
MICRO 2017 Submission #366 – Confidential Draft – Do NOT Distribute!!

Adaptive Victim DRAM Cache:
Optimizing Bandwidth for HPC Workloads

ABSTRACT
High performance scientific computing (HPC) applications
have high memory bandwidth demands. The Intel Knights
Landing platform uses on-package DRAM caches to trans-
parently meet these needs. We model the Knights Landing
cache and show that it wastes roughly half the DRAM cache
bandwidth on auxiliary accesses. We define a new metric,
access amplification, to quantify these excess accesses and
motivate alternative DRAM cache policies. We propose a
new adaptive victim cache policy that seeks to reduce ac-
cess amplification without overwhelming the off-package
(main memory) DRAM. Our design uses new on-chip state—
laundry list and counts—to manage the DRAM cache as a
mostly clean victim cache, but it robustly adapts to store dirty
data when needed to reduce off-package DRAM bandwidth.

Using gem5’s execution-driven full-system simulation to
evaluate HPC workloads, we observe wide variation in miss
ratios and read/write ratios including during different appli-
cations phases. Our adaptive victim cache robustly reduces
access amplification to within 7% of an unrealistic SRAM
tag design and universally improves performance over the
Knights Landing design (on average by 10%).

1. INTRODUCTION
High performance computing (HPC) applications often

have high memory bandwidth demands, especially when
executed on highly-parallel hardware like GPUs or many-
core processors. To meet this bandwidth demand, system
designers are including high-bandwidth memory (HBM) on
package through 3D die-stacking. Vendors are now shipping
chips marketed to HPC with on-package memory (e.g., Intel’s
Knights Landing [35] and NVIDIA’s Tesla P100 [27]). The
main benefit of this memory comes from increased bandwidth,
not reduced access latency, since it uses the same underlying
DRAM technology. A straightforward use of this limited
capacity HBM is as another level of cache between the on-
chip SRAM last-level cache (LLC) and main memory [6, 13,
16, 23, 24, 29] since caches are transparent to programmers.

There are two primary differences between SRAM and
DRAM caches that influence DRAM cache design. First,
SRAM caches typically separate the tag and state into a dif-
ferent structure from the data [37], but DRAM caches use the
same array structure to hold the tags, state, and data. Second,
each level of SRAM cache typically has lower latency, but
DRAM caches have comparable latency to main memory.

To support high bandwidth, DRAM caches must have

much more parallelism than SRAM caches, and interference
between the metadata accesses (tag and cache block state) and
the data accesses can have a significant performance impact.
Many works have shown that interference between DRAM
requests hurts performance for main memory [14, 25, 30, 36]
and this is exacerbated by auxiliary accesses (e.g., tag, dirty
bit reads) in DRAM caches.

We introduce a new metric to quantify this interference:
access amplification. We define access amplification to be the
total memory transactions divided by the number of demand
memory requests. Access amplification is similar in spirit to
write amplification in NAND-flash disks [12]. The impact
of DRAM cache metadata accesses was initially explored
by Chou et al. [7] which showed there is bandwidth waste
in some DRAM cache designs. Access amplification differs
from Chou et al.’s “bandwidth bloat” in two ways. First, ac-
cess amplification counts memory transactions instead of raw
bytes since using ECC to store cache tags requires reading
and writing the entire cache block for all accesses. Second,
access amplification considers all read and write requests
from the LLC “useful”, not just read hits. We show that ac-
cess amplification is a better predictor of performance than
bandwidth bloat, especially for workloads with high DRAM
cache miss rates.

We use access amplification, the NAS parallel benchmarks,
and detailed gem5 simulations [4] to analyze alternative
DRAM cache designs. The NAS parallel benchmarks (NPB)
are widely used and are considered to be representative of
an important class of HPC workloads [1, 3]. For these work-
loads, DRAM cache miss rates vary from 0% to nearly 100%
and write to read ratios vary from 0% writes to 100% writes,
sometimes within different phases of a single application.
Due to their varying phase behavior and large working set
sizes, NPB workloads put different demands on a DRAM
cache than general-purpose workloads (e.g., SPEC).

Our analysis starts with the DRAM cache of a commer-
cially available many-core system. Then, we discuss how
victim caches can reduce access amplification and potentially
improve performance. However, for some workloads, re-
ducing access amplification to the DRAM cache results in
excessive traffic to the off-package main memory DRAM.
Thus, we introduce an adaptive victim cache design that dy-
namically balances these competing factors.

KNL-like mostly-inclusive cache Intel’s Knights Landing
(KNL) [35] is a commercially-available multicore proces-
sor that targets HPC workloads. According to published

1

literature, KNL implements a DRAM cache with a mostly-
inclusive policy (i.e., DRAM cache evictions do not invalidate
the LLC or higher levels of the cache hierarchy). We call
our model of this DRAM cache KNL-like, since we had to
assume certain details not included in the public literature.

Our model implements two demand cache accesses: cache
reads that result from LLC-misses and cache writes from
LLC-writebacks. HBM accesses occur as follows.
Cache read hits cause one DRAM cache access: 1 read the

tag & data. The KNL design leverages Qureshi and Loh’s
Alloy cache which stores the tag and data together in a
direct-mapped cache eliminating excess accesses [29].

Cache read misses cause three DRAM cache accesses: 1 read
the tag & data to check the tag and retrieve dirty data on
a miss, 2 write the cache tag to mark the frame as busy
(KNL uses a "busy" state instead of MSHRs since 1000s
of misses may be outstanding [34]), and 3 write the
new data once it returns from main memory to maintain
inclusion.

Cache writes cause two DRAM cache accesses: 1 read
the tag & data to check if the cache frame holds dirty
data (from the victim block) that must be written back to
memory and 2 write the new data.

This analysis shows that both cache read misses and cache
writes result in excess accesses increasing the access amplifi-
cation above 1.0. Simulation results show that, on average,
access amplification for the NPB workloads is 2.03, or two
DRAM cache accesses for each demand request.

Dirty victim cache Changing the cache policy from mostly-
inclusive to a dirty victim cache reduces access amplification
by eliminating the two excess accesses on cache read misses.
Cache read hits are the same as KNL-like.
Cache read misses cause a single DRAM cache access: 1 read

the tag & data to check the tag. There is no need to re-
serve a location in the cache since the fill is delayed until
LLC writeback.

Cache writes are handled the same as KNL-like. However,
the LLC must also writeback clean blocks to the DRAM
cache to implement the victim cache policy.

For the NPB workloads, we find that this dirty victim
cache design reduces access amplification to 1.75, leading to
performance improvements over the KNL cache design by
6%, on average. We leverage a clean-evict bit in the LLC [20]
to write clean data at most once.

Clean victim cache A victim cache policy eliminates excess
accesses on cache read misses, but cache writes must still
check whether a cache frame holds dirty data that must be
written back to main memory. These excess accesses can
be eliminated by implementing a clean victim cache policy,
where the contents of the DRAM cache are always consistent
with the main memory.
Cache read hits are the same as KNL-like cache.
Cache read misses are the same as the dirty victim cache.
Cache writes cause a single DRAM cache access: 1 write

the tag & data. In a clean victim cache, it is always safe
to overwrite the cache frame with new tag and data. Like
the dirty victim cache, the LLC must writeback clean data
to a clean victim cache.

For the NPB workloads, we find that the clean victim de-

sign reduces access amplification to 1.24, outperforming the
dirty victim cache for workloads with relatively low write
traffic. However, because a clean victim cache cannot store
dirty data, all LLC-writebacks of modified data must also
update main memory. For write-heavy workloads, the lim-
ited bandwidth of off-package DRAM becomes a bottleneck,
degrading performance toward a write-through cache. For
these workloads, despite the very low access amplification a
clean victim cache performs worse than a dirty victim cache.

Adaptive victim cache To address differing workload prop-
erties, we propose an adaptive victim cache design that seeks
to balance the performance characteristics of both the dirty
victim cache and the clean victim cache designs. By default,
this policy behaves like a clean victim cache, but falls back
to a dirty victim cache policy for workload phases with high
write intensity.

Our adaptive victim cache design uses on-chip SRAM to
track metadata only about dirty cache frames, achieving most
of the performance of full SRAM tags with less than 3% of
the area. We use the following mechanisms.

1. Laundry counts track the number of dirty blocks within
a cache region. Cache writes to clean regions (i.e., laun-
dry count = 0) do not need to read the tag & data.

2. A Laundry list tracks tags of regions with dirty blocks,
allowing writes with laundry list tag matches to proceed
without first reading the tag & data. This optimizes for
a common case in HPC workloads that data is written
repeatedly.

3. Proactive writeback to keep the cache mostly clean by
cleaning the dirty cache segments when sufficient main
memory bandwidth is available.

The laundry counts, laundry list, and proactive writeback
allow our adaptive victim cache to behave the same as a clean
victim cache when the write traffic is low, and like a dirty
victim cache under high write traffic workloads dynamically
adapting to the workload or the workload phase.

Our proposed adaptive victim cache reduces access ampli-
fication from 2.03 in the KNL-like design to 1.35. This is
within 7% of an unrealistic SRAM-tag design (1.26). Our
design is decentralized, and each HBM channel operates fully
independently, requiring 65 KB per HBM channel (total of
1040 KB) of on-chip SRAM (full SRAM-tags require 36 MB).
Our adaptive victim design performs at least as well as ei-
ther the dirty or clean victim designs for each workload. On
average, our design increases performance by 10% over the
KNL-like design and is within 2% of SRAM tags.

Our contributions are
• A novel design for an adaptive victim DRAM cache,
• The access amplification model for reasoning about DRAM

cache policy performance, and
• An analysis of full-scale HPC workloads and realistic

multi-channel DRAM cache policies.

2. DRAM CACHE DESIGN AND
ACCESS AMPLIFICATION

In our system, we assume there are many CPU clusters,
each containing a CPU core, split L1 I/D caches, and a private
L2 cache. There is a unified shared SRAM L3 LLC on-chip,
split into multiple banks to support high-bandwidth.

2

Tag

match

Frame

dirty

Read tag

& data
Hit - - - -

Read tag

& data
Miss Clean

Write

busy*
Fetch data Fill*

Read tag

& data
Miss Dirty

Write

busy*

Writeback data,

Fetch data
Fill*

Read tag

& data*
Hit - Fill - -

Read tag

& data*
Miss Clean Fill - -

Read tag

& data*
Miss Dirty Fill Writeback data -

L
L

C
-R

e
a

d
L

L
C

-W
r
it

e
b

a
c
k

HBM

actions

HBM

actions

Main-memory

actions

HBM

actions

Cache frame state

Table 1: Details of the KNL-like DRAM cache operation.
Non-demand requests are marked with an asterisk. The colors
correspond to Figure 2.

Backing this LLC, is a memory-side DRAM cache. Since
the DRAM cache is memory-side, it does not participate in
the on-chip coherence traffic. All coherence requests are han-
dled by the SRAM LLC. The storage for the DRAM cache
is multiple channels of high-bandwidth memory (HBM). Ad-
dresses are striped across these channels using the lowest-
order bits for the highest bandwidth [21]. We consider this
HBM as on-package: 3D-stacked with TSVs [5, 15], 2.5D-
stacked with a silicon interposer [2, 5], or attached via some
other high-bandwidth interconnect [28].

There are two types of requests to the DRAM cache: LLC-
read and LLC-writeback. LLC-read requests are issued to the
DRAM cache when an LLC miss occurs, and fetches data
from the DRAM cache. In the baseline mostly-inclusive KNL
design, LLC-writeback requests are issued when the LLC
evicts a modified block.

2.1 Baseline KNL-like DRAM cache
Table 1 shows the detailed function of our baseline DRAM

cache design based on public information available for the
Knights Landing (KNL) DRAM cache [35]. We assume a
latency optimized design like Alloy cache [29] that is direct-
mapped and stores the tags with data in the DRAM rows. We
store the tags with the ECC data in the DRAM. The JEDEC
HBM specification has 16 bits per 128-bit bus for ECC, which
allows enough space for 20 bits of tag and metadata and
leaves 44 bits for ECC per cache block (e.g., using a (576,532)
ECC code) [9, 15, 26].

We implement the “Garbage” (G) state used in KNL [35].
This transient state is used for cases where a DRAM cache
line is allocated but the corresponding data is written later [34].
Thus, for every miss to the DRAM cache we must write the
block to mark it busy. The KNL designers chose to store
the outstanding request state in the cache instead of using
MSHRs for two reasons. First, to support high bandwidth,
1000s of MSHRs are required, which is costly both in terms of
area and power. Second, we find it is very rare for concurrent
requests to access the same DRAM cache frame.

The KNL design is a “mostly-inclusive dirty” cache. The
cache is allowed to store dirty data, and thus, must write it
back to main memory upon eviction. One reason KNL does
not use a fully inclusive memory-side design is it requires
significant changes to the LLC and directory controllers to

2 4

Slowdown over HBM
as m ain m em ory

1.5

2.0

2.5

3.0

A
c
c
e

s
s
 a

m
p

li
fi

c
a

ti
o

n

r 2 : 0.97

Access am plificat ion

2 4

Slowdown over HBM
as m ain m em ory

0

10

20

30

250

400

B
a

n
d

w
id

th
 b

lo
a

t

r 2 : 0.46

Bandwidth bloat

0.0

1.0

M
is

s
 r

a
ti

o

Figure 1: Comparison of measured access amplification to
bandwidth bloat. Color represents varying miss rates. At a
miss rate of 100% the bandwidth bloat is undefined.

support back-probes on DRAM cache block invalidations. In
the case of KNL’s distributed tag directory and distributed
LLC [35], supporting back-probes would require adding
many transient states to support all possible interleavings
of simultaneous requests. Back-probes also increase the net-
work traffic on the shared link between the LLC and the
DRAM cache, consuming bandwidth that could be used for
demand requests. Additionally, although invalidations may
not be common, they can result in pathological behavior in a
direct-mapped DRAM cache from repeated conflict misses
that can further increasing network traffic and using LLC and
directory access bandwidth.

2.2 Access amplification

DEFINITION 1 (ACCESS AMPLIFICATION). The total num-
ber of DRAM cache accesses divided by the demand accesses
initiated by the SRAM LLC misses.

In Table 1, the actions marked with an asterisk are non-
demand requests. For instance, on an LLC-read, the demand
part of the access is the initial DRAM cache read to get the
tag and data (no asterisk). The write busy and fill accesses
are not servicing the original demand request, but performing
auxiliary cache operations (asterisks). Table 2 compares the
access amplification of the KNL-like cache with a nearly-
ideal but infeasible-to-implement SRAM tag design. Each
row in the table shows the counts of each action (e.g., derived
from Table 1). The demand accesses from the SRAM LCC
are all of the requests which are issued to memory in the
absence of a DRAM cache.

Access amplification builds off of the ideas of bandwidth
bloat as pioneered by Chou et al. [7] and write amplification
in flash memories [12]. Both access amplification and band-
width bloat measure the wasted DRAM cache bandwidth,
but bandwidth bloat is defined as the total bytes transferred
divided by the useful bytes (i.e., bytes serviced from the
DRAM cache). We believe transactional accesses are more
indicative of the performance overhead than the raw bytes,
similar to write amplification (actual number of flash page
writes divided by user page writes). Because the cache tags
and metadata are encoded in the extra bits provided for ECC,
we must read and write the entire cache block on each ac-
cess. Additionally, DRAM performance is affected more by
interference from different accesses on shared resources (e.g.,
the shared data bus, bank row buffer) than the raw number of

3

0 25 50 75 100 125 150 175 200
Cache DRAM traffic (GB/s)

KNL-like

Peak
throughput

Demand read
Demand write

Tag write busy
Data write fill

Tag read dirty
Data read writeback

Figure 2: Breakdown of DRAM cache traffic between de-
mand accesses and other overheads (hatched). This figure
assumes a 50% miss ratio, 50% reads, and 50% dirty blocks.
The results are similar with other miss and write ratios.

bytes read and written. This dichotomy is similar to using in-
put/output operations per second (IOPs) instead of bandwidth
to measure the performance of storage devices.

Figure 1 quantitatively compares these two metrics show-
ing how the access amplification (left) and bandwidth bloat
(right) correlate to the slowdown of the KNL DRAM cache
design compared to directly accessing HBM as if it was main
memory. We use a microbenchmark with varying DRAM
cache miss ratios (color). The key quantitative difference is
that bandwidth bloat significantly increases when the hit rate
is low. In fact, if the hit rate is 0% (e.g., a streaming work-
load), the bandwidth bloat is infinite. Access amplification,
on the other hand, shows a nearly linear relationship with
execution time slowdown (execution time when using HBM
as main memory divided by execution time when using HBM
as a cache). Thus, we believe the transaction semantics of ac-
cess amplification provide a better framework for comparing
different DRAM cache policies. The goal of access amplifi-
cation is not to predict performance, but to give designers a
model to reason about the performance of different DRAM
cache designs.

Figure 2 shows the potential performance impact of access
amplification. To illustrate the effects of access amplification,
we modeled the HBM based on the high bandwidth memory
standard [11, 15]. We used an artificial microbenchmark to
send traffic to the HBM. Figure 2 shows that over 50% of
the DRAM cache traffic is wasted (thin, hatched bars) not
servicing demand requests (thick bars). Colors correspond to
the actions in Figure 1.

3. USING THE ACCESS AMPLIFICATION
MODEL

We previously introduced the access amplification of the
KNL-like and victim cache designs. In this section, we specif-
ically quantify the access amplification by considering the
impacts of two different design parameters, the insertion pol-
icy (either a mostly-inclusive cache or a victim cache) and
the writeback policy (whether to allow the cache to contain
dirty data or have a fully-clean cache).

Table 2 summarizes the access amplification of unrealistic
SRAM tags, the KNL-like DRAM cache, and three victim
cache designs. This table presents the access amplification in
relation to the program characteristics including number of
reads, writes, and misses at the DRAM cache.

3.1 KNL-like→ Dirty victim
Using a victim cache design eliminates the extra DRAM

cache write access marking the cache frame as busy while
the miss is outstanding. Instead of allocating the cache frame
at the time of the miss, a victim cache waits until the LLC
evicts the block to allocate a frame. This removes 2m (m is
the miss ratio) DRAM cache writes on each LLC-read (dirty
victim row in Table 2).

The victim cache policy also eliminates an extra DRAM
cache write access if a block is modified after a DRAM cache
miss (part of 2m in Table 2). In the KNL cache, when an
LLC-writeback occurs it overwrites the filled data, and the
fill is “useless” as it is never read before it is overwritten.

However, a victim policy requires filling on every LLC
eviction which significantly increases the number of LLC-
writeback requests (Wu). A traditional victim cache pol-
icy [19] would maintain exclusion between the LLC and
DRAM cache, requiring every LLC eviction to write back
data to the DRAM cache. To reduce the bandwidth require-
ments, we enforce a non-inclusion property using a “clean-
evict” bit [20]. The LLC maintains a per-block clean-evict
bit, which is set when a block is fetched from main memory
(and not on DRAM cache hits). When the LLC evicts a block,
only blocks with dirty data or a set clean-evict bit are written
to the DRAM cache. The clean-evict bit differs from Chou, et
al.’s DRAM cache presence (DCP) bit [7] because DCP must
be maintained exactly (requiring complicated back probes)
while clean-evict is essentially a performance hint. Using the
clean-evict bit, Wu <= (R×m).

3.2 Dirty victim→ Clean victim cache
A clean cache, such as a conventional writethrough cache,

does not need to check the tags before writing the tag and
data. Therefore, we can reduce the access amplification of
the dirty victim cache by treating it as a writethrough (clean)
design.

The “Clean victim” row in Table 2 shows there are fewer
DRAM cache accesses on LLC-writeback requests for the
clean victim design than the other designs. The number of
cache accesses reduces from more than 2W per access to just
W for the clean victim design. This implies that the clean
victim cache will perform better for high write traffic work-
loads. However, writethrough caches have a major drawback:
all dirty data must be written to main memory, increasing the
main memory traffic.

In Section 5 we find that implementing a fully-clean DRAM
victim cache eliminates the most access amplification, even
more than unrealistic SRAM tags. However, a clean victim
cache hurts performance for some applications (Figure 9)
since it increases the traffic to main memory, which is the
bottleneck in write-heavy applications.

4. ADAPTIVE VICTIM CACHE
Ideally, we want an adaptive cache design that behaves

like a fully-clean victim cache, without the downsides of
squandering main memory bandwidth. Importantly, under a
high-write load to the DRAM cache, we want the cache to
behave like a writeback cache, not a writethrough cache.

The “Adaptive Victim” row in Table 2 shows the goal for
our design. By leveraging the victim cache policy, we remove
all unnecessary accesses on the LLC-read path, and by falling
back on a writeback (dirty) policy, there is no main memory

4

Design DRAM cache accesses
Demand accesses R+W
Unreal. SRAM Tags R(1+md)+W (1+md)
KNL-like R(1+2m)+2W
Dirty victim R+2W +Wu(1+m)
Clean victim R+W +Wu
Adaptive victim R+W (1+md)+Wu(1+md)

Table 2: Access amplification for each design. R is the reads.
W is the writes. m is the miss rate of the DRAM cache. md is
the rate of dirty data on each miss. And Wu is the unmodified
writebacks. Access amplification is accesses/(R+W).

access amplification. In the best case, we only want to have
extra reads to the DRAM cache if we are sure the data is dirty,
which is the same overheads as the full SRAM tag design.

Our adaptive victim design has about the same access
amplification as the unrealistic SRAM tag design. The key
idea is that we can get most of the benefits of SRAM tags
by only storing tags that reference dirty data in SRAM. To
limit the overhead of storing these tags, under high write
conditions we fall back on the dirty victim design, and to
increase performance when the main memory traffic is low
we upgrade to the clean victim design. Thus, our design
robustly performs as well as either the dirty or clean victim
caches, as shown in Section 5.

In this section, we explain five insights driving our adaptive
victim cache design. We first present a simplified design of
our adaptive victim policy. Then, we extend this design to
large multi-channel DRAM caches. We then discuss the
implementation of the adaptive victim policy, an important
optimization, and the area overheads of our proposal.

4.1 Simplified adaptive victim design
Figure 3 shows a simplified example with a 4-entry DRAM

cache to illustrate these insights. Step 0 shows the initial state
of the cache with four valid and clean frames.

Insight 1: If there are no dirty blocks in the cache, then it
is safe to overwrite a block without first reading the cache
tag.

Action: Store a count of the number of dirty cache frames
in SRAM. If the count is zero, it is safe to overwrite. Other-
wise, we must check before writing.

Example: In step 1 of Figure 3, the LLC sends an write-
back request to the DRAM cache with the clean-evict bit
set. The laundry count of zero signifies there is no dirty data
in the cache. Thus, we can treat the cache as though it is
fully-clean and write the incoming data without first reading
the tag and data in the corresponding cache frame since it
will only overwrite clean data.

In step 2 of Figure 3, the LLC sends a writeback request
with modified data. This implies the data in main-memory is
stale, and when the line is inserted into the cache, the cache
will contain dirty data. Thus, when inserting the line, we
increment the laundry count by one. This signifies it is no
longer safe to write into the cache without first reading the
corresponding frame’s tag (like the dirty victim design) since
it is possible a new line will overwrite the only copy of the
data for a cache block.

Insight 2: If we know all of the dirty blocks in the cache
have the same tag as the current write, then we know it is
safe to write the block without first checking.

Action: Track the tag shared by all dirty blocks. If the
tag matches, then it is safe to write. Otherwise, we must
invalidate the tag and check before writing.

Example: In step 2 of Figure 3, when writing the dirty
data for line A2, we also insert the tag (A) into the laundry
list structure. A in the laundry list implies that only blocks
with a valid tag of A can be dirty in the cache. Blocks with
any other tag must be clean.

In step 3 of Figure 3, the LLC sends a modified writeback
for A0. The laundry count is not zero; therefore, it may be
unsafe to write this block into the cache. However, since
the tag in the laundry list matches the tag of the writeback
request, it is safe to overwrite the data in the cache. Either
we will overwrite clean data that is found in main memory,
or we will safely overwrite stale data with a more up-to-date
version. In this step, we also increment the laundry count to
match the number of dirty frames in the cache.

Finally, step 4 of Figure 3, shows a modified LLC-writeback
to a block with a different tag (B). In this case, it is unsafe to
write the data into the cache, so before writing the data, we
must check the tag of the corresponding cache frame (exactly
like a dirty victim cache). Additionally, when inserting the
block in a dirty state, we must invalidate the laundry list entry
for A since it is no longer safe to write blocks from A into the
cache and increment the laundy count.

4.2 Applying insights 1 & 2 to large caches
Insights 1 and 2 do not directly scale to large cache sizes.

These insights quickly break down since even a small per-
centage of dirty lines cause the cache to fall back on the dirty
victim policy.

To extend these insights to large caches, we first define
a cache super-frame as an aligned set of cache frames in
a direct-mapped cache. Super-frames are similar to super-
blocks; however, super-blocks are aligned regions of mem-
ory, and super-frames describe a region of cache storage. A
super-frame can hold data from a single super-block or from
multiple super-blocks since multiple super-blocks map to the

Laundry
Count

Laundry
List

DRAM
Cache

TagD
0 A0

0 D3

0 B1
1 A2

Data
zzz
xxx
sss
vvv

A 10

Laundry
Count

Laundry
List

DRAM
Cache

TagD
0 A0

0 A3

0 B1
0 A2

Data
zzz
xxx
www
uuu

1. Unmodified LLC-writeback D3 2. Modified LLC-writeback A2 3. Modified LLC-writeback A0 4. Modified LLC-writeback B1

Laundry
Count

Laundry
List

DRAM
Cache

0 TagD
0 A0

0 D3

0 B1
0 A2

Data
zzz
xxx
www
vvv

Laundry
Count

Laundry
List

DRAM
Cache

TagD
1 A0

0 D3

0 B1
1 A2

Data
ttt
xxx
sss
vvv

A 2

Laundry
Count

Laundry
List

DRAM
Cache

TagD
1 A0

0 D3

1 B1
1 A2

Data
ttt
ooo
sss
vvv

A 3

0. Initial state

Figure 3: Example laundry count and laundry list usage. A simplified four entry cache is shown.

5

Block

offset

Physical

tag

6 bits18 bits

Channel

number

4 bits4 bits8 bits

Laundry list

index

Super-frame

tag

8 bits

Laundry List

Super-frame

tag
Physical

tag=

=

Super-frame

tag match

Physical

tag match

Super-frame

number (16 bits)

Laundry list

index

SF tag Phys. tag

Fast

dirty

Laundry list

hit

Laundry count
(Dirty blocks

in the super-frame)

Laundry
Counts

Super-frame

number

(a) (b)

Count
V

Figure 4: Operation of the laundry list (a) and laundry counts
(b) structures.

same super-frame.
Insight 3: We can partition the cache into super-frames
and apply insights 1 and 2 on many small cache regions
(super-frames) instead of the entire cache.

Action: Each super-frame has a dirty count stored in the
laundry counts and a tag stored in the laundry list (see Sec-
tion 4.3). It is safe to write a block into the cache if the
super-frame’s laundry counts entry is zero or there is a tag
match in the laundry list. Else, we must check the cache
before overwriting the cache frame.

Above, we described the adaptive victim design as if it was
a centralized structure. However, to support high bandwidth,
die-stacked DRAM is often split into many channels (e.g.,
16 channels for the HBM standard [15]). These channels
operate independently and may not be co-located on chip.
Thus, we do not assume a centralized laundry list and laun-
dry counts, but split the structures across the channels into
multiple banks. Each bank of the laundry structures tracks
the subset of the super-frame assigned to that channel (super-
frames are continuous in physical space). Figure 4a shows
the physical address bits used to access the laundry counts
and laundry list structures. Banking the laundry structures
across multiple channels increases their area overhead (e.g.,
the tags in the laundry list may be replicated), but it allows
these structures to flexibly support high bandwidth.

4.3 Laundry counts and laundry list
The laundry counts is an SRAM-based structure that tracks

the number of dirty frames in each cache super-frame (Fig-
ure 4b). The laundry counts is a directly indexed array with
one entry per super-frame in the cache. The count is up-
dated on each DRAM action by incrementing when adding
dirty data and decrementing when flushing dirty data to main
memory (Figure 5 contains more details).

We choose to track super-frames instead of every cache
frame to decrease the area overhead of the laundry counts.
Tracking dirty information using a bitvector for each 64-byte
block requires 2 MB of on-chip SRAM area for a 1 GB
DRAM cache. Section 5.6 shows that HPC workloads have
high spatial locality in the DRAM cache so a bitvector will
not significantly improve performance over coarser super-

frame tracking.
We require the laundry count to be consistent with the dirty

bits in the cache. Thus, we cannot increment the laundry
count if the modified LLC-writeback overwrites already dirty
data. To facilitate dirty block tracking, we add another bit
to each LLC-entry. On a response to an LLC-read hit at the
DRAM cache, we include a cache-dirty bit which is set if the
block is dirty in the DRAM cache. Like the clean-evict bit,
this bit is tracked at the LLC and sent back to the DRAM
cache on an LLC-eviction. If the cache-dirty bit is set, the
line is already dirty in the cache, and we do not increment the
laundry count.

Insight 4: Insight 2 is not required for correctness. We do
not need to track the tag for every super-frame in the cache.

Action: Reduce the entries in the laundry list to only cover
a subset of the super-frames in the DRAM cache and make
the laundry list set-associative to reduce the conflicts between
dirty super-frames.

Thus, the laundry list stores only some tags in SRAM to
eliminate the DRAM cache reads on LLC-writeback in the
case where the tag matches (Insight 2). Now, when checking
if an LLC-writeback is safe, if the laundry counts entry is
nonzero (i.e., the super-frame frame contains dirty data), we
check the laundry list. If the laundry list contains a tag for that
super-frame and that tag matches, then the LLC-writeback is
safe to insert into the cache. Section 5.5 shows it is common
to overwrite dirty data in the cache and find a matching tag in
the laundry list. Thus, we find the laundry list significantly de-
creases the extra reads compared to only tracking the laundry
counts.

To reduce the area overhead, we implement the laundry list
as a set-associative array with fewer entries than super-frames
in the cache. Each laundry list entry holds the physical tag
that is found in the cache, the super-frame tag, and a valid
bit.

The laundry list is indexed by a subset of the super-frame
number (Figure 4a). On a laundry list access, the valid super-
frame tags from each way are compared with the incoming
request’s super-frame tag. If any of these super-frame tags
match, we compare the physical tag of that entry to the re-
quest’s physical tag. On a physical tag match, we take the
“fast dirty” path in Figure 5. If there are no matching super-
frame tags or the physical tags mismatch, we take the “slow
dirty” path in Figure 5 since we are unsure whether the re-
quest is safe to write into the super-frame. In this case, the
adaptive victim cache behaves like a dirty victim cache.

In Section 5.5, we show that a laundry list that covers only
1/8 of the DRAM cache performs as well as a full laundry
list for most workloads. The key reason a partial laundry list
provides sufficient performance is that most super-frames are
fully clean and contain no dirty data. Thus, tracking a tag for
each super-frame is unnecessary.

The dirty region tracker (DiRT) proposed by Sim et al. [33]
has a similar goal to the laundry list and laundry counts.
However, DiRT constrains the number of dirty pages, falling
back on a writethrough (clean) policy under high-write traffic,
which can hurt performance (evaluated in Section 5). Our
adaptive victim design is more robust and falls back on the
higher-performance dirty victim design under high write-
traffic.

6

No

Yes

Laundry Count

 == 0

Laundry list

super-frame tag

match

Laundry list

physical tag

match
Read victim

tag & data

Writeback victim data

Invalidate LL entry

Decr. laundry count

Modi ed in LLC

Create LL entry

Incr. Laundry count

Dirty when put

in LLC

Incr. Laundry count

Write DRAM

tag & data

No

Yes

Yes

No

No

Modi ed in LLC

Yes

No

Yes

Yes

LLC-Writeback

Yes

No

Yes

Elide the

LLC-witeback
Clean

Slow

dirty

Fast

dirty

No

LLC-Eviction

No

Clean-evict set
or

modi ed in LLC

block tag
not match &
block dirty

Figure 5: Overview of adaptive victim cache operation. The
shaded rectangles represent accessing the DRAM cache. Cor-
ner cases and error cases are covered in detail in Table 5 in
Appendix A.

The flowchart in Figure 5 shows the detailed DRAM cache
state machine for LLC-writeback requests. The shaded rect-
angles represent accessing the DRAM cache. The “clean”
and “fast dirty” path allow the adaptive victim cache to be-
have like a fully-clean cache and an unrealistic SRAM tag
cache, respectively. LLC-read requests are not shown; they
simply read the tag and data from the DRAM cache.

Before the LLC-writeback request, the LLC checks the
clean-evict bit and LLC’s dirty bit. If neither bit is set, the
LLC-writeback is elided since the block is likely already
cached and main memory or the DRAM cache contains the
most up-to-date data.

Otherwise, the LLC sends an LLC-writeback request with
the modified bit, the clean-evict bit, and the cache-dirty bit.
On an LLC-writeback, we first check the laundry count for
the super-block corresponding to the writeback request. If
the count is zero, then it is safe to write the line into the super-
frame and the super-frame behaves like a fully-clean cache
(without requiring all dirty data to write through). Otherwise,
we check the laundry list as shown in Figure 4. If there is a
laundry list hit, then we take the “fast dirty” since the access
is guarenteed to be safe.

The access may overwrite data that is stale in main memory
if either there is no laundry list entry for the corresponding
super-frame or the physical tag of the matching super-frame
entry does not match. In this case, we fall back on the be-
havior of the dirty victim cache and read the tag and data in
the DRAM cache. At this point, if the corresponding frame’s
data is dirty and the tag does not match the request, we write
the data back to main memory.

Finally, we write the data in the LLC-writeback request
to the DRAM cache. If we used the “slow dirty” path, we
use the canonical information in the DRAM cache and the
LLC-writeback request type to update the laundry structures
to be consistent with the DRAM cache. Otherwise, we update
the laundry structures based on the type of LLC-writeback
request since we know the state of the cache frame.

4.4 Proactive writeback
Insight 5: If the cache is mostly clean, we get more benefit
from our adaptive victim design.

Action: Proactively writeback dirty data to main memory
only when it will not hurt performance.

The adaptive victim DRAM cache will perform best when
most of the cache is clean. However, maintaining a fully-
clean victim cache hurts performance when the backing main
memory bandwidth is saturated. Therefore, we use a proac-
tive writeback design that adaptively cleans blocks in the
cache only when it will minimally affect performance.

There are two times where we try to writeback dirty data
from the DRAM cache to the main memory. First, on a
modified LLC-writeback we try to write the data through
to memory as well as insert it into the cache like the clean
victim design. Second, whenever a cache frame is read on an
LLC-read request, if it is dirty, we try to clean the frame.

We only issue these proactive writebacks if the main mem-
ory bandwidth is not at or near saturation. We track whether
or not we are receiving backpressure from main memory and
never send a proactive writeback if the main memory port is
full or if main memory has been blocked recently (e.g., the
last 50 cycles). If we continue to issue writes when the main
memory write buffer is full, the writes will take precedence
over the main memory reads, hurting performance because
main memory reads are the latency-sensitive demand requests
from the CPU.

In addition to proactive writeback, we propose a dirty-data
scrubber with the DRAM cache controller. This hardware
walks the laundry counts structure and issues reads to proac-
tively clean super-frames when there is extra DRAM cache
and main memory bandwidth (e.g., when the application is
not in a memory-intensive phase). In fact, this scrubber could
work together with the DRAM refresh logic to proactively
clean DRAM rows that are activated for refresh. We do not
present an evaluation of the dirty data scrubber.

Proactive writeback is similar to self balancing dispatch
(SBD) proposed by Sim et al. [33] except we only bypass
LLC-writeback requests. Additionally, the proactive write-
back algorithm is simpler than SBD. Proactive writeback only
tracks the backpressure and number of writes, unlike SBD
which calculates the expected queuing delay.

4.5 Adaptive victim cache overheads

7

Name Class Footprint Description
BT D 10.8 GB Block tri-diagonal solver
CG D 16.3 GB Conjugate gradient
FT C 5.1 GB Discrete 3D FFT
IS D 33.0 GB Integer sort
LU D 9.0 GB LU Gauss-Seidel solver
MG D 26.5 GB Multi-grid on meshes
SP D 16.0 GB Scalar pentadiagonal solver
UA D 9.1 GB Unstructured adaptive mesh

Table 3: NPB version 3.3.1 workloads. Class defines the
input size. Footprint is the actual resident memory size.

The total overhead of the adaptive victim caches structures
is 1040 KB split evenly between 16 fully-independent HBM
channels (65 KB per channel) compared to 36 MB for full
tags for a 1 GB DRAM cache. Although this is a significant
area overhead, it is less than 6% of the 16 MB LLC, and due
to our decentralized design, each individual structure is small,
so there is little added latency and power.

We use a super-frame size of 16 KB, split across 16 HBM
channels. Thus, each dirty count array entry tracks 16 64-byte
frames (1 KB per channel). The laundry count requires 5 bits
for each entry, and so, the laundry count requires 40 KB per
channel (640 KB for the whole system). We use a laundry list
that can cover 1/8 of the DRAM cache capacity, assuming high
spatial locality. The laundry list has 8192 entries per HBM
channel. We analyze the effect of increasing the laundry list
size in Section 5.5. The area overhead of the laundry list is
25 K per channel.

5. EVALUATION

5.1 Methodology
DRAM caches make the most sense for workloads that

are bandwidth-bound and have very large working set sizes.
Therefore, we evaluate the NAS parallel benchmarks (NPB) [1,
3]. These are scientific computing benchmarks with large
working set sizes and high memory traffic. Table 3 describes
the workloads. These workloads run between a few minutes
and a few hours, natively.

We run the NPB on gem5 [4]. However, NPB are too
large to execute to completion in simulation. We use random
sampling from the whole execution to ensure capturing all of
the workloads’ variation. We use simple random sampling
and a method similar to the one used by Sandberg et al. using
the virtualization hardware (KVM) to fast-forward to each
sampled observation [31]. For each observation, we warm up
the caches for 10 ms and run the detailed simulation for 2 ms.
We have at least 100 observations for each configuration and
application totaling about 200 ms of detailed simulation per
workload per configuration (not counting cache warmup) or
about 6 billion instructions for each sample.

Performance for NPB are measured in average billion float-
ing point operations per second (GFLOPS) or user-mode in-
structions (UGIPS) for integer-only workloads. Measuring
the performance with GFLOPS or UGIPS provides a fair com-
parison across configurations when using statistical sampling
as the total work accomplished in the observation period is

On-die Memory system
32 CPU cores 16 HBM channels [15]
32 KB each split L1 I/D 8 GB/s per channel
256 KB private L2 1 GB total capacity
16 MB shared LLC 2 DDR3 channels [14]
16 LLC banks 12.6 GB/s per channel

64 GB total capacity
10 cycles laundry counts + laundry list latency

Table 4: Simulated system details.

BT CG FT IS LU MG SP UA
0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
ra

ti
o

Figure 6: Miss ratio for NPB. Each point represents one ran-
dom observation. Also shown is a Gaussian approximation
of the distribution across the whole sample.

proportional to the number of floating point or user-mode
instructions executed.

Table 4 describes the system we used to evaluate the NPB.
We simulated a large multi-core CPU with abundant thread-
level parallelism and a high-bandwidth cache system. The on-
die CPU system is a proxy for a high-performance compute
chip. We use the detailed DRAM models in gem5 to model
both HBM and DDR3 [11]. These models are based on the
datasheets for each type of memory. When modeling HBM
as a DRAM cache, we add one extra BURST cycle to model
ECC/tag transfer.

We evaluate four different DRAM cache designs.
KNL-like (2.1) Latency-optimized DRAM cache design.
Dirty victim (3.1) Victim cache that can store dirty data.
Clean victim (3.2) Victim cache that is fully-clean.
Adaptive victim (4) Victim cache that is mostly clean, but

allows any amount of dirty data.

5.2 Workload analysis
The NPB show significant variation both across workloads

and within the same workload, which motivates our adaptive
victim cache design. Figures 6 and 7 show the miss ratio and
write ratio for each 2 ms observation for each workload. The
background area plots are violin plots and show a Gaussian
approximation of the distribution. This shows the weights of
many observations that show the same value (e.g., most of
the BT observations show a miss rate of about 10%, but a few
have a miss rate of nearly 100%).

There are a variety of behaviors across the NPB. Figure 6
shows the wide variety of DRAM cache miss ratios, even
within a single workload. For instance, FT always has a
low miss ratio, but IS sometimes has a low miss ratio and
sometimes has a miss ratio near 100%.

Figure 7 shows the ratio of dirty write requests (roughly
the percent of DRAM cache that holds dirty data for a victim
cache) for the NPB. This figure shows there is a variety

8

BT CG FT IS LU MG SP UA
0.0

0.2

0.4

0.6

0.8

1.0
W

ri
te

 r
a
ti

o

Figure 7: Percent of all LLC-writbacks that contain modified
data. Each point represents one random observation. Also
shown is a Gaussian approximation of the distribution across
the whole sample.

of write behavior, sometimes even within a workload. For
instance, CG shows almost no writes to the DRAM cache, but
SP has a broad distribution with phases showing high write
proportions and low write proportions. Thus, it is important
for a DRAM cache policy to be robust under many different
application characteristics.

5.3 Access amplification
Figure 8 shows the access amplification—the number of

DRAM cache accesses per demand request from the on-chip
LLC (demand reads and writes)—for the eight NPB evaluated.
Any accesses above the 1.0 line are “unnecessary” accesses
that are not servicing demand requests. Each bar is split
by the different types of access amplification described in
Section 2.2. The data read writeback and tag read dirty are
combined into a single bar in this figure as each tag read dirty
access reads both the tag and the data to reduce latency.

Figure 8 shows that the KNL-like design makes on average
two DRAM cache accesses per demand request. In the worst
case (MG), this design has an access amplification of 2.8. MG
has a high miss rate, and each miss requires three DRAM
cache accesses (Section 2.2).

The dirty victim design reduces the access amplification by
removing the tag write busy accesses. However, this design
increases the relative number of data read writeback accesses
since the LLC performs must writeback both modified data
and clean data if the clean-evict bit is set.

The clean victim design further reduces the access ampli-
fication. This design trades the demand write requests for
data write fill accesses, since for every LLC-writeback this
design fills a clean copy of the data. Although the clean
victim design eliminates most access amplification, for some
workloads it does not perform well because it increases main
memory traffic (Section 5.4).

Next, the unrealistic SRAM tag design shows the minimum
access amplification while still achieving good performance.
This design significantly reduces the access amplification
compared to the dirty victim design because, the cache con-
troller knows exactly which accesses are required before
accessing the DRAM cache.

The rightmost bar shows the access amplification of the
adaptive victim design is only slightly higher than the unre-
alistic SRAM tag design. Like the SRAM tag design, the
adaptive victim cache limits the unnecessary accesses and, in
most cases, only accesses the DRAM cache when required.
The adaptive victim is within 6% of the amplification reduc-
tion of unrealistic SRAM tags.

Like the clean victim design, the adaptive victim design
trades some demand write (dirty write) accesses for data
write fill accesses. In the cases where there is ample main
memory bandwidth, the adaptive victim cache uses proactive
writebacks perform a clean fill instead of a dirty write. For
some workloads like SP and MG, there is not any spare
main memory bandwidth, so the adaptive victim design rarely
issues proactive writebacks (the number of demand writes is
the same between the dirty victim design and adaptive victim
design). BT and FT have many proactive writebacks and
some of their demand writes are replaced with data write fill
accesses (clean writes).

5.4 NPB performance
Figure 9 shows the overall performance for the eight NPB

evaluated. The bars represent the average performance (either
GFLOPS or UGIPS) of each application across the observa-
tions taken. The error bars show a 95% confidence interval
for the mean performance.

Some applications see no performance improvement or
only a minor performance improvement with a 1 GB DRAM
cache (IS, UA, MG) compared to no DRAM cache. For MG
and UA, the miss rate is very high: an average of over 90%
(Figure 6). For IS, some iterations fit in the 1 GB cache and
show low miss rates, but most do not and these iterations
that do not fit in the cache dominate the execution time. For
UA, even if all of the memory is HBM, there is not much
performance improvement. This workload is not bandwidth-
bound, but latency-bound due to pointer-chasing through the
unstructured grid datastructure.

Across the NPB, some workloads show higher perfor-
mance with a dirty victim DRAM cache (BT, FT, LU, MG,
SP) and some perform better with a clean victim design (IS,
CG). The adaptive victim DRAM cache design performs at
least as well as the best of either victim design. In most cases,
the adaptive victim design performs as well as the unrealistic
SRAM tag design (not shown). The only case the unrealistic
SRAM tags outperforms the adaptive victim is FT, where
there is a very high write-ratio. In this case, the adaptive
victim performs the same as the dirty victim design.

The lower-right graph shows the average relative perfor-
mance of the four DRAM cache designs with equal weight
between each application. Our adaptive victim design shows
an average of about 10% performance improvement com-
pared to the baseline KNL-like design. This also shows that
the KNL-like design performs worse than a simple victim
cache design, and the victim clean design hurts performance,
on average. Our adaptive victim cache design is only 2.3%
slower than an impractical design with all tags stored in
SRAM.

5.5 Laundry list size
Recall that an unrealistic SRAM tag designs requires at

least 36 MB of on-chip SRAM to store the cache tags. Our
adaptive victim design requires about 1 MB of on-chip SRAM.
We find that increasing the on-chip storage does not improve
the performance of our adaptive victim cache.

Figure 10 shows the relative performance of each applica-
tion for varying sizes of the laundry list. The “full tags” is
provisioned with an entry for every super-frame, this would

9

BT CG FT IS LU MG SP UA
0.0

0.5

1.0

1.5

2.0

2.5

Ac
ce

ss
 A

m
pl

ifi
ca

tio
n

KN
L-

lik
e

Di
rty

 v
ict

im
Cl

ea
n

vi
ct

im
Un

re
al

. S
RA

M
 ta

gs
Ad

ap
tiv

e
vi

ct
im Tag write busy

Data write fill
Data read writeback
Tag read dirty
Demand write
Demand read

Figure 8: Access amplification for the NPB. The dashed line at 1.0 shows the demand requests from the LLC. Any accesses
above 1.0 are due to access amplification. Note: there is some noise in the data from the sampling methodology.

0

10

20

30

GF
LO

PS

BT

0

2

4

GF
LO

PS

CG

0

5

10

15

GF
LO

PS
FT

0

5

10

UG
IP

S

IS

0

20

40

GF
LO

PS

LU

0

10

20

GF
LO

PS

MG

0

5

10

15

GF
LO

PS

SP

0

50

100

GF
LO

PS

UA

0.9

1.0

1.1

1.2

Re
la

tiv
e

Pe
rf.

Geo-mean

KNL-like Dirty victim Clean victim Adaptive victim

Figure 9: Performance of NPB. All workloads measured in
GFLOPS, except for IS with UGIPS. The error bars represent
a 95% confidence interval for the mean based on the Student’s
t-Test. The average assumes equal weight for each of the
workloads.

BT CG FT IS
0.00
0.25
0.50
0.75
1.00
1.25
1.50

Pe
rf.
 re

la
tiv

e
to
 "F

ul
l t
ag

s"

LU MG SP UA
0.00
0.25
0.50
0.75
1.00
1.25
1.50

Pe
rf.
 re

la
tiv

e
to
 "F

ul
l t
ag

s"

1/8 tags
(1.02MB)

1/4 tags
(1.3MB)

Full tags
(3.2MB)

Figure 10: Relative performance of different tag array sizes
for the laundry list. Error bars show a 95% confidence interval
for the mean, and all bars are normalized to the average
performance with “full tags”.

1/8 1/4 1 1/8 1/4 1
Laundry list reach

0%

25%

50%

75%

100%

Pe
rc

en
t o

f a
cc

es
se

s LU SP
Laundry list super-
frame tag miss
Laundry list phys-
ical tag miss
Fast dirty
Clean

Figure 11: Breakdown of laundry list and laundry counts
lookups for all write requests for two representative applica-
tions, FT and LU. Compares a laundry list with 1/8 reach,
1/4 reach, and large enough to cover the entire cache (imprac-
tically large). Labels correspond to Figure 5.

have an overhead of 3.2 MB. The “1/8 tags” is the design used
in the previous results (1040 KB), and the “1/4 tags” shows
the performance if the tag array is provisioned so at most 1/4
of the cache is allowed to be dirty. The “1/4 tags” design has
an area overhead of about 1.3 MB.

Figure 10 shows that for most applications the size of
the laundry list does not significantly affect performance.
Although some bars for smaller laundry list designs appear
higher, they are within the noise of our sampling methodology.
FT is one workload where there is a clear effect when the
tag array size is increased. However, even for FT, the “1/8
tags” performs as well as the dirty victim design (Figure 9)
demonstrating the robustness of our design. In the worst case,
it falls back on the dirty victim performance, not the clean
victim design.

Figure 11 shows the breakdown of the result of consulting
the laundry structures for each write request as a percentage of
all writes. The labels correspond to the flowchart in Figure 5.
This figure shows the importance of tracking tags in the
laundry list instead of just tracking the whether the super-
frame is dirty (i.e., just the laundry counts). The goal of the
laundry list is to avoid the “slow dirty” path which reduces the
number of DRAM cache reads before writing new data, since
reading before writing incurs extra latency and occupancy
overhead on the DRAM bus [14]. The sum of the red and
blue bars (bottom two) show the effectiveness of the laundry
list at removing these accesses.

For LU, most of the write requests are to data that already
exists in the DRAM cache and the laundry list effectively
elides the extra write requests. This is why the access ampli-

10

Dir
ty
vic

tim

Cle
an
 vi
cti
m

La
rge

 Di
RT

Vic
tim

 ad
ap
tiv
e

0

5

10

15

20

25

30

35

40

45

G
FL
O
P
S

LU

Dir
ty
vic

tim

Cle
an
 vi
cti
m

La
rge

 Di
RT

Vic
tim

 ad
ap
tiv
e

0

5

10

15

20

G
FL
O
P
S

SP

Figure 12: Performance for two workloads with a very ag-
gressive DiRT-like design [33].

BT CG FT IS LU MG SP UA
0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
si

n
g
le

to
n

d
ir

ty
 s

u
p
e
r-

fr
a
m

e
s

4K regions 16K regions 64K regions

Figure 13: Percent of super-frames that have a single super-
block cached. Each point represents one random observation.
Also shown is a Gaussian approximation of the distribution
across the whole sample.

fication for LU is low for our adaptive victim cache design
(Figure 8). For LU, a larger laundry list allows more of the
cache to contain dirty data (lower red bar). This reduces the
main memory traffic but does not significantly affect perfor-
mance since most of the accesses are on the “fast dirty” or
“clean” paths.

For SP, increasing the size of the laundry list increases its
effectiveness. With a larger laundry list we take the “fast
dirty” path more often. However, as Figure 10 shows, this
does not have a significant effect on performance for this
workload. SP and FT (not shown) have the largest effect of
increasing the laundry list size. If we instead only used the
laundry counts or a bitvector tracking the dirty frames, all of
the blue parts of the bars in Figure 11 would generate extra
DRAM cache accesses increasing access amplification.

As shown by Figure 11 we find that tag mismatches in the
laundry list are rare. This implies that tracking super-block
tags instead of 64-byte block tags does not cause significant
false sharing. It is rare that there is more than one dirty super-
block within each super-frame in the DRAM cache even for
large super-blocks (i.e., 16 KB).

5.6 Tracking dirty data
Figure 7 showed that some applications have mostly mod-

ified write requests to the DRAM cache. Thus, for these
applications, a large fraction of the cache is dirty. Therefore,
we should not use solutions like DiRT [33] that constrain the
amount of dirty data in the cache as this solution reverts to the
clean victim cache performance. Our adaptive victim cache
is robust under different write traffic conditions.

Figure 12 shows the performance of victim designs and a

DiRT-like design. To model DiRT, we use the laundry list but
do not use the laundry counts. Instead of modeling exactly
1024 pages in the tag array (DiRT design), we allow up to 1/4
of the cache (256 MB) to be dirty, compared to only 4 MB in
Sim et al. [33]. This is a very aggressive model of the DiRT.

Figure 12 shows that for the workloads where the clean
victim design performs poorly DiRT also performs poorly. In
this case, DiRT performs about the same as a clean victim
cache because more than 1/4 of the active blocks in the cache
are dirty. Therefore, the constraining bandwidth is the main
memory bandwidth, not the DRAM cache bandwidth. In both
of these cases, the adaptive victim performs as well as the
dirty victim design because it changes to a writeback mode
instead of writethrough.

Figure 13 shows the spatial locality of the NPB. This figure
shows the number of super-frames for which only a single
super-block is cached for three different super-frame sizes.
A super-frame size of 1 KB is the same as directly tracking
single cache frames since we have a 16-channel HBM.

Figure 13 shows that for most observations for most work-
loads almost all super-frames have a single super-block. How-
ever, if we increase the super-frame size to 64 KB, the spatial
locality breaks down for some workloads. Thus, we choose
16 KB super-frames. This size provides a good tradeoff be-
tween area overhead and spatial locality.

5.7 Results summary
The adaptive victim DRAM cache design gets the best

of the clean victim and dirty victim designs. The adaptive
victim design is robust, and performs well under both high
and low miss rate and high and low fractions of write traffic,
unlike the other victim designs. The adaptive victim DRAM
cache sees these benefits because it does not squander its
bandwidth or the bandwidth to main memory. By tracking a
small amount of information in SRAM just for dirty frames,
our design limits the access amplification and outperforms
the alternatives.

6. RELATED WORK
There is significant recent work treating HBM as a DRAM

cache. We build on previous research that reduces the latency
when accessing DRAM caches, and while it is not the fo-
cus of this work, our ideas can be used in conjunction with
techniques to increase the hit rates of DRAM caches.

Much of the initial work on DRAM caches focused on re-
ducing the latency when storing the cache tags in DRAM [13,
23, 29]. Loh and Hill proposed storing the cache tags in the
same DRAM row as the data to reduce the hit latency [23].
Qureshi and Loh developed a latency-optimized DRAM cache
design (Alloy cache) that stores the tag-and-data together in a
single entity in the DRAM cache [29]. Additionally, Qureshi
and Loh advocate for a direct-mapped cache instead of an as-
sociative cache. A direct-mapped design reduces the latency,
and the increased hit rate of set-associativity is limited due to
the large capacity.

BEAR’s (Bandwidth efficient architecture) approach to
reducing the bandwidth overheads of DRAM caches is to
filter most misses and fills to the DRAM cache [7]. In con-
trast, our adaptive victim design does not use any filters and
works synergistically in a system that implements filters like

11

the BAB and NTC from BEAR to further reduce the access
amplification.

Sim et al. [33] propose a DRAM cache design which lim-
its the dirty data in the DRAM cache to allow requests to
be satisfied by main memory instead of the DRAM cache.
However, their cache constrains the dirty data. In a high-miss
rate cases, the cache behaves like a writethrough cache (clean
victim), hurting performance for some workloads. Stuecheli
et al. use the SRAM LLC as a write queue for DRAM and
proposes some similar hardware. [36]. The “cache cleaner”
can be used in conjunction with our ideas to help keep the
DRAM cache clean, and the set state vector tracks the oldest
dirty lines in the cache. Our laundry list and counts track all
of the dirty lines in the DRAM cache for correctness.

Many proposals track the DRAM cache tags at a coarse
granularity, like our laundry list and laundry counts [6,16,17,
18, 22]. The footprint cache tracks the data in the cache at
a page granularity, but manages the cache on a block gran-
ularity [17]. The Unison cache combines the ideas of the
footprint cache with Alloy cache by storing the metadata in
the DRAM cache providing the benefits of the footprint cache
without the SRAM area overheads [16]. However, Unison
cache has access amplification for managing the metadata
that is now stored in the DRAM cache.

The Bi-Modal cache also uses a dual-granularity design
that leverages page-based tracking to reduce the overheads
of block-based cache [10]. In this design, instead of storing
the tags with the data, the Bi-Modal cache reserves a DRAM
cache bank/channel for the tags. This may reduce the in-
terference between unnecessary accesses, but not the access
amplification.

Tag tables stores the cache tags in main memory in a page-
table-like structure and caches frequently accessed tags in
the on-chip SRAM LLC [8]. Tag tables does not have any
unnecessary accesses to the DRAM cache, but does increase
the traffic to main memory, if there is low spatial locality.

Dirty-block index is similar to the laundry list and laundry
counts in that it tracks just the dirty blocks in the cache [32].
However, as described in Section 4.3, the adaptive victim
cache tracks which cache frames—the specific part of the
cache—that is dirty, not the physical addresses that are dirty.

7. CONCLUSIONS
We present an adaptive victim DRAM cache design that

robustly shifts from behaving as a fully-clean cache to behav-
ing as a dirty cache depending on the program behavior. This
design limits the access amplification (total DRAM cache
accesses per LLC-miss demand request) to the DRAM cache,
improving performance over other designs. Our adaptive
victim design is orthogonal to other DRAM cache access
filtering techniques opening the door to future synergies.

12

8. REFERENCES
[1] “NAS Parallel Benchmarks,”

https://www.nas.nasa.gov/publications/npb.html. [Online]. Available:
https://www.nas.nasa.gov/publications/npb.html

[2] AMD, “High Bandwidth Memory,”
http://www.amd.com/en-us/innovations/software-technologies/hbm.
[Online]. Available:
http://www.amd.com/en-us/innovations/software-technologies/hbm

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga,
“The NAS Parallel Benchmarks-Summary and Preliminary Results,”
Proceedings of the 1991 ACM/IEEE Conference on Supercomputing,
pp. 158–165, 1991. [Online]. Available:
http://doi.acm.org/10.1145/125826.125925

[4] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, D. A. Wood, B. M. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, and T. Krishna, “The
gem5 simulator,” ACM SIGARCH Computer Architecture News,
vol. 39, no. 2, p. 1, aug 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2024716.2024718

[5] B. Black, “MICRO 46 Keynote: Die Stacking is Happening,” 2013.
[Online]. Available: http://www.cs.wisc.edu/{~}markhill/Tmp/
micro2013keynote{_}byran{_}black{_}on{_}die{_}stacking.pdf

[6] C. C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A Two-Level
Memory Organization with Capacity of Main Memory and Flexibility
of Hardware-Managed Cache,” 47th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 1–12, 2014. [Online]. Available:
http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7011373

[7] C. Chou, A. Jaleel, and M. K. Qureshi, “BEAR: Techniques for
Mitigating Bandwidth Bloat in Gigascale DRAM Caches,” in
Proceedings of the 42nd Annual International Symposium on
Computer Architecture - ISCA ’15, vol. 1. New York, New York,
USA: ACM Press, 2015, pp. 198–210. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2749469.2750387

[8] S. Franey and M. Lipasti, “Tag tables,” IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), pp.
514–525, 2015. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7056059

[9] K. Gharachorloo, L. A. Barroso, and A. Nowatzyk, “Efficient
ECC-Based Directory Implementations for Scalable Multiprocessors,”
in 12th Symposium on Computer Architecture and High-Performance
Computing (HPCA 12), 2000.

[10] N. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan,
“Bi-Modal DRAM Cache: Improving Hit Rate, Hit Latency and
Bandwidth,” in 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture, no. i. IEEE, dec 2014, pp. 38–50.
[Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
7011376http://ieeexplore.ieee.org/document/7011376/

[11] A. Hansson, N. Agarwal, A. Kolli, T. Wenisch, and A. N. Udipi,
“Simulating DRAM controllers for future system architecture
exploration,” in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, mar 2014, pp.
201–210. [Online]. Available:
http://ieeexplore.ieee.org/document/6844484/

[12] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write
amplification analysis in flash-based solid state drives,” Proceedings of
SYSTOR 2009: The Israeli Experimental Systems Conference on -
SYSTOR ’09, p. 1, 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1534530.1534544

[13] C.-C. Huang and V. Nagarajan, “ATCache: Reducing DRAM Cache
Latency via a Small SRAM Tag Cache,” Proceedings of the 23rd
International Conference on Parallel Architectures and Compilation,
pp. 51–60, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2628071.2628089

[14] JEDEC, “DDR3 SDRAM Standard,”
http://www.jedec.org/standards-documents/docs/jesd-79-3d, JEDEC,
Tech. Rep., 2012. [Online]. Available:
http://www.jedec.org/standards-documents/docs/jesd-79-3d

[15] JEDEC, “High Bandwidth Memory (HBM) DRAM,” JESD235A,
Tech. Rep. November, 2015. [Online]. Available:

http://www.jedec.org/standards-documents/results/jesd235a

[16] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison Cache: A
Scalable and Effective Die-Stacked DRAM Cache,” 47th Annual
IEEE/ACM International Symposium on Microarchitecture, no. Micro,
pp. 25–37, 2014. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7011375

[17] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM caches for
servers: hit ratio, latency, or bandwidth? have it all with footprint
cache,” Proceedings of the 40th Annual International Symposium on
Computer Architecture, pp. 404–415, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2508148.2485957

[18] X. Jiang, N. Madan, and L. Zhao, “CHOP: Adaptive filter-based dram
caching for CMP server platforms,” Proceedings of the 16th
International Symposium on High Performance Computer Architecture
(HPCA 16), pp. 1–12, 2010. [Online]. Available:
http://ieeexplore.ieee.org/ielx5/5410726/5416625/05416642.pdf?tp=
{&}arnumber=5416642{&}isnumber=5416625{%}5Cnhttp:
//ieeexplore.ieee.org/xpl/articleDetails.jsp?tp={&}arnumber=
5416642{&}queryText=chop{%}5Cnhttp:
//ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5416642

[19] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” in
Proceedings of the 17th annual international symposium on Computer
Architecture - ISCA ’90. New York, New York, USA: ACM Press,
1990, pp. 364–373. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=325164.325162

[20] H. S. Kannan, B. P. Lilly, P. R. Subramoniam, and P. Kanapathipillai,
“Delaying cache data array updates,” 2016. [Online]. Available:
https://www.google.com/patents/US9229866

[21] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist open-page: A
DRAM Page-mode Scheduling Policy for the Many-core Era,” in
Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture - MICRO-44 ’11. New York, New York, USA:
ACM Press, 2011, p. 24. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2155620.2155624

[22] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee, “A
fully associative, tagless DRAM cache,” in Proceedings of the 42nd
Annual International Symposium on Computer Architecture - ISCA ’15.
New York, New York, USA: ACM Press, 2015, pp. 211–222. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2749469.2750383

[23] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block
sizes for very large die-stacked DRAM caches,” 44th IEEE/ACM
International Symposium on Microarchitecture, p. 454, 2011. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2155620.2155673

[24] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling
efficient and scalable hybrid memories using fine-granularity DRAM
cache management,” IEEE Computer Architecture Letters, vol. 11,
no. 2, pp. 61–64, 2012.

[25] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair queuing
memory systems,” Proceedings of the Annual International
Symposium on Microarchitecture, MICRO, pp. 208–219, 2006.

[26] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, D. Lee, and M. Parkin,
“The S3.mp scalable shared memory multiprocessor,” Proceedings of
the Twenty-Seventh Hawaii International Conference on System
Sciences HICSS-94, vol. 1, pp. 144–153, 1994. [Online]. Available:
http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=323149

[27] NVIDIA, “Tesla P100 Data Center Accelerator,”
www.nvidia.com/object/tesla-p100.html, 2017. [Online]. Available:
www.nvidia.com/object/tesla-p100.html

[28] J. T. Pawlowski, “Hybrid Memory Cube (HMC),” in Hot Chips 23,
2011.

[29] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-off in
Architecting DRAM Caches: Outperforming Impractical SRAM-Tags
with a Simple and Practical Design,” in 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), dec 2012,
pp. 235–246. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6493623

[30] S. Rixner, W. Dally, U. Kapasi, P. Mattson, and J. Owens, “Memory
access scheduling,” Proceedings of 27th International Symposium on
Computer Architecture, pp. 1–11, 2000.

[31] A. Sandberg, N. Nikoleris, T. E. Carlson, E. Hagersten, S. Kaxiras,
and D. Black-Schaffer, “Full Speed Ahead: Detailed Architectural

13

https://www.nas.nasa.gov/publications/npb.html
http://www.amd.com/en-us/innovations/software-technologies/hbm
http://doi.acm.org/10.1145/125826.125925
http://dl.acm.org/citation.cfm?id=2024716.2024718
http://www.cs.wisc.edu/{~}markhill/Tmp/micro2013keynote{_}byran{_}black{_}on{_}die{_}stacking.pdf
http://www.cs.wisc.edu/{~}markhill/Tmp/micro2013keynote{_}byran{_}black{_}on{_}die{_}stacking.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7011373
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7011373
http://dl.acm.org/citation.cfm?doid=2749469.2750387
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7056059
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7056059
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7011376 http://ieeexplore.ieee.org/document/7011376/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7011376 http://ieeexplore.ieee.org/document/7011376/
http://ieeexplore.ieee.org/document/6844484/
http://portal.acm.org/citation.cfm?doid=1534530.1534544
http://doi.acm.org/10.1145/2628071.2628089
http://www.jedec.org/standards-documents/docs/jesd-79-3d
http://www.jedec.org/standards-documents/results/jesd235a
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7011375
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7011375
http://dl.acm.org/citation.cfm?doid=2508148.2485957
http://ieeexplore.ieee.org/ielx5/5410726/5416625/05416642.pdf?tp={&}arnumber=5416642{&}isnumber=5416625{%}5Cnhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp={&}arnumber=5416642{&}queryText=chop{%}5Cnhttp://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5416642
http://ieeexplore.ieee.org/ielx5/5410726/5416625/05416642.pdf?tp={&}arnumber=5416642{&}isnumber=5416625{%}5Cnhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp={&}arnumber=5416642{&}queryText=chop{%}5Cnhttp://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5416642
http://ieeexplore.ieee.org/ielx5/5410726/5416625/05416642.pdf?tp={&}arnumber=5416642{&}isnumber=5416625{%}5Cnhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp={&}arnumber=5416642{&}queryText=chop{%}5Cnhttp://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5416642
http://ieeexplore.ieee.org/ielx5/5410726/5416625/05416642.pdf?tp={&}arnumber=5416642{&}isnumber=5416625{%}5Cnhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp={&}arnumber=5416642{&}queryText=chop{%}5Cnhttp://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5416642
http://ieeexplore.ieee.org/ielx5/5410726/5416625/05416642.pdf?tp={&}arnumber=5416642{&}isnumber=5416625{%}5Cnhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp={&}arnumber=5416642{&}queryText=chop{%}5Cnhttp://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5416642
http://portal.acm.org/citation.cfm?doid=325164.325162
https://www.google.com/patents/US9229866
http://dl.acm.org/citation.cfm?doid=2155620.2155624
http://dl.acm.org/citation.cfm?doid=2749469.2750383
http://dl.acm.org/citation.cfm?doid=2155620.2155673
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=323149
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=323149
www.nvidia.com/object/tesla-p100.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6493623
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6493623

Simulation at Near-Native Speed,” 2015 IEEE International
Symposium on Workload Characterization, pp. 183–192, 2015.
[Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7314164

[32] V. Seshadri, A. Bhowmick, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “The Dirty-Block Index,” in ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA). IEEE,
jun 2014, pp. 157–168. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6853204

[33] J. Sim, G. H. Loh, H. Kim, M. OConnor, and M. Thottethodi, “A
Mostly-Clean DRAM Cache for Effective Hit Speculation and
Self-Balancing Dispatch,” in 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE, dec 2012, pp.
247–257. [Online]. Available:
http://ieeexplore.ieee.org/document/6493624/

[34] A. Sodani, “MEGI cache states,” Private communication, 2016.

[35] A. Sodani, R. Gramunt, J. Corbal, H.-s. Kim, K. Vinod,
S. Chinthamani, S. Hutsell, R. Agarwal, and Y.-C. Liu, “Knights
Landing: Second-Generation Intel Xeon Phi Product,” IEEE Micro,
vol. 36, no. 2, pp. 34–46, mar 2016. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7453080

[36] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K. John, “The
virtual write queue: coordinating DRAM and last-level cache policies,”
in Proceedings of the 37th annual international symposium on
Computer architecture - ISCA ’10. New York, New York, USA:
ACM Press, 2010. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1815961.1815972

[37] D. Weiss, M. Dreesen, M. Ciraula, C. Henrion, C. Helt, R. Freese,
T. Miles, A. Karegar, R. Schreiber, B. Schneller, and J. Wuu, “An
8MB level-3 cache in 32nm SOI with column-select aliasing,” in 2011
IEEE International Solid-State Circuits Conference. IEEE, feb 2011,
pp. 258–260. [Online]. Available:
http://ieeexplore.ieee.org/document/5746309/

APPENDIX
A. ADAPTIVE VICTIM CACHE DETAILS

Table 5 shows the detailed implementation of the adaptive
victim DRAM cache for LLC-writeback requests. On the
left are the states of the LLC blocks when sending an LLC-
writeback. On the right are the actions taken by the laundry
hardware.

There are five invariants for the laundry hardware.

1. The laundry count for a super-frame is equal to the
number of dirty blocks in the super-frame (insight 1).

2. If there is an entry in the laundry list for a super-frame,
all dirty blocks in that super-frame have the same tag
(insight 2).

3. The laundry count is always incremented on a modified
LLC-writeback, unless the data is already dirty in the
DRAM cache. There are two ways to detect when the
data is dirty: reading the cache block tag and state (row
13) or inferring the frame is dirty when the laundry list
entry is valid and the cache-dirty bit is set (row 3).

4. When cleaning a cache frame, the laundry list entry must
be invalidated, if it exists. Without removing the laundry
list entry in this case, the laundry count could become
inconsistent if there is a block cached in the LLC with
the cache-dirty bit set.

5. If the tag of the LLC-writeback request matches the tag
stored in the cache frame, the data was modified in the
LLC (rows 7, 13, 15). Otherwise, there is an error (rows
6, 8, 14, 16). If the block tag matches, the block was
inserted into the LLC with the clean-evict bit set, and
will only be written back to the DRAM cache if it was
modified.

Proactive writebacks are not shown in Table 5. We try to
send a proactive writeback on every “Read tag & data”, in-
cluding when the writeback of the victim block is not required.
We only send a proactive writeback under the conditions de-
tailed in Section 4.4. On a proactive writeback, the laundry
count entry is decremented, and if there is a valid laundry list
entry for the super-frame, it must be invalidated (invariant 4).
Additionally, if we take a proactive writeback action on an
LLC-read, we send a write to the DRAM cache to update the
dirty bit in the cache to be consistent with the laundry counts.
This write is off the critical path.

14

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7314164
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7314164
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6853204
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6853204
http://ieeexplore.ieee.org/document/6493624/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7453080
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7453080
http://portal.acm.org/citation.cfm?doid=1815961.1815972
http://ieeexplore.ieee.org/document/5746309/

Lau
nd

ry
 co

un
t =

= 0?

Lau
nd

ry
 li

st
su

pe
r-

fra
me t

ag
 m

atc
h?

Lau
nd

ry
 li

st
ph

ys
ica

l

tag
 m

atc
h?

Cac
he

 bl
oc

k t
ag

matc
h?

Cac
he

 bl
oc

k d
irt

y?

Data
 m

od
ifi

ed
 in

LLC?
Data

 di
rty

 w
he

n

ins
ert

ed
 in

to
LLC?

Rea
d t

ag
 &

 da
ta

fro
m D

RAM
 ca

ch
e

W
rit

eb
ac

k v
ict

im

Crea
te

ne
w la

un
dr

y

lis
t e

ntr
y

In
va

lid
ate

 la
un

dr
y

lis
t s

up
er-

fra
me e

ntr
y

Dec
rem

en
t l

au
nd

ry

co
un

t
In

cre
men

t l
au

nd
ry

co
un

t
W

rit
e t

ag
 &

 da
ta

int
o

DRAM
 ca

ch
e

1 Yes - - - - Yes - ✓ ✓ ✓
2 Yes - - - - No - ✓
3 No Yes Yes - - Yes Yes ✓
4 No Yes Yes - - Yes No ✓ ✓
5 No Yes Yes - - No - ✓
6 No Yes No Yes Yes - - ✓
7 No Yes No Yes No Yes - ✓ ✓ ✓ ✓
8 No Yes No Yes No No - ✓
9 No Yes No No Yes Yes - ✓ ✓ ✓ ✓ ✓ ✓

10 No Yes No No Yes No - ✓ ✓ ✓ ✓ ✓
11 No Yes No No No Yes - ✓ ✓ ✓ ✓
12 No Yes No No No No - ✓ ✓
13 No No - Yes Yes Yes - ✓ ✓
14 No No - Yes Yes No - ✓
15 No No - Yes No Yes - ✓ ✓ ✓
16 No No - Yes No No - ✓
17 No No - No Yes Yes - ✓ ✓ ✓ ✓ ✓
18 No No - No Yes No - ✓ ✓ ✓ ✓
19 No No - No No Yes - ✓ ✓ ✓
20 No No - No No No - ✓ ✓

Error/Invalid

Error/Invalid

Error/Invalid

Error/Invalid

Table 5: Details of bandwidth optimized DRAM cache functions. Table 6 contains an explanation for each row.

1 First dirty data inserted into a clean super-frame
2 Clean data inserted into a clean super-frame
3 Dirty data inserted into a super-frame that contains dirty data from the same super-block. Can infer the cache frame

contains dirty data (invariant 3); do not increment laundry count.
4 Dirty data inserted into a super-frame that contains dirty data from the same super-block.
5 Clean data inserted into a super-frame that contains dirty data from the same super-block. Must invalidate laundry

list entry (invariant 4).
6 Error. Violates invariant 2.
7 Dirty data inserted into a dirty super-frame that holds dirty data from a different super-block.
8 Error. Clean-evict filter will elide this writeback (invariant 5).
9 Dirty data inserted into a dirty super-frame that holds dirty data from a different super-block.
10 Clean data inserted into a super-frame that contains dirty data from the same super-block. Must invalidate laundry

list entry (invariant 4).
11 Dirty data inserted into a dirty super-frame that holds dirty data from a different super-block.
12 Clean data inserted into a super-frame that contains dirty data from a different super-block.
13 Dirty data inserted into a dirty super-frame that holds dirty data from a different super-block. The cache frame was

previously dirty; no need to increment the laundry count (invariant 3)
14 Error. Clean-evict filter will elide this writeback (invariant 5).
15 Dirty data inserted into a dirty super-frame that holds dirty data from a different super-block. The cache frame was

previously clean; increment the laundry count (invariant 3)
16 Error. Clean-evict filter will elide this writeback (invariant 5).
17 Dirty data inserted into a dirty super-frame that holds dirty data from a different super-block.
18 Clean data overwriting a dirty cache frame.
19 Dirty data inserted into a dirty super-frame overwriting clean data.
20 Clean data inserted into a dirty super-frame overwriting clean data.

Table 6: Explanation of rows in Table 5.

15

	Introduction
	DRAM cache design and access amplification
	Baseline KNL-like DRAM cache
	Access amplification

	Using the Access Amplification Model
	KNL-like Dirty victim
	Dirty victim Clean victim cache

	Adaptive victim cache
	Simplified adaptive victim design
	Applying insights 1 & 2 to large caches
	Laundry counts and laundry list
	Proactive writeback
	Adaptive victim cache overheads

	Evaluation
	Methodology
	Workload analysis
	Access amplification
	NPB performance
	Laundry list size
	Tracking dirty data
	Results summary

	Related Work
	Conclusions
	References
	Adaptive victim cache details

