will generally require
larger sample sizes using any strategy (Lynch and
Walsh 1998; Darvasi 2001; Hirschhorn and Daly

2005). The PVE attributable to a detected association
may also be overestimated as a consequence of the small
number of strains (Beavis 1994).

Although average power is low, there is substantial
variation across the genome, showing that the perfor-
mance of association mapping crucially depends on
factors other than the number of strains. The histories
of the classical strains are responsible for this genomic
variation in power. Evolutionary forces including muta-
tion, recombination, selection, and drift have shaped
genomic patterns of genotypic and phenotypic variation
and affected the ability to correlate individual genomic
regions with complex traits among the strains. Although

the relative contributions of these and other processes
to current diversity are unclear, combinations of geno-
typic characteristics provide information about the
relative power across the genome. Genomic regions
with high linkage disequilibrium and (accordingly)
limited haplotype diversity offer higher power. Addi-
tionally, the emphasis of current SNP maps on common
variation translates into a higher likelihood of detecting
QTL with intermediate frequencies across the strains
(such QTL are also easier to detect with small sample
sizes). As a result, this approach focuses more attention
on variation ultimately derived from the wild ancestors
of the classical strains and less on mutations that have
arisen since their founding.

Potential for spurious associations: The potential for
population structure to generate spurious associations
between genotype and phenotype has long been recog-
nized in human and plant genetics. The problem is
especially important for the classical mouse strains,
which have histories involving admixture between di-
vergent populations and patently nonrandom mating
(Silver 1995; Beck et al. 2000; Wade and Daly 2005).
We illustrated this effect with a simple model assuming
that closely related strains have more similar pheno-
types and that the genetic variants responsible for
phenotypic variation are not located in the genomic
interval being tested. Although more elaborate models
could be envisioned, this approach captures the primary
cause of false-positive associations: unequal relatedness
among the strains. Our results suggest a nontrivial risk
of spurious associations across the classical strains.

Fortunately, several methods have been developed
that adjust for the effects of population structure on
association mapping using patterns of variation at un-
linked markers (Devlin and Roeder 1999; Pritchard

et al. 2000; Reich and Goldstein 2001; Yu et al. 2006). A
particularly promising approach for the classical strains
accounts for the effects of unequal relatedness on
multiple levels (Yu et al. 2006). Now that genomewide
SNP and microsatellite polymorphism data exist for
the classical strains, these strategies can begin to be
applied. Efforts to minimize spurious associations will

TABLE 3

Spearman’s correlations between power and genotypic characteristics

Correlation with power

Marker
SNPs

Average
R2

Average
D9

Difference between causal
and marker frequencies

Haplotype
no.

Haplotype
diversity

Window
size

2 0.483 0.301 �0.693 �0.541 �0.322 �0.239
3 0.556 0.418 �0.602 �0.661 �0.445 �0.260
4 0.614 0.515 �0.548 �0.741 �0.529 �0.277
5 0.643 0.572 �0.511 �0.785 �0.578 �0.287
6 0.665 0.615 �0.484 �0.817 �0.616 �0.299
7 0.680 0.644 �0.463 �0.840 �0.644 �0.304

Assumes PVE ¼ 0.10. P , 10�15 for all tests.

Figure 4.—Scatterplot of power vs. the absolute value of
the difference between causal SNP minor allele frequency
and the average minor allele frequency of the marker SNPs.
PVE ¼ 0.10 and association tests were performed with 3-SNP
haplotypes.
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also benefit from full resequencing surveys of the
classical strains, which will produce patterns of variation
that are free from ascertainment and that better reflect
population structure and phylogenetic history among the
strains.

Future prospects: The recent accumulation of ge-
nomewide polymorphism data (Wiltshire et al. 2003;
Cervino et al. 2005; Wade and Daly 2005) and
phenotypic measurements (Bogue and Grubb 2004;
Grubb et al. 2004) for the classical strains is an exciting
development in mouse genetics. Although many loci
underlying complex trait variation will be missed by
association mapping with the current strain set, the
higher mapping resolution of those loci that are found

should continue to motivate the development and appli-
cation of this approach.

In addition to accounting for the effects of population
structure, several possibilities exist for improving the per-
formance of association mapping across the classical
strains. Haplotype delineation using diversity (Patil et al.
2001; Zhang et al. 2002), linkage disequilibrium
(Gabriel et al. 2002), and information theoretic
(Anderson and Novembre 2003) criteria should in-
crease power. Detailed investigations of haplotype block
structure in the classical strains will also be required
to measure the expected level of mapping resolution.
Useful information on genomic haplotype structure
across the classical strains is rapidly accumulating (Wade

TABLE 4

Pairwise Spearman’s correlations between power estimates across chromosome 1 intervals for
10 randomly selected sets of 20 classical strains each

Strain sets 2 3 4 5 6 7 8 9 10

1 0.789 0.803 0.717 0.753 0.822 0.734 0.715 0.762 0.859
2 0.805 0.752 0.742 0.819 0.732 0.712 0.774 0.805
3 0.716 0.756 0.819 0.722 0.688 0.776 0.830
4 0.761 0.745 0.781 0.788 0.842 0.735
5 0.787 0.848 0.768 0.799 0.758
6 0.755 0.706 0.804 0.811
7 0.789 0.800 0.757
8 0.758 0.730
9 0.774

Assumes PVE ¼ 0.10 and 3-SNP haplotypes. P , 10�15 for all correlations.

Figure 5.—Genomic distributions of the false-positive rate for association tests using 3-SNP haplotypes. Heritability is the frac-
tion of phenotypic variance due to additive genetic variance contributed by loci outside the tested window.
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et al. 2002; Wiltshire et al. 2003; Frazer et al. 2004;
Ideraabdullah et al. 2004; Yalcin et al. 2004; Cuppen

2005; Wade and Daly 2005; Zhang et al. 2005). Because
classical strain genomes are ultimately derived from wild
representatives of M. domesticus, M. musculus, M. castaneus,
and M. molossinus (Wade et al. 2002; Wade and Daly

2005), detailed comparisons to patterns of haplotype diver-
sity in natural populations of house mice would enable
association mapping in the classical strains. Additionally,
the application of model-based association procedures
that better incorporate information on strain history in
each genomic region could improve power (Yalcin et al.
2005; Cervino et al. 2007) and continued examination of
different statistical methods is warranted (McClurg et al.
2006).

Combining association mapping with other ap-
proaches, including QTL mapping, is also a fertile
area for future research (Cervino et al. 2005, 2007;
DiPetrillo et al. 2005). The ability of association map-
ping to refine genomic regions identified by QTL
mapping will depend on the relationships of the crossed
strains to the remaining strains; therefore, strain selec-
tion in QTL mapping could be influenced by patterns of
haplotypic diversity across the larger strain set. The
expected joint resolution and power of QTL mapping
and association mapping deserves modeling attention.
Method development might be informed by advances
in combining linkage and association mapping in hu-
man genetics (Abecasis et al. 2000; Jung et al. 2005;
Wang and Elston 2006).
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