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ABSTRACT 
Many future heterogeneous systems will integrate CPUs and GPUs 
physically on a single chip and logically connect them via shared 
memory to avoid explicit data copying. Making this shared 
memory coherent facilitates programming and fine-grained 
sharing, but throughput-oriented GPUs can overwhelm CPUs with 
coherence requests not well-filtered by caches. Meanwhile, region 
coherence has been proposed for CPU-only systems to reduce 
snoop bandwidth by obtaining coherence permissions for large 
regions. 

This paper develops Heterogeneous System Coherence (HSC) for 
CPU-GPU systems to mitigate the coherence bandwidth effects of 
GPU memory requests. HSC replaces a standard directory with a 
region directory and adds a region buffer to the L2 cache. These 
structures allow the system to move bandwidth from the coherence 
network to the high-bandwidth direct-access bus without 
sacrificing coherence. 

Evaluation results with a subset of Rodinia benchmarks and the 
AMD APP SDK show that HSC can improve performance 
compared to a conventional directory protocol by an average of 
more than 2x and a maximum of more than 4.5x. Additionally, 
HSC reduces the bandwidth to the directory by an average of 94% 
and by more than 99% for four of the analyzed benchmarks. 

Categories and Subject Descriptors 
C.1.3 [Processor Architectures] Other Architecture Styles—
Heterogeneous (hybrid) systems; B.3.2 [Memory Structures]: 
Design Styles—cache memories; 

General Terms 
Performance, Design 

Keywords 
GPGPU computing, Heterogeneous computing, Cache coherence, 
Coarse-grained coherence 

 

1. INTRODUCTION 
General-purpose graphics processing unit (GPGPU) computing 
offers great potential to accelerate many types of applications with 
high-bandwidth throughput-oriented cores [24]. Moreover, as 
compute capabilities increase, we expect memory bandwidth will 
also increase to satisfy their future demands. The High Bandwidth 
Memory (HBM) task group has been working to define a standard 
to deliver bandwidth ranging from 128 GB/s to 256 GB/s per 
DRAM stack [1]. In addition, die-stacking memory technologies 
have been proposed to stack multiple DRAM stacks1 on the same 
die to provide bandwidth up to 1 TB/s. 

At the same time, GPUs are becoming more tightly integrated with 
conventional CPUs in two ways. First, they are being physically 
integrated on the same chip. Current examples include AMD’s 
Trinity [4] and Intel’s Ivy Bridge processors. Such heterogeneous 
processors currently make up more than 50% of client PC orders 
and will become the vast majority by 2014 [30]. 

Second, GPUs are becoming more logically integrated with CPUs 
through support for a unified (shared) memory address space. This 
integration frees the programmer from using explicit copies and 
enables use of unmodified pointer-based data structures (“pointer 
is a pointer” [19]). 

To make a shared address space appear sensible to application 
programmers, some type of coherence should be implemented in 
software (libraries), software-hardware, or in hardware. Cohesion 
[16] implements it by a combination of hardware and software 
coherence. Asymmetric distributed shared memory (ADSM) 
implements a logically shared address space between the CPU and 
GPU through a software implementation, GMAC [14]. However, 
these mechanisms can burden the programmer [16] and affect 
performance [14]. 

This paper focuses on supporting hardware coherence between 
CPUs and GPUs in a heterogeneous CPU-GPU system. We 
choose hardware because CPUs will continue to implement 
hardware coherence for the foreseeable future [21], and to ease 
software’s burden. Additionally, AMD and other HSA Foundation 
members have committed to providing hardware coherence for 
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heterogeneous systems. Hardware coherence can enable new 
classes of applications to take advantage of GPGPU computing 
through low-overhead fine-grained data sharing. 

Supporting coherence between CPUs and GPUs is challenging. 
GPGPU applications often require much higher memory 
bandwidth than CPU applications due to the massively parallel 
nature of their Single Instruction, Multiple Thread (SIMT) 
execution model. GPGPU applications also have different memory 
access patterns than most CPU applications. Due to the streaming 
nature of many GPGPU applications, they may exhibit higher 
spatial and lower temporal locality than CPU applications. Our 
performance evaluation of Rodinia benchmarks shows that the 
GPU shared L2 cache has an average miss rate of 58%, which is 
much higher than the average CPU miss rate of 14% [12]. 

Because of the high-bandwidth nature of heterogeneous systems, 
using coherence mechanisms created for CPU architectures is 
difficult. Traditional directory designs have two main problems 
when scaling to a high bandwidth. First, it is challenging to support 
more than one request per cycle at the directory. While it is 
possible to bank the directory heavily, replicating all of the 
required structures is expensive in terms of both power and area. 
Second, full coherence necessitates that each GPU request 
allocates a miss status handling register (MSHR) at the directory to 
handle potential races with competing CPU requests. Many MSHR 
entries are required to deal with the numerous parallel requests. 
For the Rodinia workloads, we find that many applications need 
tens of thousands of MSHR entries to avoid stalling the GPU. The 
number of required MSHRs is impractical for a real machine, 
which today has only a few dozen. 

To reduce the bandwidth required in snooping-based symmetric 
multi-processor (SMP) systems, researchers have proposed region 
coherence [3, 11, 23, 31]. Region coherence exploits coarse-
grained sharing patterns among processors only requiring a subset 
of memory requests to be broadcast to all cores. If permissions for 
the requested region have been obtained already, broadcasts are 
filtered and requests proceed directly to memory. Given that 
GPGPU applications employ mostly coarse-grained sharing 
between the CPUs and GPUs, the concept of region coherence 
lends itself well the requirements of hardware coherence in 
heterogeneous systems. 

To this end, we propose Heterogeneous System Coherence (HSC), 
which is directory-based hardware coherence on heterogeneous 
CPU-GPU systems. HSC adds region buffers to both CPU and 
GPU L2 caches to track the regions over which the CPU or GPU 
currently hold permission. The region directory replaces the 
traditional block-level directory. In addition to reducing bandwidth 
by moving most coherent requests onto the incoherent direct-
access bus, the region directory occupies less area and is simpler 
than a conventional block-level directory. 

The main contributions of this paper are: 
 A characterization of coherence bottlenecks in future high-

bandwidth heterogeneous systems showing that limited 
directory resources are a significant bottleneck. 

 A redesign of region-based coherence for heterogeneous 
architectures that addresses the challenge of heavy resource 
requirements. 

 Optimizations for coherence-related traffic to reduce the 
directory congestion bottleneck by bypassing the directory 

and accessing memory directly for a majority of L2 cache 
misses. 

We implemented HSC on a cycle-level simulator. Evaluation 
results show that HSC reduces the resource requirements while 
achieving an average performance improvement of 2x and a 
maximum performance improvement of 4.5x compared to the 
baseline coherent heterogeneous system. Bandwidth to the 
directory is reduced by an average of 94% and by more than 99% 
for most benchmarks with limited MSHRs. 

In this paper, the next section introduces the heterogeneous CPU-
GPU system that serves as the baseline system in this paper. 
Section 3 illustrates the bottlenecks of extending directory-based 
coherence protocols on the baseline system. Section 4 describes the 
HSC design and implementation and estimates the hardware 
complexity. Section 5 describes our simulation infrastructure and 
the benchmarks we used to evaluate HSC. Section 6 reports and 
discusses results. Section 7 reviews previous work on GPU 
coherence and region coherence. Section 8 contains concluding 
remarks. 

2. BACKGROUND 
This section introduces the baseline heterogeneous system based 
on current mainstream integrated CPU-GPU products. We also 
describe the extension of directory-based coherence to 
heterogeneous systems, which will serve as the baseline coherence 
implementation. 

2.1 Baseline Heterogeneous System 
Figure 1(a) shows an overview of our baseline system. There are 
two clusters: a CPU cluster, which can contain any number of 
CPUs, and a GPU cluster made up of thousands of individual 
scalar units. These scalar units are coalesced to form SIMD units 
that execute instructions in SIMT fashion. These SIMD units are 
grouped together into compute units (CUs). The SIMT nature of 
the GPU leads to tremendous memory parallelism, which puts 
strain on the memory system to deliver high bandwidth. 

The CPU and GPU clusters have two separate, non-inclusive, 
shared L2 caches. The baseline coherence protocol is hierarchical 
coherence with a global block-level directory that has two bits for 
the sharing vector (one for each cluster). 

The GPU uses the non-coherent direct-access bus for all incoherent 
memory traffic, which mostly includes graphics-related traffic. For 
coherent GPU requests, there is a separate coherent interconnect 
between the GPU and the directory. All general-purpose memory 
traffic (requests to the CPU-GPU shared address space) generated 
in GPGPU applications must use this interconnect and access the 
directory to stay coherent with the CPU caches. The GPU L1 
caches are kept coherent by writing through dirty data and flash-
invalidating the L1 caches at kernel begins. Section 5 provides a 
more detailed description of the simulated system. 

2.2 Coherent Cache Implementation 
Figure 1(b) shows an example architecture of the L2 cache tags 
and required hardware for lookups and probes. MSHRs are used to 
track the ongoing transactions of the outstanding requests. The 
MSHR table is implemented using content-addressable memory 
(CAM) to facilitate finding conflicts among the outstanding 
addresses. A request occupies an MSHR until it has been 
processed completely either by a hit in the L2 cache or an external 
response. 
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Figure 1(c) shows the baseline directory implementation. The 
directory MSHR table, also implemented as a CAM, is similar in 
purpose to the MSHR table at the L2 cache. It is used to find any 
conflicts with outstanding coherence requests to both memory and 
L2 caches. The probe-request RAM (PRR) is used to track 
outstanding probes and is implemented as a RAM indexed on 
coherence transaction ID. The directory is mostly inclusive of all 
caches in the system. A directory hit guarantees that there is at 
least one cache in the system that has a valid copy of the requested 
block. Thus, for writes, those identified copies must be invalidated; 
for reads, one copy is probed directly for valid data. A directory 
miss requires the system to probe all caches. To initiate a probe 
request, a PRR entry must be allocated and the PRR entry stays 
occupied until all required caches have replied to the probe 
requests. While scaling the PRR to support many outstanding 
probe requests is relatively easy, scaling the directory MSHR table 
to support many outstanding requests and multiple incoming 
requests per cycle is much more difficult and costly due to the 
CAM design. 

The probe requests are sent to any shared L2 caches that have a 
valid copy of the data. On receiving the probe request, the L2 
cache tag array must be read to determine the state of the block for 
that address. The L2 MSHR table also must be queried to deal 
correctly with the case of an outstanding request for that address. 

These probe requests interfere with any demand requests from the 
L1 caches and may cause increased latency for those requests. 
Also, arbitration logic between demand and probe requests is 
required. Scaling the cache tags and MSHR tables to support more 
than one probe per cycle is difficult and costly. As with the 
directory MSHR table, multi-porting the L2 MSHR table is costly. 

An alternative implementation of the directory is a stateless or null 
directory [7]. In this configuration, there are no directory tags. 
Every request is treated as a directory hit and probes are broadcast 
to all caches in the system. This design simplifies the directory 
considerably, but suffers from high bandwidth of probe requests at 
the L2 caches. 

2.3 Region Coherence 
Region coherence was first proposed in 2005 to reduce the 
bandwidth required on snooping-based systems [3, 11, 23, 31]. 
Region coherence filters many broadcasts by tracking the sharing 
information on a coarse granularity (a region). Regions contain 
many (16–64) cache blocks. Coarse-grained coherence [11] adds a 
Region Coherence Array (RCA) to the local caches. The RCA is 
checked on cache misses, and if permissions exist for the region to 
which the request address belongs, the request is forwarded 
directly to memory without requiring a broadcast. On RCA misses, 
the request is broadcast and all other caches reply with the correct 
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Figure 1: Baseline heterogeneous system. The weight of the lines represents the bandwidth required between 
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region-level permissions, which are inserted into the RCA. In this 
work, we build on the RCA design, but we expect our 
contributions to generalize to other region coherence 
implementations. 

2.4 Heterogeneous Coherence 
Historically, coherence among CPUs and GPU has been managed 
by software through explicit copies between address spaces. 
Explicitly managed software coherence complicates heterogeneous 
applications by requiring the programmer to reason about multiple 
addresses for each variable. Additionally, this software coherence 
makes using pointer-based data structures—like linked-lists and 
trees—difficult on heterogeneous hardware. 

In addition to complicating the programming model, explicit 
software-managed coherence can perform poorly. Although it is 
theoretically possible to overlap data movement between the CPU 
and GPU with computation, expressing the dependencies is 
difficult in current programming models. This leads to 
inefficiencies in application performance as computation and data 
movement are serialized. 

To mitigate these issues and increase performance, AMD and other 
HSA Foundation members have committed to providing hardware 
coherence for heterogeneous systems [25]. Hardware coherence 
allows the implementation of a shared address space for the CPU 
and GPU, which simplifies data sharing. A shared virtual address 
space also allows the GPU to address a much larger memory space 
(all of CPU memory). Therefore, our baseline system assumes 
hardware coherence between the CPU and GPU in our system. 

3. HETEROGENEOUS SYSTEM 
BOTTLENECKS 

We performed a characterization of the bottlenecks of the 
coherence protocol in the baseline heterogeneous system (Figure 
1). The bottlenecks are primarily due to the high memory 
bandwidth of GPU computing, which generates more coherent 
requests than the directory can maintain and also requires 
expensive MSHR resources. 

3.1 Memory Bandwidth 
GPU compute units are throughput-oriented many-core processors 
targeting streaming-style applications. The streaming access 
pattern is quite different from most CPU applications and causes 
the GPU caches to be ineffective at filtering DRAM accesses. 
Thus, GPU computing often consumes high memory bandwidth to 
keep all the SIMD execution units busy. For example, recent 
discrete GPUs from NVIDIA and AMD support bandwidth close 
to 300 GB/s [6, 13]. Even though integrated GPUs are less 
powerful, the number of CUs on these GPUs will likely continue to 
scale in the future to increase computing power. Therefore, 
memory bandwidth must scale as well. 

To meet the challenge, both academia and industry have proposed 
new memory technologies such as die-stacking memory. Assuming 
such technology will be incorporated in future systems, we target a 
high memory bandwidth for the rest of paper to reflect this design 
trend. Specifically, for a GPU composed of 32 CUs, we found that 
700 GB/s eliminated the memory bandwidth bottleneck for all our 
workloads. 

3.2 Directory Bandwidth 
As memory bandwidth increases, other bottlenecks come to light. 
Specifically, we find that the number of coherent data requests is 

more than the directory can handle and requires a currently 
infeasible number of MSHRs. MSHRs are used to track the status 
of in-progress requests at the directory. This includes directory 
hits, for which an MSHR entry is occupied until all probe requests 
have completed, and directory misses, for which an MSHR entry is 
occupied until memory responds with data. 

Figure 2(a) shows the average accesses per GPU cycle at the 
directory for our workloads (see Section 5 and Table 1 for 
simulation details). For many applications, the bandwidth is more 
than two accesses per cycle, which is difficult to support at the 
directory. While it is possible to bank the directory array heavily, 
splitting the pipeline for accessing the directory is much more 
difficult. 

Figure 2(a): Number of directory accesses per GPU cycle for 
directory-based coherence. 

 
Figure 2(b): Maximum resources used for directory-based 

coherence (log scale). 

 

Figure 2(c): Slowdown for baseline directory protocol when 
using constrained resources (32 MSHRs) compared to 

unconstrained resources. 
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High memory bandwidth also requires numerous MSHRs to track 
all the simultaneous outstanding data requests. Because MSHRs 
are CAM structures, it is expensive in terms of both power and 
area. The MSHR structure is difficult to multi-port due to the large 
number of entries it must hold. One can imagine address-slicing 
the MSHRs n ways, but a lower value of n will encounter a 
significant number of conflicts while a higher value of n wastes 
many extra entries due to uneven request rates across the address 
slices. 

To illustrate the high demand of MSHRs for future heterogeneous 
systems, Figure 2(b) shows the maximum MSHRs used by our 
workloads when given unlimited resources. As shown in the 
figure, these applications have a high variance in required MSHRs. 
Some applications, such as hg (histogram), need relatively few 
MSHRs (450) due to low utilization of the GPU, with an average 
of less than 20% of the GPU CUs used during execution. However, 
many applications need a massive number of resources. Six of our 
applications use more than 5,000 MSHRs at peak usage. These 
applications will suffer significantly from queuing delays when 
directory resources are constrained. Figure 2(c) shows the 
slowdown of these applications with 32 MSHRs. Matrix 
multiplication slows by more than 4x, and five workloads suffer a 
more than 2x slowdown. The average slowdown across all of the 
workloads is 2.25x. 

To implement coherent caches for GPU workloads, the overheads 
must be reduced. Heterogeneous System Coherence, presented in 
the next section, mitigates many of these overheads. 

4. HETEROGENEOUS SYSTEM 
COHERENCE 

In this section, we discuss the design of HSC. We first extend 
region coherence to directory-based coherence protocol, and then 
we apply it to our baseline system. HSC adds region buffers to 
both CPU L2 and GPU L2 caches to track access permissions at 
the region granularity. All the L2 misses first query the region 
buffer. If valid permission for that region (shared for reads, private 
for writes) is found in the region buffer, data requests are sent 
directly to memory via the direct-access bus. If permission is not 
found, requests are forwarded to the region directory to acquire 
permission for the region. The region directory connects the region 
buffers and tracks and arbitrates the permissions of all the regions 
on-chip. By obtaining permission at region granularity, HSC routes 
the majority of L2 cache misses directly to memory, which reduces 
directory bandwidth. The hardware complexity of HSC is modest, 
adding less than 1% to the total chip cache area. 

4.1 Directory-based Region Coherence 
To apply the principles from region coherence to future 
heterogeneous systems, similar to spatiotemporal coherence [3], 
we first adapt region coherence to a directory-based coherence 
protocol. To this end, we replace the block-level directory in the 
baseline with a region directory and add a modified RCA [11] at 
each shared L2 cache. 

The region directory is conceptually similar to a normal block-
level directory. The block tags are replaced with region tags, and 
the state associated with each entry is stored at a region 
granularity. The region directory tracks the state only at the region 
granularity; therefore, if a single block in the region is shared 
between two cores, the entire region is marked as shared. Figure 
3(a) shows a breakdown of the directory entry. 

In coarse-grained coherence, the RCA sits behind the cache and 
tracks the region state and the sharers. However, in directory-based 
region coherence, there is no need for the sharers to be stored at the 
cache level. We replace the RCA with a simplified structure, the 
region buffer, which holds only the region state because the sharers 
are stored in the region directory. Like the RCA, the region buffer 
is inclusive of all entries stored in the caches above it. Figure 3(b) 
shows the region buffer entry. 

The region directory needs to be accessed only on requests for 
regions that are not cached in the region buffer. When compared to 
normal directory coherence, directory-based region coherence will 
show a large reduction in directory bandwidth if the address stream 
exhibits spatial locality. 

Directory-based region coherence behaves similarly to region 
coherence after permissions are obtained for a region. On cache 
misses, the region buffer is queried; if the correct permissions are 
available for the request, it is forwarded directly to memory 
without any directory involvement. 

4.2 Heterogeneous System Coherence 
HSC takes directory-based region coherence and applies it to the 
baseline heterogeneous system. Figure 4(a) shows an overview of a 
system with HSC. 

HSC takes the huge bandwidth on the coherence network in the 
baseline system and moves it to the incoherent direct-access bus by 
allowing coherent direct access. Coherent direct access is 
achieved by acquiring permission for the entire region when the 
first block is accessed. The subsequent accesses to any blocks in 
the same region can perform coherent direct access on the 
incoherent direct-access bus, which directly accesses memory 
without requiring a directory query. When there is high spatial 
locality in the memory access stream, such as for streaming 
applications, most requests will not need to access the region 
directory because the permissions already will have been obtained. 
All requests for which permissions exist in the region buffer can 
then use the high-bandwidth direct-access bus instead of the lower-
bandwidth coherence network. 

(b) Region Buffer Entry

(a) Region Directory Entry

Region Tag State B0 B1 B2 ... B15

18 bits 1 valid bit per 
block in the region

Region Tag State CPU GPU 

1 valid bit 
per cluster

2 bits

2 bits18 bits

 
Figure 3: Example region directory (a) and region buffer 
(b) entries. Assumes 1 KB regions (16 64-byte blocks), 40-
bit physical addressing, and the configurations in Table 1. 
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Figure 4(a) shows an example of how a memory request flows 
through the system.  The GPU issues a write request (exclusive 
request) for address A.  The request misses in the GPU L2 
cache and is forwarded to the region buffer. Address A is part of 
region R(A), which is not present in the GPU region buffer; 
therefore,  a region-exclusive request is sent to the region 
directory. When the request for R(A) reaches the region directory, 
there is a hit, which results in  an invalidate probe being sent to 
the CPU region buffer along with the demand request. On 
receiving the invalidate probe for region R(A),  the CPU region 
buffer forwards the demand request and invalidates every block 
that is part of the region and is valid in the CPU shared L2 cache. 

 The CPU shared L2 cache responds to the demand request and 
writes back the data for all of the blocks in the region that were 
valid. Once all of the blocks have been evicted from the CPU 
shared L2 cache,  the region directory responds with the data for 
the original request and gives private permissions to the GPU 
region buffer. For subsequent requests from the GPU cluster that 
miss in the GPU shared L2 cache and are part of region R(A),  
the GPU region buffer sends the coherent request on the direct-
access bus to memory, which returns the data. 

4.3 Region Buffer 
The region buffer contains the region tags, permissions, and other 
region metadata that are kept at the local caches. The modifications 
required at the shared L2 cache to implement the region buffer are 
highlighted in Figure 4(b). 

The biggest change from the baseline shared L2 cache is the 
addition of the region buffer. This is a relatively small structure 
that is banked easily to support high-bandwidth accesses and is 
indexed by the region tag—the most significant bits of the address. 
Each entry in the region buffer holds the region permission: private 
with read-write permissions, shared with read-only permissions, or 
invalid. A bit-vector that is the size of the region (16 bits for a 1 
KB region) is also included in each entry to track the valid blocks 
in the region to minimize the required invalidates sent to the L2 
cache tags. 

An interface to the direct-access bus is also added to the shared L2 
cache. This interface is quite similar to the one present in GPUs to 
carry graphics memory requests. 

With the addition of the region buffer, any requests that miss in the 
cache tags must also query the region buffer. These look-ups can 
be done in parallel, at the cost of some power, or in series, at the 
cost of some extra latency on cache misses. If the request is a hit in 
the region buffer and the necessary permissions exist, the request is 
issued on the direct-access bus as a coherent direct access request. 
On misses in the region buffer, the request is forwarded to the 
region directory, which satisfies the request and responds to the 
region buffer with region permissions depending on the request 
type. 

The region buffer is placed between the cache tags and the region 
directory to filter probe requests. All probes that the region 

Region Directory Tag Array

Region 
Permission 
Requests

Miss

Hit

Miss

Hit

Miss

Demand 
Requests

Cache Tag Arrays

HitCore Data 
Responses

Coherent 
Network 
Interface

Probe
Requests

Region Buffer

Direct Access 
Bus Interface

Hit

Miss

GPU 
Cluster CPU Cluster

 GPU L2 
Cache

CPU L2 
Cache

Region 
Directory

DRAM Channels

Region 
Buffer

Region 
Buffer

1

2

3
4

5

6

7

8

M
SH

R 
En

tr
ie

sMSHRs

PR
 E

nt
rie

s

Probe
Request RAM

Block Probe 
Requests/Responses

Region 
Directory(c)

M
SH

R 
En

tr
ie

s

MSHRs

L2 Cache & 
Region Buffer(b)

(a)

 
Figure 4: Heterogeneous System Coherence overview. Line weight represents bandwidth. Changes from the baseline are bolded. 
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directory sends to the region buffer are for regions, not block-level 
data requests. This allows a single request to be sent on the 
coherence network, and any block-level probes, which need to be 
forwarded to the local L2 cache, are handled without the need for 
interconnect traffic. 

4.4 Region Directory 
Also added in HSC is the region directory (Figure 4(c)), which 
replaces the block-level directory in the baseline system. This 
structure is organized very similarly to the baseline block-level 
directory, except that the region directory is indexed by region tags 
instead of block tags. Similar to the baseline directory, each region 
directory entry contains a bit-vector of sharers (one bit for each 
cluster) and the state associated with each region. 

Because the region directory is no longer required to support high 
bandwidth, all of the associated structures (the directory MSHR 
table and the PRR) can be simplified greatly. The region directory 
does not need to support many outstanding region permission 
requests, so these structures can be quite small, reducing the area 
and power of the directory. 

4.5 Hardware Complexity 
The HSC design adds two region buffers and one region directory 
to the baseline system. HSC extends the CPU and GPU L2 caches 
to make all L2 caches interact with the region buffers. Our 
evaluation results show that HSC reduces the resource 
requirements (MSHRs) to a reasonable number. Thus, the 
hardware complexity of HSC mainly lies in the storage overheads 
of region buffers and region directory and the extension of L2 
caches. 

The extension of the L2 cache includes modifying related cache 
transactions to perform the memory request flow with HSC. For 
example, for L2 miss, instead of being forwarded to directory, the 
data request is forwarded to the region buffer to check permission. 
An interface to the direct-access bus is also added to the shared L2 
cache to route traffic directly to memory. HSC does not require 

any changes to the coherence states. Thus, no additional storage is 
needed for L2 caches. 

Based on the detailed description in Figure 3, each region buffer 
entry requires 36 bits of storage and each region directory entry 
takes 22 bits, for a 1 KB region. In our configuration, we used 
32,768 region directory entries and 16,384 region buffer entries for 
each region buffer with region size of 1 KB. The storage overhead 
for each region buffer is 74 KB, which is less than 5% for a 2 MB 
CPU L2 cache. In total, the storage overhead is 238 KB, which is 
less than 1% of the total on-chip memory hierarchy. In 
comparison, the baseline directory includes 262,144 directory 
entries and occupies 820 KB storage, significantly more than the 
region directory. 

5. EXPERIMENTAL SET-UP 
In this section, we describe the simulation infrastructure and the 
workloads we used to evaluate our HSC design. 

5.1 Simulation 
For simulating the CPU, we used the in-order non-pipelined CPU 
model from the gem5 [9] simulation infrastructure. For simulating 
the GPU, we used a proprietary simulator based on the AMD 
Graphics Core Next architecture [20]. The heterogeneous system is 
simulated by combining the memory systems of gem5 and our 
proprietary GPU simulator. The simulator runs in timing mode and 
produces detailed statistics including simulator cycles, directory, 
and cache traffic. 

The simulated CPU-GPU processor has two CPU cores and 32 
GPU CUs. As described in Section 3.1, future heterogeneous 
processors likely will scale to provide increasing computing 
power. We use a large number GPU CUs and extreme memory 
bandwidth of 700 GB/s to reflect the trend. Table 1 shows the 
parameters used in the simulations. In each protocol, the simulated 
memory system has a shared memory-side L3 cache. The CPU 
memory system uses MOESI states for cache blocks; the GPU 
caches are write-through and use a VI (valid/invalid)-based 
protocol for coherence. 

We implemented the HSC protocol on this simulated architecture. 
Regions can be in one of three stable states: private (read-write 
permissions), shared (read-only permissions), and invalid. For 
comparison purposes, we evaluated three coherence protocols: 

 Broadcast: Broadcast-based null directory protocol 
 Baseline: Block-based directory protocol (Figure 1) 
 HSC: Region-based directory protocol (Figure 4) with a 

region size of 1 KB or 16 64-byte blocks 

5.2 Workloads 
We make use of two benchmark suites to evaluate HSC design. 
Seven of the 14 Rodinia [12] benchmarks were ported to our 
simulator. These include back propagation (bp), a machine-
learning algorithm; breadth-first search (bfs), HotSpot (hs), a 
thermal simulation for processor temperatures; LU Decomposition 
(lud); Needleman-Wunsch (nw), a global optimization method for 
DNA sequence alignment; kmeans (km), a clustering algorithm 
used in data mining; and, speckle-reducing anisotropic diffusion 
(srad), a diffusion algorithm. We also ported four AMD APP SDK 
[5] benchmarks to our simulator: bitonic sort (bn), discrete cosine 
transform (dct), histogram (hg), and matrix multiplication (mm). 
The other Rodinia and AMD SDK benchmarks have not been 
ported to the shared address space APU architecture. 

CPU Clock 2 GHz 
CPU Cores 2 
CPU L1 Data Cache 64 KB (2-way banked) 
CPU L1 Instruction Cache 64 KB (2-way banked) 
CPU Shared L2 Cache 2 MB (16-way banked) 
GPU Clock 1 GHz 
Compute Units 32 
Compute-unit SIMD Width 64 scalar units by 4 SIMDs 
GPU L1 Data Cache 32 KB (16-way banked) 
GPU L1 Instruction Cache 32 KB (8-way banked) 
GPU Shared L2 Cache 4 MB (64-way banked) 
L3 Memory-side Cache 16 MB (16-way banked) 
DRAM DDR3, 16 channels, 667 MHz 
Peak Memory Bandwidth 700 GB/s 
Baseline Directory 262,144 entries (8-way banked) 
Region Directory 32,768 entries (8-way banked) 
MSHRs for All Directories 32 entries 
Region Buffer 16,384 entries (64-way banked) 

Table 1: Simulation Parameters 
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All benchmarks are written in OpenCL. The workloads were 
modified to utilize our fully coherent system by removing all 
explicit memory copies and using pointers instead. All benchmarks 
kept the same general structure after the modifications. All of the 
workloads use all CUs on the simulated GPU but exercise only one 
CPU while executing. 

6. EXPERIMENTAL RESULTS 
In this section, we present the experimental results of HSC by 
running the simulation in detailed mode. To focus on our region of 
interest, the results presented in this section do not contain 
statistics of CPU operations such as initialization, reading files, 
and other similar operations that do not involve CPU-GPU 
interaction. The results include the reduction in directory 
bandwidth, application execution time, and MSHR consumption 
compared to a block-based directory protocol. 

6.1 Execution Time 
Figure 5 shows the performance of the coherence protocols across 
the execution of the entire region of interest (both CPU and GPU 
execution). HSC significantly increases performance for many of 
the applications. The average speedup is 2x, with a maximum 
speedup of more than 4.5x. 

The key reason HSC outperforms the baseline directory protocol is 
that it alleviates the queuing delays caused by too few MSHR 
entries. As discussed in Section 3.2, constraining the MSHRs at the 
directory causes a significant slowdown for some applications. 
HSC reduces the pressure on MSHR entries and the applications 
can obtain high performance with modest hardware costs (32 
MSHR entries). 

Most applications see at least a slight slowdown when using the 
broadcast protocol. This is because issuing the probes to all L2 
caches for every directory access causes pressures on the directory 
and L2 cache structures. The number of needed MSHRs increases 
as latency for requests increases because every request must wait 
for all L2 caches to respond. Additionally, probe requests to the L2 
caches interfere with demand traffic. Also, for some applications 
the PRR entries become a bottleneck, introducing more stalls. 

Although some applications see a significant performance 
improvement with HSC, some applications do not. This is because 
these applications are CPU-bound and do not spend a significant 
amount of time running on the GPU. Figure 6 shows the percent of 

total execution time each application spends running on the GPU 
and CPU. Applications that do not experience performance 
improvements with HSC are those that have a very low percent of 
total execution time on the GPU, and thus have relatively low 
directory bandwidth demand. As GPUs become easier to program, 
future GPGPU workloads likely will spend a significant percentage 
of their run-time on the GPU; for these workloads, HSC improves 
performance. 

Most of HSC’s performance improvement comes from its ability to 
reduce the latency of loads issued from the GPU. The average load 
latency is reduced because most requests proceed directly to 
memory via the direct-access bus, bypassing the directory. Figure 
7 shows the decrease in load latencies with HSC. The write-
through memory system of the GPU caches allows instantaneous 
stores; hence, store latency is not critical to the performance of the 
simulated system. 

Although the bfs benchmark has significant time on GPU, it does 
not get significant benefit from HSC (only 9%) due to its short 
kernel run-times. bfs launches many very short kernels to the GPU 
and the overheads of kernel launching and completion hide the 
benefits of HSC. 

nw also shows little benefit from HSC (10%) even though the GPU 
time is significant. nw suffers because of low region density. Most 

 
Figure 5: Execution time of all protocols normalized to 
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Figure 6: Percent of application execution time spent on 

GPU and CPU. 
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Figure 7: Latency of loads normalized to the baseline 

directory protocol. 
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benchmarks have an average region density—the number of valid 
blocks currently in the local cache—of nearly 75% (12 of 16 
blocks in the region are valid). However, nw shows much lower 
densities, with an average of slightly more than one block valid in 
the region. nw has poor region density due to its pattern of memory 
accesses. 

Region density is a good indicator of the effectiveness of HSC. We 
expect that most GPU applications are not like nw, and exhibit 
high spatial locality because low spatial locality leads to memory 
divergence and poor memory bandwidth utilization on GPU 
architectures. 

6.2 Directory Bandwidth 
Reducing the directory bandwidth eases implementation of 
coherence for a heterogeneous system. Figure 9 shows that HSC 
accomplishes this goal with an average of 94% reduction in the 
directory bandwidth compared to the baseline directory protocol. 

For some benchmarks, the reduction in directory accesses is more 
than 99%. The maximum reduction in directory accesses expected 
is only 94% directory requests elided; however, many benchmarks 
see a greater reduction. This large reduction come from the region 
buffers holding permissions for regions that currently are not valid 
in the cache. Because of the compactness of the region buffers, it is 
easy to overprovision them such that the region buffer has a much 
larger reach than the attached caches. Because of this larger reach, 
the region buffer caches permissions for some regions in which the 
cache does not contain any valid blocks, and these permissions are 
re-used when the request for that block misses in the cache. 

6.3 Resource Requirements 
Figure 8 shows the reduction in directory resources achieved by 
HSC. This data was generated by allowing unlimited MSHRs in 
the HSC protocol. In the baseline protocol, to not cause stalls, the 
directory MSHR table needs, on average, at least 10,000 entries. In 
the worst case, to cause no stalls in hotspot, the baseline directory 
would need in excess of 36,000 entries. HSC greatly reduces this 
constraint. On average, the reduction is more than 95%. The 
average maximum needed MSHR table in HSC is only 488 entries, 
and the maximum across all benchmarks is 1,888 entries. Although 
the maximum used MSHRs are still much larger than a reasonable 
amount of MSHRs (32), performance is improved by reducing 
queuing delays at the directory. With this huge reduction of 
resource requirements at the directory, HSC makes coherent 
caches between the CPU and GPU feasible without significant 
hardware resources. 

7. RELATED WORK 
7.1 GPU Coherence 
Historically, coherence between the CPU and GPU in a system has 
been managed by software, which is largely an artifact of the 
memory partitioning in these systems. However, now that the CPU 
and GPU are becoming more closely integrated, there have been 
some proposals for providing the programmer with a more 
coherent view of the shared memory. PTask [26] proposes a task 
graph library that removes the need for programmers to manage 
the memory explicitly. The underlying coherence mechanism is 
implemented in a software library. Cohesion [16] implements a 
combination of software and hardware coherence in which the data 
can migrate between these two coherence domains dynamically. 
This system works well for current GPGPU applications that use 
the bulk-synchronous communication pattern. A potential 
bottleneck in the Cohesion design is that on every block request 
that misses in the higher-level caches, the directory must be 
queried to determine if the block is in the software- or hardware-
managed coherence domain. Asymmetric distributed shared 
memory (ADSM) implements a logically shared address space 
between the CPU and GPU [14]. Gelado et al. provide GMAC, a 
software implementation of ADSM. These proposals come with 
potential programming model complications or performance 
issues. Due to this, and because AMD and other HSA Foundation 
members have committed to providing hardware coherence, we 
focus on only hardware coherence in this paper. Additionally, 
Singh et al. developed a coherence protocol for intra-GPU 
coherence [28]. Their work uses a timestamp-based protocol called 
temporal coherence. HSC focuses on coherence between an 
integrated CPU and GPU. Our results are compatible with other 
forms of intra-GPU coherence. 

7.2 Reducing Broadcast Bandwidth 
Many systems have been developed to reduce the bandwidth 
required in snooping systems. Although we focus on a directory-
based coherence protocol, these ideas were influential. Moshovos 
et al. proposed JETTY [22], which filters incoming snoops to the 
cache based on contiguous regions. Stream registers [27] 
implement similar structures to JETTY except the regions can be 
sized dynamically. Also, high bandwidth for snoop requests is 
supported by duplicating the logic for the snoop filters at every 
port into the cache. RegionTracker [31] replaces the local cache 
tags with region-based tags. RegionScout [23], a precursor to some 
of the region coherence work, adds a non-shared region table 
(NSRT), which caches regions known not to be held in any other 
caches, and the cached region hash (CRH), which is a Bloom filter 
that holds a superset of regions cached in the local cache. These 
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structures filter the broadcasts required. Other solutions have been 
proposed as well, including virtual tree coherence [15], subspace 
snooping [17], and in-network coherence filtering [2]. These works 
relate to the design of HSC. 

7.3 Reducing Directory Look-ups 
TurboTag [18] focuses on reducing energy consumed by the 
directory by using Bloom filters to reduce the number of directory 
look-ups. Each directory bank has a counting Bloom filter that is 
accessed prior to the directory look-up. If the entry is not present in 
the Bloom filter, then it cannot be present in the directory and the 
look-up is elided. This work could help reduce the high bandwidth 
from the GPU to the directory tags, but it does not limit the number 
of MSHRs required. 

7.4 Reducing Directory Resources 
Many scalable directory protocols have been studied. 
Spatiotemporal Coherence Tracking (SCT) [3] aims to reduce the 
size of the directory by leveraging spatially local regions. SCT is 
dual-grained, enabling the tracking of permissions at both the 
region and block levels. SCT reduces the required number of 
directory entries by tracking private data at the region level. 

Basu et al. extend region coherence to directory-based systems [8]. 
This work proposes a dual-granular directory design that tracks 
both block- and region-level permissions. HSC is a different 
implementation for directory-based region-level tracking; however, 
HSC focuses on heterogeneous CPU-GPU systems instead of 
CMPs and primarily aims to reduce the bandwidth to the directory, 
not the directory size. 

7.5 Reducing Miss-handling Resources 
Scalable miss handling [29] proposes a hierarchical miss-handling 
architecture. The authors observe that when constructing a high-
bandwidth miss-handling architecture, banking the miss-handling 
registers does not provide enough benefits due to bank access 
imbalance. Therefore, the authors construct a high-bandwidth 
miss-handling architecture by adding per-bank miss-handling 
registers and allowing them to overflow into a large centralized set 
of miss-handling registers. To reduce the bandwidth to the 
centralized file of miss-handling registers, the authors add a per-
bank Bloom filter that holds all of the entries in the centralized file. 
On a miss in the per-bank miss-handling registers, if the address is 
not in the Bloom filter then the centralized file does not need to be 
accessed. 

HSC solves a similar problem by limiting the total number of 
MSHRs required. However, HSC also reduces the total bandwidth 
to both the directory and its MSHR structure by moving most 
requests onto the direct-access bus, bypassing the directory 
completely. 

8. CONCLUSIONS 
Heterogeneous CPU-GPU processors potentially can be more 
programmable and more efficient with the support of hardware 
coherence. However, limited directory resources will be a 
significant bottleneck due to a GPU’s high memory bandwidth 
requirements and unique patterns of memory accesses. We 
introduce Heterogeneous System Coherence, or HSC, which 
implements directory coherence at a region granularity. Given the 
high spatial locality of GPU data, obtaining coherence permissions 
at coarse granularity (compared to traditional block-level) enables 
the elision of the majority of directory accesses. 

Evaluation results show that HSC achieves an average 
performance improvement of 2x compared to a baseline directory 
design. Bandwidth to the directory is reduced by an average of 
95% and more than 99% for four of the benchmarks. Thus, HSC 
provides a practical hardware solution to full coherence in a 
heterogeneous CPU-GPU system. 
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