
Heterogeneous System Coherence
for Integrated CPU-GPU Systems

Jason Power*
powerjg@cs.wisc.edu

Arkaprava Basu*
basu@cs.wisc.edu

Junli Gu†
junli.gu@amd.com

Sooraj Puthoor†
sooraj.puthoor@amd.com

Bradford M. Beckmann†
brad.beckmann@amd.com

Mark D. Hill*†
markhill@cs.wisc.edu

Steven K. Reinhardt†
steve.reinhardt@amd.com

David A. Wood*†
david@cs.wisc.edu

*Department of Computer Sciences
University of Wisconsin – Madison

†Advanced Micro Devices, Inc.

ABSTRACT
Many future heterogeneous systems will integrate CPUs and GPUs
physically on a single chip and logically connect them via shared
memory to avoid explicit data copying. Making this shared
memory coherent facilitates programming and fine-grained
sharing, but throughput-oriented GPUs can overwhelm CPUs with
coherence requests not well-filtered by caches. Meanwhile, region
coherence has been proposed for CPU-only systems to reduce
snoop bandwidth by obtaining coherence permissions for large
regions.

This paper develops Heterogeneous System Coherence (HSC) for
CPU-GPU systems to mitigate the coherence bandwidth effects of
GPU memory requests. HSC replaces a standard directory with a
region directory and adds a region buffer to the L2 cache. These
structures allow the system to move bandwidth from the coherence
network to the high-bandwidth direct-access bus without
sacrificing coherence.

Evaluation results with a subset of Rodinia benchmarks and the
AMD APP SDK show that HSC can improve performance
compared to a conventional directory protocol by an average of
more than 2x and a maximum of more than 4.5x. Additionally,
HSC reduces the bandwidth to the directory by an average of 94%
and by more than 99% for four of the analyzed benchmarks.

Categories and Subject Descriptors
C.1.3 [Processor Architectures] Other Architecture Styles—
Heterogeneous (hybrid) systems; B.3.2 [Memory Structures]:
Design Styles—cache memories;

General Terms
Performance, Design

Keywords
GPGPU computing, Heterogeneous computing, Cache coherence,
Coarse-grained coherence

1. INTRODUCTION
General-purpose graphics processing unit (GPGPU) computing
offers great potential to accelerate many types of applications with
high-bandwidth throughput-oriented cores [24]. Moreover, as
compute capabilities increase, we expect memory bandwidth will
also increase to satisfy their future demands. The High Bandwidth
Memory (HBM) task group has been working to define a standard
to deliver bandwidth ranging from 128 GB/s to 256 GB/s per
DRAM stack [1]. In addition, die-stacking memory technologies
have been proposed to stack multiple DRAM stacks1 on the same
die to provide bandwidth up to 1 TB/s.

At the same time, GPUs are becoming more tightly integrated with
conventional CPUs in two ways. First, they are being physically
integrated on the same chip. Current examples include AMD’s
Trinity [4] and Intel’s Ivy Bridge processors. Such heterogeneous
processors currently make up more than 50% of client PC orders
and will become the vast majority by 2014 [30].

Second, GPUs are becoming more logically integrated with CPUs
through support for a unified (shared) memory address space. This
integration frees the programmer from using explicit copies and
enables use of unmodified pointer-based data structures (“pointer
is a pointer” [19]).

To make a shared address space appear sensible to application
programmers, some type of coherence should be implemented in
software (libraries), software-hardware, or in hardware. Cohesion
[16] implements it by a combination of hardware and software
coherence. Asymmetric distributed shared memory (ADSM)
implements a logically shared address space between the CPU and
GPU through a software implementation, GMAC [14]. However,
these mechanisms can burden the programmer [16] and affect
performance [14].

This paper focuses on supporting hardware coherence between
CPUs and GPUs in a heterogeneous CPU-GPU system. We
choose hardware because CPUs will continue to implement
hardware coherence for the foreseeable future [21], and to ease
software’s burden. Additionally, AMD and other HSA Foundation
members have committed to providing hardware coherence for

1 eight stacks in Black et al. [10]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
permissions@acm.org.
MICRO-46, December 07 - 11 2013, Davis, CA, USA
Copyright 2013 ACM 978-1-4503-2638-4/13/12…$15.00.

457

heterogeneous systems. Hardware coherence can enable new
classes of applications to take advantage of GPGPU computing
through low-overhead fine-grained data sharing.

Supporting coherence between CPUs and GPUs is challenging.
GPGPU applications often require much higher memory
bandwidth than CPU applications due to the massively parallel
nature of their Single Instruction, Multiple Thread (SIMT)
execution model. GPGPU applications also have different memory
access patterns than most CPU applications. Due to the streaming
nature of many GPGPU applications, they may exhibit higher
spatial and lower temporal locality than CPU applications. Our
performance evaluation of Rodinia benchmarks shows that the
GPU shared L2 cache has an average miss rate of 58%, which is
much higher than the average CPU miss rate of 14% [12].

Because of the high-bandwidth nature of heterogeneous systems,
using coherence mechanisms created for CPU architectures is
difficult. Traditional directory designs have two main problems
when scaling to a high bandwidth. First, it is challenging to support
more than one request per cycle at the directory. While it is
possible to bank the directory heavily, replicating all of the
required structures is expensive in terms of both power and area.
Second, full coherence necessitates that each GPU request
allocates a miss status handling register (MSHR) at the directory to
handle potential races with competing CPU requests. Many MSHR
entries are required to deal with the numerous parallel requests.
For the Rodinia workloads, we find that many applications need
tens of thousands of MSHR entries to avoid stalling the GPU. The
number of required MSHRs is impractical for a real machine,
which today has only a few dozen.

To reduce the bandwidth required in snooping-based symmetric
multi-processor (SMP) systems, researchers have proposed region
coherence [3, 11, 23, 31]. Region coherence exploits coarse-
grained sharing patterns among processors only requiring a subset
of memory requests to be broadcast to all cores. If permissions for
the requested region have been obtained already, broadcasts are
filtered and requests proceed directly to memory. Given that
GPGPU applications employ mostly coarse-grained sharing
between the CPUs and GPUs, the concept of region coherence
lends itself well the requirements of hardware coherence in
heterogeneous systems.

To this end, we propose Heterogeneous System Coherence (HSC),
which is directory-based hardware coherence on heterogeneous
CPU-GPU systems. HSC adds region buffers to both CPU and
GPU L2 caches to track the regions over which the CPU or GPU
currently hold permission. The region directory replaces the
traditional block-level directory. In addition to reducing bandwidth
by moving most coherent requests onto the incoherent direct-
access bus, the region directory occupies less area and is simpler
than a conventional block-level directory.

The main contributions of this paper are:
 A characterization of coherence bottlenecks in future high-

bandwidth heterogeneous systems showing that limited
directory resources are a significant bottleneck.

 A redesign of region-based coherence for heterogeneous
architectures that addresses the challenge of heavy resource
requirements.

 Optimizations for coherence-related traffic to reduce the
directory congestion bottleneck by bypassing the directory

and accessing memory directly for a majority of L2 cache
misses.

We implemented HSC on a cycle-level simulator. Evaluation
results show that HSC reduces the resource requirements while
achieving an average performance improvement of 2x and a
maximum performance improvement of 4.5x compared to the
baseline coherent heterogeneous system. Bandwidth to the
directory is reduced by an average of 94% and by more than 99%
for most benchmarks with limited MSHRs.

In this paper, the next section introduces the heterogeneous CPU-
GPU system that serves as the baseline system in this paper.
Section 3 illustrates the bottlenecks of extending directory-based
coherence protocols on the baseline system. Section 4 describes the
HSC design and implementation and estimates the hardware
complexity. Section 5 describes our simulation infrastructure and
the benchmarks we used to evaluate HSC. Section 6 reports and
discusses results. Section 7 reviews previous work on GPU
coherence and region coherence. Section 8 contains concluding
remarks.

2. BACKGROUND
This section introduces the baseline heterogeneous system based
on current mainstream integrated CPU-GPU products. We also
describe the extension of directory-based coherence to
heterogeneous systems, which will serve as the baseline coherence
implementation.

2.1 Baseline Heterogeneous System
Figure 1(a) shows an overview of our baseline system. There are
two clusters: a CPU cluster, which can contain any number of
CPUs, and a GPU cluster made up of thousands of individual
scalar units. These scalar units are coalesced to form SIMD units
that execute instructions in SIMT fashion. These SIMD units are
grouped together into compute units (CUs). The SIMT nature of
the GPU leads to tremendous memory parallelism, which puts
strain on the memory system to deliver high bandwidth.

The CPU and GPU clusters have two separate, non-inclusive,
shared L2 caches. The baseline coherence protocol is hierarchical
coherence with a global block-level directory that has two bits for
the sharing vector (one for each cluster).

The GPU uses the non-coherent direct-access bus for all incoherent
memory traffic, which mostly includes graphics-related traffic. For
coherent GPU requests, there is a separate coherent interconnect
between the GPU and the directory. All general-purpose memory
traffic (requests to the CPU-GPU shared address space) generated
in GPGPU applications must use this interconnect and access the
directory to stay coherent with the CPU caches. The GPU L1
caches are kept coherent by writing through dirty data and flash-
invalidating the L1 caches at kernel begins. Section 5 provides a
more detailed description of the simulated system.

2.2 Coherent Cache Implementation
Figure 1(b) shows an example architecture of the L2 cache tags
and required hardware for lookups and probes. MSHRs are used to
track the ongoing transactions of the outstanding requests. The
MSHR table is implemented using content-addressable memory
(CAM) to facilitate finding conflicts among the outstanding
addresses. A request occupies an MSHR until it has been
processed completely either by a hit in the L2 cache or an external
response.

458

Figure 1(c) shows the baseline directory implementation. The
directory MSHR table, also implemented as a CAM, is similar in
purpose to the MSHR table at the L2 cache. It is used to find any
conflicts with outstanding coherence requests to both memory and
L2 caches. The probe-request RAM (PRR) is used to track
outstanding probes and is implemented as a RAM indexed on
coherence transaction ID. The directory is mostly inclusive of all
caches in the system. A directory hit guarantees that there is at
least one cache in the system that has a valid copy of the requested
block. Thus, for writes, those identified copies must be invalidated;
for reads, one copy is probed directly for valid data. A directory
miss requires the system to probe all caches. To initiate a probe
request, a PRR entry must be allocated and the PRR entry stays
occupied until all required caches have replied to the probe
requests. While scaling the PRR to support many outstanding
probe requests is relatively easy, scaling the directory MSHR table
to support many outstanding requests and multiple incoming
requests per cycle is much more difficult and costly due to the
CAM design.

The probe requests are sent to any shared L2 caches that have a
valid copy of the data. On receiving the probe request, the L2
cache tag array must be read to determine the state of the block for
that address. The L2 MSHR table also must be queried to deal
correctly with the case of an outstanding request for that address.

These probe requests interfere with any demand requests from the
L1 caches and may cause increased latency for those requests.
Also, arbitration logic between demand and probe requests is
required. Scaling the cache tags and MSHR tables to support more
than one probe per cycle is difficult and costly. As with the
directory MSHR table, multi-porting the L2 MSHR table is costly.

An alternative implementation of the directory is a stateless or null
directory [7]. In this configuration, there are no directory tags.
Every request is treated as a directory hit and probes are broadcast
to all caches in the system. This design simplifies the directory
considerably, but suffers from high bandwidth of probe requests at
the L2 caches.

2.3 Region Coherence
Region coherence was first proposed in 2005 to reduce the
bandwidth required on snooping-based systems [3, 11, 23, 31].
Region coherence filters many broadcasts by tracking the sharing
information on a coarse granularity (a region). Regions contain
many (16–64) cache blocks. Coarse-grained coherence [11] adds a
Region Coherence Array (RCA) to the local caches. The RCA is
checked on cache misses, and if permissions exist for the region to
which the request address belongs, the request is forwarded
directly to memory without requiring a broadcast. On RCA misses,
the request is broadcast and all other caches reply with the correct

D

Demand
Requests

Cache Tag Arrays

Hit

Miss
Requests

Core Data
Responses

Probe
Requests

Data
 Responses

Block Directory Tag Array

PR
 E

nt
rie

s

Probe
Request RAM

Coherent
Block Requests

Miss

Hit

Block Probe
Requests/
Responses

GPU
Cluster

(e.g. 32 CUs with

private L1s)

CPU Cluster
(e.g. 2 Cores with

private L1s)

 GPU L2
Cache

CPU L2
Cache

Directory

DRAM Channels

Directory

L2 Cache(a) (b)

(c)
Non-coherent

Direct Access Bus

M
SH

R
En

tr
ie

s

MSHRs

M
SH

R
En

tr
ie

s
MSHRs

Coherent
Network
Interface

To DRAM

Figure 1: Baseline heterogeneous system. The weight of the lines represents the bandwidth required between

components. Connections added to support heterogeneous coherence are highlighted. (a) shows the baseline system
under study in this paper. The dotted lines represent probe/invalidation requests and responses. (b) and (c) are detailed

diagrams of the designs of the L2 cache and the directory, respectively, in our baseline system.

459

region-level permissions, which are inserted into the RCA. In this
work, we build on the RCA design, but we expect our
contributions to generalize to other region coherence
implementations.

2.4 Heterogeneous Coherence
Historically, coherence among CPUs and GPU has been managed
by software through explicit copies between address spaces.
Explicitly managed software coherence complicates heterogeneous
applications by requiring the programmer to reason about multiple
addresses for each variable. Additionally, this software coherence
makes using pointer-based data structures—like linked-lists and
trees—difficult on heterogeneous hardware.

In addition to complicating the programming model, explicit
software-managed coherence can perform poorly. Although it is
theoretically possible to overlap data movement between the CPU
and GPU with computation, expressing the dependencies is
difficult in current programming models. This leads to
inefficiencies in application performance as computation and data
movement are serialized.

To mitigate these issues and increase performance, AMD and other
HSA Foundation members have committed to providing hardware
coherence for heterogeneous systems [25]. Hardware coherence
allows the implementation of a shared address space for the CPU
and GPU, which simplifies data sharing. A shared virtual address
space also allows the GPU to address a much larger memory space
(all of CPU memory). Therefore, our baseline system assumes
hardware coherence between the CPU and GPU in our system.

3. HETEROGENEOUS SYSTEM
BOTTLENECKS

We performed a characterization of the bottlenecks of the
coherence protocol in the baseline heterogeneous system (Figure
1). The bottlenecks are primarily due to the high memory
bandwidth of GPU computing, which generates more coherent
requests than the directory can maintain and also requires
expensive MSHR resources.

3.1 Memory Bandwidth
GPU compute units are throughput-oriented many-core processors
targeting streaming-style applications. The streaming access
pattern is quite different from most CPU applications and causes
the GPU caches to be ineffective at filtering DRAM accesses.
Thus, GPU computing often consumes high memory bandwidth to
keep all the SIMD execution units busy. For example, recent
discrete GPUs from NVIDIA and AMD support bandwidth close
to 300 GB/s [6, 13]. Even though integrated GPUs are less
powerful, the number of CUs on these GPUs will likely continue to
scale in the future to increase computing power. Therefore,
memory bandwidth must scale as well.

To meet the challenge, both academia and industry have proposed
new memory technologies such as die-stacking memory. Assuming
such technology will be incorporated in future systems, we target a
high memory bandwidth for the rest of paper to reflect this design
trend. Specifically, for a GPU composed of 32 CUs, we found that
700 GB/s eliminated the memory bandwidth bottleneck for all our
workloads.

3.2 Directory Bandwidth
As memory bandwidth increases, other bottlenecks come to light.
Specifically, we find that the number of coherent data requests is

more than the directory can handle and requires a currently
infeasible number of MSHRs. MSHRs are used to track the status
of in-progress requests at the directory. This includes directory
hits, for which an MSHR entry is occupied until all probe requests
have completed, and directory misses, for which an MSHR entry is
occupied until memory responds with data.

Figure 2(a) shows the average accesses per GPU cycle at the
directory for our workloads (see Section 5 and Table 1 for
simulation details). For many applications, the bandwidth is more
than two accesses per cycle, which is difficult to support at the
directory. While it is possible to bank the directory array heavily,
splitting the pipeline for accessing the directory is much more
difficult.

Figure 2(a): Number of directory accesses per GPU cycle for
directory-based coherence.

Figure 2(b): Maximum resources used for directory-based

coherence (log scale).

Figure 2(c): Slowdown for baseline directory protocol when
using constrained resources (32 MSHRs) compared to

unconstrained resources.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

bp bfs hs lud nw km sd bn dct hg mm

Ac
ce

ss
es

 p
er

 G
PU

 c
yc

le

1

10

100

1000

10000

100000

bp bfs hs lud nw km sd bn dct hg mm

M
ax

im
um

 M
SH

Rs

0

1

2

3

4

5

bp bfs hs lud nw km sd bn dct hg mm

Sl
ow

-d
ow

n

460

High memory bandwidth also requires numerous MSHRs to track
all the simultaneous outstanding data requests. Because MSHRs
are CAM structures, it is expensive in terms of both power and
area. The MSHR structure is difficult to multi-port due to the large
number of entries it must hold. One can imagine address-slicing
the MSHRs n ways, but a lower value of n will encounter a
significant number of conflicts while a higher value of n wastes
many extra entries due to uneven request rates across the address
slices.

To illustrate the high demand of MSHRs for future heterogeneous
systems, Figure 2(b) shows the maximum MSHRs used by our
workloads when given unlimited resources. As shown in the
figure, these applications have a high variance in required MSHRs.
Some applications, such as hg (histogram), need relatively few
MSHRs (450) due to low utilization of the GPU, with an average
of less than 20% of the GPU CUs used during execution. However,
many applications need a massive number of resources. Six of our
applications use more than 5,000 MSHRs at peak usage. These
applications will suffer significantly from queuing delays when
directory resources are constrained. Figure 2(c) shows the
slowdown of these applications with 32 MSHRs. Matrix
multiplication slows by more than 4x, and five workloads suffer a
more than 2x slowdown. The average slowdown across all of the
workloads is 2.25x.

To implement coherent caches for GPU workloads, the overheads
must be reduced. Heterogeneous System Coherence, presented in
the next section, mitigates many of these overheads.

4. HETEROGENEOUS SYSTEM
COHERENCE

In this section, we discuss the design of HSC. We first extend
region coherence to directory-based coherence protocol, and then
we apply it to our baseline system. HSC adds region buffers to
both CPU L2 and GPU L2 caches to track access permissions at
the region granularity. All the L2 misses first query the region
buffer. If valid permission for that region (shared for reads, private
for writes) is found in the region buffer, data requests are sent
directly to memory via the direct-access bus. If permission is not
found, requests are forwarded to the region directory to acquire
permission for the region. The region directory connects the region
buffers and tracks and arbitrates the permissions of all the regions
on-chip. By obtaining permission at region granularity, HSC routes
the majority of L2 cache misses directly to memory, which reduces
directory bandwidth. The hardware complexity of HSC is modest,
adding less than 1% to the total chip cache area.

4.1 Directory-based Region Coherence
To apply the principles from region coherence to future
heterogeneous systems, similar to spatiotemporal coherence [3],
we first adapt region coherence to a directory-based coherence
protocol. To this end, we replace the block-level directory in the
baseline with a region directory and add a modified RCA [11] at
each shared L2 cache.

The region directory is conceptually similar to a normal block-
level directory. The block tags are replaced with region tags, and
the state associated with each entry is stored at a region
granularity. The region directory tracks the state only at the region
granularity; therefore, if a single block in the region is shared
between two cores, the entire region is marked as shared. Figure
3(a) shows a breakdown of the directory entry.

In coarse-grained coherence, the RCA sits behind the cache and
tracks the region state and the sharers. However, in directory-based
region coherence, there is no need for the sharers to be stored at the
cache level. We replace the RCA with a simplified structure, the
region buffer, which holds only the region state because the sharers
are stored in the region directory. Like the RCA, the region buffer
is inclusive of all entries stored in the caches above it. Figure 3(b)
shows the region buffer entry.

The region directory needs to be accessed only on requests for
regions that are not cached in the region buffer. When compared to
normal directory coherence, directory-based region coherence will
show a large reduction in directory bandwidth if the address stream
exhibits spatial locality.

Directory-based region coherence behaves similarly to region
coherence after permissions are obtained for a region. On cache
misses, the region buffer is queried; if the correct permissions are
available for the request, it is forwarded directly to memory
without any directory involvement.

4.2 Heterogeneous System Coherence
HSC takes directory-based region coherence and applies it to the
baseline heterogeneous system. Figure 4(a) shows an overview of a
system with HSC.

HSC takes the huge bandwidth on the coherence network in the
baseline system and moves it to the incoherent direct-access bus by
allowing coherent direct access. Coherent direct access is
achieved by acquiring permission for the entire region when the
first block is accessed. The subsequent accesses to any blocks in
the same region can perform coherent direct access on the
incoherent direct-access bus, which directly accesses memory
without requiring a directory query. When there is high spatial
locality in the memory access stream, such as for streaming
applications, most requests will not need to access the region
directory because the permissions already will have been obtained.
All requests for which permissions exist in the region buffer can
then use the high-bandwidth direct-access bus instead of the lower-
bandwidth coherence network.

(b) Region Buffer Entry

(a) Region Directory Entry

Region Tag State B0 B1 B2 ... B15

18 bits 1 valid bit per
block in the region

Region Tag State CPU GPU

1 valid bit
per cluster

2 bits

2 bits18 bits

Figure 3: Example region directory (a) and region buffer
(b) entries. Assumes 1 KB regions (16 64-byte blocks), 40-
bit physical addressing, and the configurations in Table 1.

461

Figure 4(a) shows an example of how a memory request flows
through the system. The GPU issues a write request (exclusive
request) for address A. The request misses in the GPU L2
cache and is forwarded to the region buffer. Address A is part of
region R(A), which is not present in the GPU region buffer;
therefore, a region-exclusive request is sent to the region
directory. When the request for R(A) reaches the region directory,
there is a hit, which results in an invalidate probe being sent to
the CPU region buffer along with the demand request. On
receiving the invalidate probe for region R(A), the CPU region
buffer forwards the demand request and invalidates every block
that is part of the region and is valid in the CPU shared L2 cache.

 The CPU shared L2 cache responds to the demand request and
writes back the data for all of the blocks in the region that were
valid. Once all of the blocks have been evicted from the CPU
shared L2 cache, the region directory responds with the data for
the original request and gives private permissions to the GPU
region buffer. For subsequent requests from the GPU cluster that
miss in the GPU shared L2 cache and are part of region R(A),
the GPU region buffer sends the coherent request on the direct-
access bus to memory, which returns the data.

4.3 Region Buffer
The region buffer contains the region tags, permissions, and other
region metadata that are kept at the local caches. The modifications
required at the shared L2 cache to implement the region buffer are
highlighted in Figure 4(b).

The biggest change from the baseline shared L2 cache is the
addition of the region buffer. This is a relatively small structure
that is banked easily to support high-bandwidth accesses and is
indexed by the region tag—the most significant bits of the address.
Each entry in the region buffer holds the region permission: private
with read-write permissions, shared with read-only permissions, or
invalid. A bit-vector that is the size of the region (16 bits for a 1
KB region) is also included in each entry to track the valid blocks
in the region to minimize the required invalidates sent to the L2
cache tags.

An interface to the direct-access bus is also added to the shared L2
cache. This interface is quite similar to the one present in GPUs to
carry graphics memory requests.

With the addition of the region buffer, any requests that miss in the
cache tags must also query the region buffer. These look-ups can
be done in parallel, at the cost of some power, or in series, at the
cost of some extra latency on cache misses. If the request is a hit in
the region buffer and the necessary permissions exist, the request is
issued on the direct-access bus as a coherent direct access request.
On misses in the region buffer, the request is forwarded to the
region directory, which satisfies the request and responds to the
region buffer with region permissions depending on the request
type.

The region buffer is placed between the cache tags and the region
directory to filter probe requests. All probes that the region

Region Directory Tag Array

Region
Permission
Requests

Miss

Hit

Miss

Hit

Miss

Demand
Requests

Cache Tag Arrays

HitCore Data
Responses

Coherent
Network
Interface

Probe
Requests

Region Buffer

Direct Access
Bus Interface

Hit

Miss

GPU
Cluster CPU Cluster

 GPU L2
Cache

CPU L2
Cache

Region
Directory

DRAM Channels

Region
Buffer

Region
Buffer

1

2

3
4

5

6

7

8

M
SH

R
En

tr
ie

sMSHRs

PR
 E

nt
rie

s

Probe
Request RAM

Block Probe
Requests/Responses

Region
Directory(c)

M
SH

R
En

tr
ie

s

MSHRs

L2 Cache &
Region Buffer(b)

(a)

Figure 4: Heterogeneous System Coherence overview. Line weight represents bandwidth. Changes from the baseline are bolded.

(a) shows the system architecture of HSC. The circled numbers refer to the detailed example of a GPU memory request in Section
4.2. (b) shows a detailed representation of the L2 cache and Region Buffer. Dotted lines show probes. (c) shows a detailed

representation of the region directory.

462

directory sends to the region buffer are for regions, not block-level
data requests. This allows a single request to be sent on the
coherence network, and any block-level probes, which need to be
forwarded to the local L2 cache, are handled without the need for
interconnect traffic.

4.4 Region Directory
Also added in HSC is the region directory (Figure 4(c)), which
replaces the block-level directory in the baseline system. This
structure is organized very similarly to the baseline block-level
directory, except that the region directory is indexed by region tags
instead of block tags. Similar to the baseline directory, each region
directory entry contains a bit-vector of sharers (one bit for each
cluster) and the state associated with each region.

Because the region directory is no longer required to support high
bandwidth, all of the associated structures (the directory MSHR
table and the PRR) can be simplified greatly. The region directory
does not need to support many outstanding region permission
requests, so these structures can be quite small, reducing the area
and power of the directory.

4.5 Hardware Complexity
The HSC design adds two region buffers and one region directory
to the baseline system. HSC extends the CPU and GPU L2 caches
to make all L2 caches interact with the region buffers. Our
evaluation results show that HSC reduces the resource
requirements (MSHRs) to a reasonable number. Thus, the
hardware complexity of HSC mainly lies in the storage overheads
of region buffers and region directory and the extension of L2
caches.

The extension of the L2 cache includes modifying related cache
transactions to perform the memory request flow with HSC. For
example, for L2 miss, instead of being forwarded to directory, the
data request is forwarded to the region buffer to check permission.
An interface to the direct-access bus is also added to the shared L2
cache to route traffic directly to memory. HSC does not require

any changes to the coherence states. Thus, no additional storage is
needed for L2 caches.

Based on the detailed description in Figure 3, each region buffer
entry requires 36 bits of storage and each region directory entry
takes 22 bits, for a 1 KB region. In our configuration, we used
32,768 region directory entries and 16,384 region buffer entries for
each region buffer with region size of 1 KB. The storage overhead
for each region buffer is 74 KB, which is less than 5% for a 2 MB
CPU L2 cache. In total, the storage overhead is 238 KB, which is
less than 1% of the total on-chip memory hierarchy. In
comparison, the baseline directory includes 262,144 directory
entries and occupies 820 KB storage, significantly more than the
region directory.

5. EXPERIMENTAL SET-UP
In this section, we describe the simulation infrastructure and the
workloads we used to evaluate our HSC design.

5.1 Simulation
For simulating the CPU, we used the in-order non-pipelined CPU
model from the gem5 [9] simulation infrastructure. For simulating
the GPU, we used a proprietary simulator based on the AMD
Graphics Core Next architecture [20]. The heterogeneous system is
simulated by combining the memory systems of gem5 and our
proprietary GPU simulator. The simulator runs in timing mode and
produces detailed statistics including simulator cycles, directory,
and cache traffic.

The simulated CPU-GPU processor has two CPU cores and 32
GPU CUs. As described in Section 3.1, future heterogeneous
processors likely will scale to provide increasing computing
power. We use a large number GPU CUs and extreme memory
bandwidth of 700 GB/s to reflect the trend. Table 1 shows the
parameters used in the simulations. In each protocol, the simulated
memory system has a shared memory-side L3 cache. The CPU
memory system uses MOESI states for cache blocks; the GPU
caches are write-through and use a VI (valid/invalid)-based
protocol for coherence.

We implemented the HSC protocol on this simulated architecture.
Regions can be in one of three stable states: private (read-write
permissions), shared (read-only permissions), and invalid. For
comparison purposes, we evaluated three coherence protocols:

 Broadcast: Broadcast-based null directory protocol
 Baseline: Block-based directory protocol (Figure 1)
 HSC: Region-based directory protocol (Figure 4) with a

region size of 1 KB or 16 64-byte blocks

5.2 Workloads
We make use of two benchmark suites to evaluate HSC design.
Seven of the 14 Rodinia [12] benchmarks were ported to our
simulator. These include back propagation (bp), a machine-
learning algorithm; breadth-first search (bfs), HotSpot (hs), a
thermal simulation for processor temperatures; LU Decomposition
(lud); Needleman-Wunsch (nw), a global optimization method for
DNA sequence alignment; kmeans (km), a clustering algorithm
used in data mining; and, speckle-reducing anisotropic diffusion
(srad), a diffusion algorithm. We also ported four AMD APP SDK
[5] benchmarks to our simulator: bitonic sort (bn), discrete cosine
transform (dct), histogram (hg), and matrix multiplication (mm).
The other Rodinia and AMD SDK benchmarks have not been
ported to the shared address space APU architecture.

CPU Clock 2 GHz
CPU Cores 2
CPU L1 Data Cache 64 KB (2-way banked)
CPU L1 Instruction Cache 64 KB (2-way banked)
CPU Shared L2 Cache 2 MB (16-way banked)
GPU Clock 1 GHz
Compute Units 32
Compute-unit SIMD Width 64 scalar units by 4 SIMDs
GPU L1 Data Cache 32 KB (16-way banked)
GPU L1 Instruction Cache 32 KB (8-way banked)
GPU Shared L2 Cache 4 MB (64-way banked)
L3 Memory-side Cache 16 MB (16-way banked)
DRAM DDR3, 16 channels, 667 MHz
Peak Memory Bandwidth 700 GB/s
Baseline Directory 262,144 entries (8-way banked)
Region Directory 32,768 entries (8-way banked)
MSHRs for All Directories 32 entries
Region Buffer 16,384 entries (64-way banked)

Table 1: Simulation Parameters

463

All benchmarks are written in OpenCL. The workloads were
modified to utilize our fully coherent system by removing all
explicit memory copies and using pointers instead. All benchmarks
kept the same general structure after the modifications. All of the
workloads use all CUs on the simulated GPU but exercise only one
CPU while executing.

6. EXPERIMENTAL RESULTS
In this section, we present the experimental results of HSC by
running the simulation in detailed mode. To focus on our region of
interest, the results presented in this section do not contain
statistics of CPU operations such as initialization, reading files,
and other similar operations that do not involve CPU-GPU
interaction. The results include the reduction in directory
bandwidth, application execution time, and MSHR consumption
compared to a block-based directory protocol.

6.1 Execution Time
Figure 5 shows the performance of the coherence protocols across
the execution of the entire region of interest (both CPU and GPU
execution). HSC significantly increases performance for many of
the applications. The average speedup is 2x, with a maximum
speedup of more than 4.5x.

The key reason HSC outperforms the baseline directory protocol is
that it alleviates the queuing delays caused by too few MSHR
entries. As discussed in Section 3.2, constraining the MSHRs at the
directory causes a significant slowdown for some applications.
HSC reduces the pressure on MSHR entries and the applications
can obtain high performance with modest hardware costs (32
MSHR entries).

Most applications see at least a slight slowdown when using the
broadcast protocol. This is because issuing the probes to all L2
caches for every directory access causes pressures on the directory
and L2 cache structures. The number of needed MSHRs increases
as latency for requests increases because every request must wait
for all L2 caches to respond. Additionally, probe requests to the L2
caches interfere with demand traffic. Also, for some applications
the PRR entries become a bottleneck, introducing more stalls.

Although some applications see a significant performance
improvement with HSC, some applications do not. This is because
these applications are CPU-bound and do not spend a significant
amount of time running on the GPU. Figure 6 shows the percent of

total execution time each application spends running on the GPU
and CPU. Applications that do not experience performance
improvements with HSC are those that have a very low percent of
total execution time on the GPU, and thus have relatively low
directory bandwidth demand. As GPUs become easier to program,
future GPGPU workloads likely will spend a significant percentage
of their run-time on the GPU; for these workloads, HSC improves
performance.

Most of HSC’s performance improvement comes from its ability to
reduce the latency of loads issued from the GPU. The average load
latency is reduced because most requests proceed directly to
memory via the direct-access bus, bypassing the directory. Figure
7 shows the decrease in load latencies with HSC. The write-
through memory system of the GPU caches allows instantaneous
stores; hence, store latency is not critical to the performance of the
simulated system.

Although the bfs benchmark has significant time on GPU, it does
not get significant benefit from HSC (only 9%) due to its short
kernel run-times. bfs launches many very short kernels to the GPU
and the overheads of kernel launching and completion hide the
benefits of HSC.

nw also shows little benefit from HSC (10%) even though the GPU
time is significant. nw suffers because of low region density. Most

Figure 5: Execution time of all protocols normalized to

baseline directory protocol.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

bp bfs hs lud nw km sd bn dct hg mm

Sp
ee

du
p

Broadcast Baseline HSC

Figure 6: Percent of application execution time spent on

GPU and CPU.

0

20

40

60

80

100

bp bfs hs lud nw km sd bn dct hg mm

Ex
ec

ut
io

n
tim

e
(%

)

CPU GPU

Figure 7: Latency of loads normalized to the baseline

directory protocol.

0

0.5

1

1.5

2

2.5

bp bfs hs lud nw km sd bn dct hg mm

N
or

m
al

ize
d

lo
ad

 la
te

nc
y

broadcast baseline HSC 3.9

464

benchmarks have an average region density—the number of valid
blocks currently in the local cache—of nearly 75% (12 of 16
blocks in the region are valid). However, nw shows much lower
densities, with an average of slightly more than one block valid in
the region. nw has poor region density due to its pattern of memory
accesses.

Region density is a good indicator of the effectiveness of HSC. We
expect that most GPU applications are not like nw, and exhibit
high spatial locality because low spatial locality leads to memory
divergence and poor memory bandwidth utilization on GPU
architectures.

6.2 Directory Bandwidth
Reducing the directory bandwidth eases implementation of
coherence for a heterogeneous system. Figure 9 shows that HSC
accomplishes this goal with an average of 94% reduction in the
directory bandwidth compared to the baseline directory protocol.

For some benchmarks, the reduction in directory accesses is more
than 99%. The maximum reduction in directory accesses expected
is only 94% directory requests elided; however, many benchmarks
see a greater reduction. This large reduction come from the region
buffers holding permissions for regions that currently are not valid
in the cache. Because of the compactness of the region buffers, it is
easy to overprovision them such that the region buffer has a much
larger reach than the attached caches. Because of this larger reach,
the region buffer caches permissions for some regions in which the
cache does not contain any valid blocks, and these permissions are
re-used when the request for that block misses in the cache.

6.3 Resource Requirements
Figure 8 shows the reduction in directory resources achieved by
HSC. This data was generated by allowing unlimited MSHRs in
the HSC protocol. In the baseline protocol, to not cause stalls, the
directory MSHR table needs, on average, at least 10,000 entries. In
the worst case, to cause no stalls in hotspot, the baseline directory
would need in excess of 36,000 entries. HSC greatly reduces this
constraint. On average, the reduction is more than 95%. The
average maximum needed MSHR table in HSC is only 488 entries,
and the maximum across all benchmarks is 1,888 entries. Although
the maximum used MSHRs are still much larger than a reasonable
amount of MSHRs (32), performance is improved by reducing
queuing delays at the directory. With this huge reduction of
resource requirements at the directory, HSC makes coherent
caches between the CPU and GPU feasible without significant
hardware resources.

7. RELATED WORK
7.1 GPU Coherence
Historically, coherence between the CPU and GPU in a system has
been managed by software, which is largely an artifact of the
memory partitioning in these systems. However, now that the CPU
and GPU are becoming more closely integrated, there have been
some proposals for providing the programmer with a more
coherent view of the shared memory. PTask [26] proposes a task
graph library that removes the need for programmers to manage
the memory explicitly. The underlying coherence mechanism is
implemented in a software library. Cohesion [16] implements a
combination of software and hardware coherence in which the data
can migrate between these two coherence domains dynamically.
This system works well for current GPGPU applications that use
the bulk-synchronous communication pattern. A potential
bottleneck in the Cohesion design is that on every block request
that misses in the higher-level caches, the directory must be
queried to determine if the block is in the software- or hardware-
managed coherence domain. Asymmetric distributed shared
memory (ADSM) implements a logically shared address space
between the CPU and GPU [14]. Gelado et al. provide GMAC, a
software implementation of ADSM. These proposals come with
potential programming model complications or performance
issues. Due to this, and because AMD and other HSA Foundation
members have committed to providing hardware coherence, we
focus on only hardware coherence in this paper. Additionally,
Singh et al. developed a coherence protocol for intra-GPU
coherence [28]. Their work uses a timestamp-based protocol called
temporal coherence. HSC focuses on coherence between an
integrated CPU and GPU. Our results are compatible with other
forms of intra-GPU coherence.

7.2 Reducing Broadcast Bandwidth
Many systems have been developed to reduce the bandwidth
required in snooping systems. Although we focus on a directory-
based coherence protocol, these ideas were influential. Moshovos
et al. proposed JETTY [22], which filters incoming snoops to the
cache based on contiguous regions. Stream registers [27]
implement similar structures to JETTY except the regions can be
sized dynamically. Also, high bandwidth for snoop requests is
supported by duplicating the logic for the snoop filters at every
port into the cache. RegionTracker [31] replaces the local cache
tags with region-based tags. RegionScout [23], a precursor to some
of the region coherence work, adds a non-shared region table
(NSRT), which caches regions known not to be held in any other
caches, and the cached region hash (CRH), which is a Bloom filter
that holds a superset of regions cached in the local cache. These

Figure 9: Directory bandwidth normalized to baseline

directory protocol

0

0.2

0.4

0.6

0.8

1

1.2

bp bfs hs lud nw km sd bn dct hg mm

N
or

m
al

ize
d

ba
nd

w
id

th
 broadcast baseline HSC

Figure 8: Maximum number of MSHRs used by HSC
normalized to baseline

0

0.05

0.1

0.15

0.2

0.25

bp bfs hs lud nw km sd bn dct hg mm

N
or

m
al

ize
d

M
SH

Rs

465

structures filter the broadcasts required. Other solutions have been
proposed as well, including virtual tree coherence [15], subspace
snooping [17], and in-network coherence filtering [2]. These works
relate to the design of HSC.

7.3 Reducing Directory Look-ups
TurboTag [18] focuses on reducing energy consumed by the
directory by using Bloom filters to reduce the number of directory
look-ups. Each directory bank has a counting Bloom filter that is
accessed prior to the directory look-up. If the entry is not present in
the Bloom filter, then it cannot be present in the directory and the
look-up is elided. This work could help reduce the high bandwidth
from the GPU to the directory tags, but it does not limit the number
of MSHRs required.

7.4 Reducing Directory Resources
Many scalable directory protocols have been studied.
Spatiotemporal Coherence Tracking (SCT) [3] aims to reduce the
size of the directory by leveraging spatially local regions. SCT is
dual-grained, enabling the tracking of permissions at both the
region and block levels. SCT reduces the required number of
directory entries by tracking private data at the region level.

Basu et al. extend region coherence to directory-based systems [8].
This work proposes a dual-granular directory design that tracks
both block- and region-level permissions. HSC is a different
implementation for directory-based region-level tracking; however,
HSC focuses on heterogeneous CPU-GPU systems instead of
CMPs and primarily aims to reduce the bandwidth to the directory,
not the directory size.

7.5 Reducing Miss-handling Resources
Scalable miss handling [29] proposes a hierarchical miss-handling
architecture. The authors observe that when constructing a high-
bandwidth miss-handling architecture, banking the miss-handling
registers does not provide enough benefits due to bank access
imbalance. Therefore, the authors construct a high-bandwidth
miss-handling architecture by adding per-bank miss-handling
registers and allowing them to overflow into a large centralized set
of miss-handling registers. To reduce the bandwidth to the
centralized file of miss-handling registers, the authors add a per-
bank Bloom filter that holds all of the entries in the centralized file.
On a miss in the per-bank miss-handling registers, if the address is
not in the Bloom filter then the centralized file does not need to be
accessed.

HSC solves a similar problem by limiting the total number of
MSHRs required. However, HSC also reduces the total bandwidth
to both the directory and its MSHR structure by moving most
requests onto the direct-access bus, bypassing the directory
completely.

8. CONCLUSIONS
Heterogeneous CPU-GPU processors potentially can be more
programmable and more efficient with the support of hardware
coherence. However, limited directory resources will be a
significant bottleneck due to a GPU’s high memory bandwidth
requirements and unique patterns of memory accesses. We
introduce Heterogeneous System Coherence, or HSC, which
implements directory coherence at a region granularity. Given the
high spatial locality of GPU data, obtaining coherence permissions
at coarse granularity (compared to traditional block-level) enables
the elision of the majority of directory accesses.

Evaluation results show that HSC achieves an average
performance improvement of 2x compared to a baseline directory
design. Bandwidth to the directory is reduced by an average of
95% and more than 99% for four of the benchmarks. Thus, HSC
provides a practical hardware solution to full coherence in a
heterogeneous CPU-GPU system.

9. ACKNOWLEDGEMENTS
This work was performed at AMD, including student internships.
Wisconsin authors improved the paper's presentation while being
partially supported with NSF grants CCF-0916725, SHF-1017650,
CNS-1117280, and CCF-1218323. The views expressed herein are
not necessarily those of the NSF. Professors Hill and Wood have
significant financial interests in AMD.

10. REFERENCES
[1] 3D-ICs: http://www.jedec.org/category/technology-focus-

area/3d-ics-0. Accessed: 2013-09-18.
[2] Agarwal, N. et al. 2009. In-network coherence filtering.

(2009), 232.
[3] Alisafaee, M. 2012. Spatiotemporal Coherence Tracking.

(Dec. 2012), 341–350.
[4] AMD Inc. 2010. AMD FusionTM Family of APUs.
[5] AMD Inc. 2008. AMD Stream SDK.
[6] AMD RadeonTM HD 7970 Graphics:

www.amd.com/radeonHD7970.
[7] Archibald, J. and Baer, J.-L. 1984. An Economical Solution

to the Cache Coherence Problem. Proceedings of the 11th
Annual International Symposium on Computer Architecture
(Jun. 1984), 355–362.

[8] Basu, A. et al. 2013. CMP Directory Coherence: One
Granularity Does Not Fit All. Technical Report #CS-TR-
2013-1798. Univ. of Wisconsin Computer Sciences.

[9] Binkert, N. et al. 2011. The gem5 simulator. Computer
Architecture News (CAN). (2011).

[10] Black, B. et al. 2006. Die Stacking (3D) Microarchitecture.
(Dec. 2006), 469–479.

[11] Cantin, J.F. et al. 2005. Improving Multiprocessor
Performance with Coarse-Grain Coherence Tracking.
Proceedings of the 32nd Annual International Symposium
on Computer Architecture (Jun. 2005).

[12] Che, S. et al. 2009. Rodinia: A benchmark suite for
heterogeneous computing. 2009 IEEE International
Symposium on Workload Characterization (IISWC) (2009).

[13] GeForce GTX 780: 2013.
http://www.geforce.com/hardware/desktop-gpus/geforce-
gtx-780/specifications.

[14] Gelado, I. et al. 2010. An asymmetric distributed shared
memory model for heterogeneous parallel systems. (2010),
347.

[15] Jerger, N.D.E. et al. 2008. Virtual tree coherence:
Leveraging regions and in-network multicast trees for
scalable cache coherence. MICRO 41 (Nov. 2008), 35–46.

[16] Kelm, J.H. et al. 2010. Cohesion: A Hybrid Memory Model
for Accelerators. Proccedings of the 37th Annual Internal
Symposium on Computer Architecture (ISCA) (Jun. 2010).

[17] Kim, D. et al. 2010. Subspace snooping. Proceedings of the
19th international conference on Parallel architectures and
compilation techniques (2010), 111–122.

[18] Lotfi-Kamran, P. et al. 2010. TurboTag: lookup filtering to
reduce coherence directory power. Proceedings of the 16th

466

ACM/IEEE international symposium on Low power
electronics and design (2010), 377–382.

[19] Mantor, M. 2011. Fusion and the Future of Heterogeneous
Computing.

[20] Mantor, M. and Houston, M. 2011. AMD Graphics Core
Next.

[21] Martin, M.M.K. et al. 2012. Why on-chip cache coherence
is here to stay. Communications of the ACM. 55, 7 (Jul.
2012), 78.

[22] Moshovos, A. et al. 2001. JETTY: Filtering Snoops for
Reduced Power Consumption in SMP Servers. Proceedings
of the Seventh IEEE Symposium on High-Performance
Computer Architecture (Jan. 2001).

[23] Moshovos, A. 2005. RegionScout: Exploiting Coarse Grain
Sharing in Snoop-Based Coherence. Proceedings of the
32nd Annual International Symposium on Computer
Architecture (Jun. 2005).

[24] Owens, J.D. et al. 2008. GPU Computing. Proceedings of
the IEEE. 96, 5 (2008).

[25] Rogers, P. 2013. Heterogeneous System Architecture
Overview. HOT CHIPS (2013).

[26] Rossbach, C.J. et al. 2011. PTask: Operating System
Abstractions To Manage GPUs as Compute Devices. Proc.
of the 23nd ACM Symp. on Operating System Principles
(Oct. 2011).

[27] Salapura, V. et al. 2007. Improving the accuracy of snoop
filtering using stream registers. Proceedings of the 2007
workshop on MEmory performance: DEaling with
Applications, systems and architecture (2007), 25–32.

[28] Singh, I. et al. 2013. Cache Coherence for GPU
Architectures. The 19th IEEE International Symposium on
High Performance Computer Architecture. (2013).

[29] Tuck, J. et al. 2006. Scalable Cache Miss Handling for High
Memory-Level Parallelism. Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture
(Dec. 2006).

[30] Wilkins, M. NVIDIA Jumps on Graphics-Enabled
Microprocessor Bandwagon.

[31] Zebchuk, J. et al. 2007. A Framework for Coarse-Grain
Optimizations in the On-Chip Memory Hierarchy.
Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture (Dec. 2007), 314–327.

467

