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1 Introduction

New data is generated at an alarming rate, as much as 2.6 exabytes are created each day [25].

Users want to run complex queries on this abundance of data, sometimes with real-time con-

straints. This puts a great strain on our computational systems. Today we use large distributed

systems to meet these demands. These data centers accounted for 1.1–1.5% of electricity use

worldwide and 1.7–2.2% in the U.S in 2010 [20]. As the demand for data and processing capa-

bility increases, we must find a way to accomplish these computations more energy efficiently.

Prior to the the early 2000’s, due primarily to Moore’s law [26], computer architects were able

to provide the necessary hardware to keep up with data scaling. In fact, because of Dennard scal-

ing [12] processors were able to double in performance without increasing the total power dissi-

pated. Thus, in addition to increasing performance, each new processor generation was twice as

energy efficient (i.e., twice as many operations per joule).

However, because of the breakdown in threshold voltage scaling, and other technological hur-

dles, computer architects can no longer rely on Moore’s law and Dennard scaling to increase en-

ergy efficiency [6]. For applications to continue to scale both their data footprint and query com-

plexity without an exponential increase in power, computer architects need to take a radically

different approach than in the era of strong Dennard scaling.
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Luckily, there are many promising directions for future energy efficient computing. One solu-

tion used in many areas today is specializing the processor for a single or set of related tasks. Ex-

amples of specialization include digital signal processors, video encoding and decoding units, and

graphics processing units (GPUs). GPUs have shown great promise in solving many problems

with data-level parallelism efficiently, leading to an explosion of general-purpose GPU (GPGPU)

computing.

GPUs have quickly evolved from domain-specific fixed function units to first-class general-

purpose compute platforms. Today, almost all systems, from desktops and laptops to mobile

phones and tablets have a GPU. GPUs have become more integrated with the system, and today

can even be programmed using the same virtual address space as the CPU [9].

In this work, I aim to decrease the energy required for data-intensive workloads. Specifically,

my work is broken into three parts.

1. Increase the programmability and efficiency of tightly-coupled CPU-GPU systems by using

hardware to accelerate sharing the same virtual address space between the CPU and GPU

(Section 3).

2. Increase the energy efficiency of an important class of database workloads, analytic queries,

by leveraging current GPU hardware (Section 4).

3. Propose the analytic database machine (ADBM) a new system architecture which couples

the CPU and GPU with DRAM to increase the efficiency of analytic database workloads

(Section 5).

This document is organized as follows: First, I present background on both GPUs and the

analytic database framework used in the latter two parts of my work. Then, I present the three

parts of my work, first Section 3 covers enabling x86-64 address translation on GPUs, Section 4

covers my implementation of GPU analytic query processing, BitWarp, and its results, and Sec-

tion 5 covers my proposed work to create an analytic database machine, ADBM. Section 6 presents

a schedule to complete my thesis and the other work I have completed. Finally, Section 7 con-

cludes.
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2 Background

This section presents a brief background on GPU architecture and programming interface rele-

vant to the rest of the document. Additionally, this section describes the workload and frame-

work used to evaluate the efficacy of GPUs and my proposed database machine on analytic query

processing.

2.1 GPU Architecture and Programming Interface

GPU Architecture — Graphic processing units (GPUs) were originally created to acceler-

ate rendering graphics to the screen; however, in recent years they have become general purpose

compute platforms. These general-purpose GPUs (GPGPUs) have a number of characteristics

that differ from conventional CPUs:

• GPGPUs are optimized for instruction throughput, not instruction latency.

• GPGPUs have high-bandwidth and low-capacity on-chip caches.

• GPGPUs can exhibit much higher memory-level parallelism than CPUs.

• GPGPUs devote a higher percentage of area to compute functional units than CPUs.

Figure 1 shows an overview of a modern heterogeneous system where both a CPU and GPU

are contained on the same silicon chip. The heterogeneous chip contains multiple CPU cores and

multiple GPU compute units (CUs).

Within each CU, there are a large number of processing elements (PEs) that are simple func-

tional units. These processing elements are controlled in lock-step by a shared instruction fetch

and scheduling unit. Due to their lock-step and in-order nature, the front-end (instruction fetch

and issue) of GPU CUs is less complex and more power efficient than the CPU core front-end.

In addition to these features, each CU of the GPU also contains two special memory system

optimizations. First, between the PEs and the L1 data cache is a coalescing unit that takes the

memory addresses generated by each of the PEs and attempts to coalesce them into the mini-

mum number of memory references (e.g., if all 64 address are consecutive and aligned the coa-
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lescer will generate four 64-byte requests instead of 64 4-byte requests). Application performance

depends on good coalescing behavior, especially for memory-bound workloads.
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Figure 1: GPU architectural overview.

The second GPU-specific memory op-

timization is the addition of a directly ad-

dressed scratchpad cache (called local mem-

ory or group memory by AMD and shared

memory by NVIDIA). This small (∼64 KB)

cache is explicitly controlled by the program-

mer. Requests to the scratchpad cache do not

need to access cache tags since the scratchpad

is directly addressed. Memory requests to the

scratchpad do not pass through the coalescer

and do not access the low-bandwidth cache

tags, and, therefore, the scratchpad cache is

higher bandwidth than the data cache for re-

quests that cannot be coalesced. It is common

to load data into the scratchpad cache that

has a poor data access pattern to avoid the high cost of uncoalesced accesses to the main mem-

ory system.

2.2 Analytic Database Workload

We use TPC-H as a proxy of analytic database workloads [39]. TPC-H is a decision support

benchmark that examines large amounts of data with complex queries meant to model business

questions. TPC-H consists of 22 queries and the total size of the database is configurable. The

TPC-H benchmark is an industry standard test of database performance with many organiza-

tions submitting TPC-H performance results on real systems.

BitWeaving and WideTable — To test analytic database workloads on new architectures,

I leverage a recently published database framework (WideTable [22]) and algorithm (BitWeav-
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ing [21]). WideTable is an in-memory database system which uses BitWeaving as its scan algo-

rithm. Below is a brief overview of each.

WideTable is an in-memory database framework for accelerating analytic queries [22]. In Wide-

Table, when the database is initially loaded, it is denormalized—converted from using multiple

tables with pointers between them to a single large table, possibly with duplicated data. To ac-

complish this denormalization, an outer-join is performed on all database tables. This denormal-

ization allows most queries to be completed with simple scan operations instead of requiring join

operations. In a scan operation, each record is read sequentially and a field is evaluated against

a predicate (e.g., “SELECT salary WHERE salary > $100,000” scans the whole database for

records in which the salary is more than $100,000). Additionally, WideTable stores the data in

columns instead of rows which increases the memory access locality for scan-like operations. In

column-oriented formats, instead of storing the record contiguously (row-oriented), each field of

sequential fields are stored together. Finally, WideTable uses dictionary compression to limit the

size of the data in each column.

c1 c2 c3 c4 c5 c6 c7 c8

w1 0 0 0 0 0 0 0 1
w2 0 0 0 1 1 0 0 0
w3 0 1 0 0 1 1 0 0

Bitweaving Vertical Segment Bitweaving Horizontal
SegmentRed 0 000

Green 1 001

Red 0 000

Blue 2 010

Orange 3 011

Green 1 001

Red 0 000

Yellow 4 100

Column Code (Code)2

c1 c2

0 000 0 001w1

c3 c4

0 000 0 010w2

c5 c6

0 011 0 001w3

c7 c8

0 000 0 100w4

Figure 2: Overview of BitWeaving vertical and
horizontal. Left shows a single column of a database
and right shows the physical memory layout. w1–3
are three consecutive words in memory and c1–8 are
eight consecutive records in a column.

Since WideTable converts most database

operations into simple scans, a fast scan im-

plementation is important. WideTable uses

BitWeaving as its scan implementation [21].

BitWeaving performs the scan on the com-

pressed and compacted data stored in the

WideTable columns. Thus, it significantly re-

duces the bandwidth required for scan operations and increases performance compared to previ-

ous scan algorithms. BitWeaving has two different algorithms for scanning columnar databases:

horizontal and vertical. In horizontal BitWeaving, each coded record is stored sequentially with

a single bit padding between each code. In vertical BitWeaving, the bits of each code are stored

across separate words such that each bit of sequential records are stored together. The specific

BitWeaving algorithms are described in Li and Patel’s paper [21].

Figure 2 shows an overview of BitWeaving. This figures shows three consecutive words in
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memory (w1, w2, and w3) of the two forms of BitWeaving. The codes are stored physically in

words. Each word may hold multiple codes, and a single code may be split across multiple words.

In BitWeaving vertical, each column (c1, c2, etc.) is vertical, and in BitWeaving horizontal each

column is horizontal.

3 Unified Address Translation – largely completed work

CPUs and GPUs are currently tightly integrated physically with the CPU and GPU on the same

silicon die (e.g., AMD Fusion, Intel desktop chips, most mobile chips). However, they are still

logically separate. Most current GPGPU programming assumes separate physical memory ad-

dress spaces and requires the programmer to explicitly move data from the CPU memory to the

GPU memory.
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Figure 3: Proposed GPU MMU design.

Industry recognizes that a more logically

integrated system can increase programma-

bility and performance and is proposing so-

lutions such as CUDA 6 from NVIDIA [17]

and heterogeneous system architecture (HSA)

from AMD and its partners [37]. These new

paradigms allow GPGPU programmers to log-

ically consider the CPU and GPU in the same

virtual address space. This logical coupling of the CPU and GPU can be implemented multiple

ways. In CUDA 6, the runtime transparently manages moving the data between the CPU and

GPU. A potentially lower overhead solution targeted at tightly physically integrated systems is

to use hardware to manage data movement. HSA uses this solution.

To implement a shared virtual address space between the CPU and GPU in hardware there

are two key parts. First, the caches private to each device must be kept coherent (e.g., through

judicious cache flushing or hardware mechanisms [32]). Second, the CPU and GPU must use the

same address translation mechanism. This latter requirement is the focus of this work which is

published in HPCA 2014 [33] and attached in Appendix A.
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To unify the virtual address spaces of the CPU and GPU, we develop a GPU memory man-

agement unit (MMU) which implements the x86-64 address translation mechanism. Through a

data-driven approach, we develop a proof-of-concept GPU MMU design (Figure 3) that negligi-

bly impacts GPU performance compared to an ideal MMU (an average of 2% and maximum of

10%) and is fully compatible with x86-64 page table structure. We present three key findings and

a design motivated by each finding. Our final proof-of-concept GPU MMU design, shown in Fig-

ure 3, puts L1 TLBs after the coalescing unit and scratchpad cache, contains a highly-threaded

pagetable walker, and contains a page walk cache.

3.1 Key findings that drive our GPU MMU design

Motivating Design 1: Post-coalescer MMU — We find that accessing the GPU MMU af-

ter the scratchpad cache and the coalescer reduces total translation traffic by 85%. The reason

for this reduction is that for a GPU application to perform well it must have regular memory ac-

cess patterns that exhibit good coalescing behavior. Irregular access patterns that exhibit poor

coalescing leverage the scratchpad cache to achieve high performance. Therefore, by putting the

MMU after these hardware structures we can leverage the same optimizations programmers al-

ready make to reduce the impact of address translation.

Motivating Design 2: Highly-threaded page table walker — After investigating the

performance bottlenecks in our first design, we find that bursts of TLB misses cause low perfor-

mance. In fact, we find that there is an average of 60 concurrent page table walks at each CU

and that over 90% of page table walk requests are issued within 500 cycles of the previous re-

quest. Therefore, we advocate for a non-blocking page table walker implemented with a highly-

threaded design.

Motivating Design 3: Page walk cache — After alleviating the concurrent page walk

bottleneck, we find that the L1 TLB miss rate is quite high. The poor temporal locality of GPU

workloads cause this high miss rate. To reduce the impact of the high miss rate on performance,

we add a page walk cache to our design that is accessed by the highly-threaded page table walker

before the L2 data cache. This page walk cache design is similar in both implementation and in
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spirit to page walk cache structures used to accelerate CPU page table walks.
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Figure 4: Results for proposed GPU MMU
design.

Performance Results — Figure 4 shows

the performance of the three GPU MMU de-

signs relative to an ideal, impossible to imple-

ment, MMU with minimal latency to the data

cache and infinite L1 TLBs. Detailed method-

ology is in Appendix A. This figure shows that

with Design 3, the GPU MMU is within 2% of

the ideal MMU, on average for our workloads.

Moving from Design 1 to Design 2 (adding the highly-threaded page table walker) increases per-

formance for most workloads. nw and bfs are the exception to this and bring down the overall

average for Design 2. These two workloads suffer from conflicts at the highly-threaded page table

walker, which could be solved with a better queue priority algorithm, but we find that Design 3

resolves this issue. Design 3 increases performance over Design 2 for all of the workloads. The

lowest performing workload is bfs because it has the worst coalescing behavior. We show in the

full paper the performance of bfs can be closer to the ideal MMU with an optimized page walk

cache design.

The full paper in Appendix A also presents a discussion of correctness issues—page faults and

TLB coherence; a sensitivity analysis comparing our proof-of-concept design to a design with a

L2 TLB, different page walk cache designs, and TLB prefetching; a discussion on the impact of

large pages; and an analysis of the energy and area overheads of our MMU design.

4 BitWarp: Using GPUs for Analytic Query Processing – previ-

ously submitted work-in-progress

Analytic query workload’s performance and energy efficiency are increasingly important. We

propose to leverage the efficiency gains of the GPU to increase the energy efficiency of analytic

query workloads. Previous work, WideTable, showed that analytic queries (specifically evaluated
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with TPC-H) can be transformed such that most of the query can be executed using only a scan

operation [21, 22]. Because of the transformations used in WideTable, executing the scan kernel

is where most of the time is spent. Therefore, we focus on accelerating this kernel with GPGPUs.

The scan kernel takes a column of data and performs a predicate computation for every data el-

ement and emits a vector of bits such that there is a one in every place where the data matches

the predicate. Because of the regular nature of the memory access patterns in scan, the GPU is

able to accelerate it significantly. A draft of this work is attached as Appendix B.

In BitWarp, we evaluate the scan kernel and full TPC-H queries on three different GPU gen-

erations: discrete GPUs, integrated GPUs, and a future tightly-coupled GPU (described in more

detail in Section 4.3). Discrete GPUs have a high compute capability (many processing elements)

and very high memory bandwidth but have a reduced capacity main memory and high CPU-

GPU communication overheads. Integrated GPUs reduce the communication overhead and ac-

cess expandable main memory (shared with the CPU). However, compared to discrete GPUs,

integrated GPUs do not have as much compute capability and have a much smaller bandwidth

to main memory. Future GPUs will combine the best aspects of discrete GPUs and integrated

GPUs by leveraging 3D die-stacking. Future GPUs have the potential for high compute capabil-

ity by stacking a GPU die on top of a CPU die, high memory bandwidth due to through-silicon

vias, and low CPU-GPU communication overheads from new programming models and tight

physical integration.

We show that the integrated GPU uses less than half the energy of a single core CPU, the

discrete GPU uses half the energy of the integrated GPU and the future GPU could use 5× less

energy than the discrete GPU. In fact, we show that a future GPU could reduce the scan energy

by 60× compared to CPU platforms.

4.1 BitWarp Algorithm Overview

The BitWarp scan algorithm is a port of the BitWeaving algorithm discussed in Section 2.2 to

run on GPUs built within the WideTable framework. There are three key differences between

BitWeaving and BitWarp. First, BitWarp must manage data movement between the CPU and
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GPU, which is handled transparently through modifications to the WideTable framework. Sec-

ond, BitWarp uses a much larger underlying word size such that all PEs access consecutive mem-

ory words to leverage memory coalescing. Third, BitWarp executes aggregates on the GPU as

well as the scan part of each query, which required updates to the WideTable framework which

also significantly improved CPU aggregate performance.

4.2 TPC-H Performance

We evaluated BitWarp on a subset of the TPC-H queries. We were unable to include all of the

TPC-H queries due to time constraints, but we plan to port all of the queries used in WideTable.

Figure 5 shows both the energy and response time for each hardware configuration on each query

relative to the single core CPU platform. Points to the lower-left imply lower energy and lower

response time. Each color corresponds to the hardware used, and the shapes correspond to the

TPC-H query.

Figure 5: Energy and response time for each
hardware configuration on each query relative to the
single core CPU platform.

Figure 5 shows that for each TPC-H query

the discrete GPU dominates all other hard-

ware configurations in both energy consump-

tion and response time. The integrated GPU

dominates the one and four-core CPU in

terms of energy for all queries, but for query 4

and query 19 the integrated GPU has a higher

response time than the four-core CPU. Thus,

in these cases there is a trade-off between en-

ergy efficiency and response time. Detailed

performance and energy graphs for the TPC-H queries and an analysis of BitWarp’s sensitivity

to code size and column size is in Appendix B.
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4.3 Future GPU platforms

Finally, in this work, we predict the effect of current technology innovations on this analytic

database workload. We evaluate two technology innovations: tight CPU-GPU coupling and 3D

die-stacking. Tight CPU-GPU coupling is in its infancy today with the first hardware support for

heterogeneous system architecture (HSA) being released earlier this year. This tight coupling will

decrease the overheads of using the GPU for general purpose computing by eliminating the driver

bottleneck from the common compute path and allowing the CPU and GPU to share a virtual

address space.

3D die-stacking is now a reality [5] due to advances in fabrication, cooling, and other tech-

nologies. Die-stacking will allow future GPUs to be more efficient in two different ways. First,

die-stacking allows the manufacturing process to be optimized for CPUs and GPUs separately,

increasing performance, increasing energy efficiency, and allowing more die area devoted to both.

Second, die-stacking allows very high bandwidth to DRAM, up to 1 TB/s in some projections [1,

11, 30].

mem capacity

power

performance overheads

compute

capability

memory

bandwidth

Figure 6: Relative energy per scan for predicted
future GPU systems.

Figure 6 shows the predicted relative en-

ergy of these future architectures with the im-

pact of each optimization. We used a three

step process to estimate the performance of

the future system. First, to gauge the impact

of software overheads (e.g., memory copies

and kernel launch overheads), we ran a num-

ber of batch scans on the integrated GPU

without CPU involvement and found there

was an approximate 2× performance improve-

ment. Next, we assumed that future 3D-integrated GPUs will have a compute capability on par

with today’s discrete GPU and scaled the performance accordingly. Finally, to simulate higher

memory bandwidth, we decreased the GPU clock and kept the memory clock constant. We found

the performance to be unchanged, which means that in the converse case—increased memory
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bandwidth—the performance would increase proportionally. Therefore, we hypothesize that the

scan workload will increase performance relative to the increase in bandwidth (up to 1 TB/s).

In our BitWarp work, we leave the details of this future architecture for future work. Develop-

ing this novel system to perform analytic query workloads as energy efficiently as possible is the

focus of my proposal in the next section.

5 Analytic Database Machine (ADBM) – proposed work

This section describes a new system architecture specifically designed for analytic database queries

that can provide significant efficiency gains compared to current platforms. This work is in its

early stages, so we especially value your feedback.

5.1 Introduction

Running analytic queries on databases with terabytes of data or more is becoming important. In

fact, the big data market is expected to grow to $16.9 billion in 2015 [40]. Analytic databases are

an important part of many businesses and services. For instance, with the growth of Internet-

connected devices, there is an explosion of data from sensors on these devices. The ability to an-

alyze this data is important to many different industries from automotive to health care [29].

Not only does the latency of these queries matter, as the queries often have real-time con-

straints, but the total energy to execute the query is now a first-class design consideration. To-

day’s solutions to high-performance analytic queries over a growing dataset is to scale-out the

workload by adding more compute nodes. However, these compute nodes are not optimized for

energy efficient analytic queries.

To execute queries with low latency, many database systems use an in-memory data store.

With an in-memory database, queries complete faster since they do not need to access the disk,

which is very high latency and low bandwidth. In addition to this trend towards low latency

queries, memory capacity has increased to the point that the entire database can fit into DRAM

or future byte-addressable memory technologies, such as phase change memory [44]. Today, you

can buy a single system—a set of processors which all share the a physical memory space—with
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terabytes of main memory.

Figure 7: Percent of memory that can be ac-
cessed given an SLA requirement. Solid lines show
today’s systems configured for the highest memory
capacity.

To demonstrate the inefficiencies of current

systems, Figure 7 shows the percent of total

memory capacity that can be accessed within

a given amount of time (e.g., service level

agreement, SLA) on a log-log scale for three

different big memory systems: an AMD plat-

form from Dell (PowerEdge M915), an Intel

platform from Dell (PowerEdge M820), and a

SPARC platform from Oracle (M6-32). The

solid lines show the metric for systems configured for maximum memory capacity (i.e., 1 TB for

an AMD blade, 1.5 TB for an Intel blade, and 32 TB for the SPARC server rack with 16 com-

pute blades). This figure was generated by taking the peak theoretical bandwidth and multiply-

ing by the SLA time to find the maximum amount of memory that can be accessed within the

SLA time. This methodology will overestimate the amount of memory that can be referenced as

it is not possible to achieve the theoretical memory bandwidth.

Figure 7 shows that for high capacity memory systems only a small percent of this capacity

can be accessed quickly. For instance, less than 1% of the total memory capacity can be accessed

in 50 ms for the three systems shown. The dashed lines in the figure show the percent memory

accessed if the bandwidth per capacity is doubled. Bandwidth per capacity can be increased in

two ways. Either the capacity per processor is halved, or the bandwidth per processor is doubled

though new technology, like the DDR4 standard. Decreasing the capacity per processor implies

that the total energy will increase for the same memory capacity. However, even with double the

bandwidth per capacity, current systems can access only a small fraction of the total capacity in

a reasonable service time.

To solve this memory-wall problem, I propose to take the specialization one step further from

my previous work on BitWarp and customize the entire machine for analytic databases. I will

leverage new technology trends in tightly-integrated CPU-GPU architectures and 3D die-stacking
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to significantly reduce the energy and increase the performance of this workload. Additionally, I

believe this new architecture will scale better as data sizes increase than the näıve scale-out ar-

chitecture using commodity components.

There are three main factors that are coming together to make this work possible. First, ana-

lytic workloads are becoming increasingly important and they have hit an energy efficiency wall.

Second, due to 3D die-stacking, customizing a processor is more cost-effective compared to de-

signing a system-on-a-chip from scratch for database systems. Third, 3D die-stacking is changing

the memory bandwidth–compute capability trade-off. Now, DRAM or non-volatile memory can

be accessed with latency and power more similar to on-chip caches than traditional off-chip mem-

ories.

5.2 Related Work

The idea of customizing the underlying architecture to increase performance for database systems

is not new [13]. Many of these machines leveraged multiprocessing to increase performance over

large mainframes. Boral and Dewitt discuss three different multiprocessor database machine de-

signs: processor-per-track, processor-per-head, and off-the-disk machines [8]. However, Boral and

Dewitt argue that the mid-1980’s was not the right time for database machines and that the key

bottleneck was disk bandwidth, not processing power. Today’s trends are similar; compute per-

formance is not the bottleneck. The main bottleneck is memory bandwidth. However, because of

the increased importance of energy efficiency and the breakdown in Dennard scaling, it is time to

rethink database machines.

There are many systems on the market today that are geared towards the workload we are

targeting. For instance, Oracle exadata database machine [27] with hybrid columnar compression

(HCC) [28] uses a compression scheme similar to WideTable, and targets big memory workloads.

Oracle’s exadata machine can be configured with 4 TB of memory and Oracle provides other

solutions with up to 32 TB of memory. The Oracle M7 chip can be configured with 2 TB and

160 GB/s of memory bandwidth per chip, and it is expandable to up to 64 coherent chips [31].

Other manufacturers also produce similar machines, such as SAP HANA [41], IBM BLU [34] and

14



Vectorwise [45].

Other work has found that main-memory bandwidth is a performance bottleneck (e.g., [10,

36, 43]), including specifically for analytic database workloads [7]. Burger at al. show that adding

memory latency tolerating hardware to a bandwidth constrained system can hurt performance [10].

This work discusses some of the reasons why current high-performance CPUs are inherently inef-

ficient at high-traffic workloads. Rogers et al. show that using 3D die-stacking can mitigate some

of the bandwidth bottleneck [36].

To combat some of these bandwidth and system-size inefficiencies, there has been many pro-

posals for scale-out architectures. Workloads amenable to scale-out architectures were shown to

perform inefficiently on high-performance CPUs [14, 15]. Thus, there are proposals to funda-

mentally change the CPU architecture to match these workloads [24]. This proposal is similar in

spirit to this work, but instead of changing the CPU architecture I advocate for using GPGPUs,

which is less disruptive to hardware manufacturers.

Wu et al. proposed the Q100 database accelerator which is a separate specialized processor

that targets database kernels [42]. The Q100 is made of multiple tiles that each implement a dif-

ferent database function (e.g., select, filter, aggregate). The Q100 has a unique ISA which allows

the programmer to string together database operations that are mapped directly to the hard-

ware tiles. This system increases efficiency in two ways. First, it reduces communication cost

by streaming data between tiles instead of to and from memory as a conventional CPU. Second,

each tile is very specialized leading to increased efficiency. Due to its specialization, the Q100 will

likely be more efficient than ADBM. However, the Q100 is less general and more disruptive to

the design process for both hardware and software than ADBM.

The Oracle M7 chip contains a small accelerator for some database applications [31]. This

accelerator can operate on compressed data or decompress and re-compress the data on-the-fly.

The accelerator targets in-memory format conversions, value and range comparisons, and set

membership [31]. This accelerator would likely be applicable to the WideTable database system

we are using. However, it is designed for the low memory bandwidth to memory capacity ratio of

the Oracle database system and will not provide the same performance as ADBM.
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Kgil et al. proposed PicoSevers, a 3D-stacked architecture targeting tier 1 servers [18]. Pi-

coServers stack many low-power cores on top of DRAM. The authors show that with this archi-

tecture, large L2 caches are no longer necessary due to the low-latency DRAM access, and they

show that with this architecture the bottleneck is now the network interface receiving and send-

ing requests and results. Similar to PicoServer, Ranganathan discussed Nanostores which stack

non-volatile memory with the processor [35].

Recent implementations of similar 3D-stacked architecture ideas include 3D-stacked servers for

key-value stores [16] and thin servers with smart pipes [23]. These two works focus on accelerat-

ing memcached which is a simple key-value store often used as a caching layer for web services.

These works show great potential for 3D-stacked architectures, but no previous work has focused

on using 3D-stacked architectures for analytic database workloads.

5.3 A Potential Solution

A key bottleneck in running analytic queries with in-memory databases is the memory band-

width. As shown in BitWarp (Section 4), the increased bandwidth of the discrete GPU signif-

icantly improves performance. Therefore, when designing an architecture specifically for this

workload, memory bandwidth is key.

To achieve this high bandwidth, I propose splitting the data into many different 3D-stacks

with compute resources co-located with the data. This increases the bandwidth of the system in

two ways. First, the intra-stack bandwidth is high since the interconnect is through-silicon vias

(TSVs) instead of off-chip. Second, by using multiple stacks, the aggregate bandwidth is signifi-

cantly increases, if most accesses are to local memory.

I leverage the GPGPU architecture instead of a CPU architecture to be able to take advan-

tage of the increased intra-stack memory bandwidth. CPUs are not as efficient as GPUs for ana-

lytic database workloads for many reasons. First, CPUs require high-power hardware structures

such as re-order buffers and load-store disambiguation units to implicitly expose memory-level

parallelism in workloads. GPUs explicitly expose the memory-level parallelism through the SIMT

programming model. Second, traditional CPU architecture includes deep cache hierarchies to
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DRAM Capacity 8 Gb × 16 (2 W)[2, 19] CPU Capability 1 OOO Core (2–3 W)
DRAM Bandwidth 256 GB/s [19] Off-stack B/W 50 GB/s

GPU Capability 15 CUs (2–3 W × 15) Total Peak Power 40–60 W

Table 1: Details of stack design.

decrease the effective memory latency. These deep hierarchies are inefficient when there is little

temporal locality as seen in analytic workloads. Finally, for the same chip area and power bud-

get, GPUs can have many more computational resources than CPUs.

Below I describe one potential ADBM architecture that leverages these ideas. During the

evaluation of this system the final design may change (e.g., what makes up a single system, stack

memory capacity and compute capability, etc.).
Motherboard

CPU

GPUGPU

CPU

Figure 8: One possible architecture for the ana-
lytic query database machine.

Architecture — Figure 8 shows a pos-

sible architecture for the analytic query

database machine. In this figure, there is a

logic die with a large GPU and smaller CPU

with a stack of DRAM as the upper layers.

These stacks are connected together via a

board-level (off-chip) interconnect. Also shown

is a side-view of the system. Figure 8 is only a

logical representation of the system. An actual

physical implementation has many constraints

(e.g., cooling) which may require a slightly

different physical design (e.g., flipped stacked).

Different from some of the previous 3D-

stacked work, instead of considering each

stack as a standalone system, there will only be one operating system running on the board (or

blade) and all stacks will share the same physical address space with non-uniform memory access

(NUMA). Each board will be made of a number of stacks. The main constraint to the number

of stacks on a board will likely be the amount of heat that can be removed from the enclosure,

about 800 W in current systems. I predict that each board will be able to have 16–64 stacks de-
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pending on the stack specifications.

Table 1 gives details of what is in a single stack assuming a next-generation process. DRAM

stack and bandwidth numbers come from high-bandwidth memory [1, 19] assuming a doubling of

bandwidth and capacity in the next generation. Power and capability numbers are roughly equiv-

alent to today’s systems. With this configuration, 16 of these stacks is within the power budget

for a single blade (800 W).

Figure 9: Average energy per scan for one bil-
lion (109) 10-bit codes. Future GPU is a predicted
value.

Figure 9 shows the potential benefits this

future architecture could provide. Figure 9

shows the energy consumed for a scan opera-

tion on today’s CPU platforms, today’s GPU

platforms, and a future platform like the one

described above. Methodology and system de-

tails are contained in the BitWarp paper in

Appendix B. This figure shows that ADBM

could provide a 60× decrease in energy com-

pared to a CPU platform. The future GPU’s energy is projected by simulating current GPU sys-

tems without any overheads as described in Section 4.3.

Inter-chip communication — In ADBM, I propose to use a shared-memory interface be-

tween all of the stacks in the system for compatibility and ease of programming. Since ADBM

can support terabytes of main memory, most of which is non-local, a shared-memory interface

may have a large overhead for cache coherence in terms of performance and on-die storage for the

directory. However, the key factor for ADBM to provide high performance is for most memory

accesses to be local. By leveraging this fact, the inter-chip communication and coherence over-

heads can be minimized. For instance, given that most memory requests are to local memory, it

may be plausible to implement a coherence protocol which disallows caching of remote data (e.g.,

the T3E [38]).

ADBM is best suited for a workload that has mostly-predictable memory access patterns, be-

cause for this architecture to be efficient, most memory accesses must be to the local memory
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and the inter-chip communication must be low. Luckily, the working set of the scan portion of

the analytic database workload is easy to predict. For the other part of the workload (i.e., the

aggregate), the working set cannot be predicted a priori as it is only known after the scan por-

tion. However, most queries have a low selection rate in the scan phase; therefore, only a small

percent of the data is referenced in the aggregate phase reducing the bandwidth requirement.

To eliminate any inter-chip communication during the scan computation, the data can be split

across the chips in a specific way. Since the database is in a columnar format, each stack can

have an equal number of rows of every column in the database. Each time a scan is performed,

the work is split across many GPU workgroups. These workgroups are assigned a specific CU on

some GPU in the system. The runtime system can statically analyze the kernel that the work-

groups are going to execute and determine which stack the data resides. Then the runtime can

assign that workgroup to a CU on the stack that has the data it is going to reference. This al-

lows each scan to only access local data, and each stack will have an equal amount of work limit-

ing load imbalance.

5.4 Evaluation Methodology

Comparison platforms — I am planning to compare ADBM to commercial servers which tar-

get this kind of big-memory workloads. E.g. Oracle M6-32 which is a cabinet system with up to

32 TB of memory, Intel and AMD multi-socket platforms configured with 512 MB–1 TB of mem-

ory per blade. These systems use about 800 W per blade, not counting cooling and power supply

losses. Although it is unlikely I can directly compare to these systems due to prohibitive costs, I

can possibly compare to a reduced memory capacity, single-blade, version of these systems.

Evaluating the whole system — I am going to use current hardware platforms to evalu-

ate the system design as a whole as the system is much too large to evaluate with a simulator.

There are two possible, non conflicting, ways to evaluate a system with many stacks on current

hardware platform, time-multiplexed and simulated-parallel.

The time-multiplexed approach only uses a single hardware GPU. When a kernel is launched

to the platform, the data that is in the simulated stack is loaded onto the GPU and the kernel
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is run to completion. Then the total time for the parallel phase can be computed with the serial

times and the number of stacks. The inter-chip communication can be simulated by capturing

the inter-chip memory references and applying a simple network model.

The simulated-parallel method is similar to the time-multiplexed method, except that in-

stead of using a single GPU, I will use one GPU per stack on a cluster of GPUs. The simulated-

parallel approach can decrease the time to simulate the system. Also, it may make simulating

inter-chip communication easier. I can use similar methodology to simulate the inter-chip com-

munication when using the simulated-parallel approach as in the time-multiplexed method.

Evaluating the effect of inter-chip communication will be challenging for two reasons. First,

there is not a platform which has the bandwidth of the inter-chip communication network; GPU

DRAM’s bandwidth is too high and PCI-e bandwidth is too low. Second, the DRAM capacity

required is that of the entire system (possibly terabytes). These problems can be overcome by

using the simulated-parallel method discussed above. This method allows me to test these ideas

on at least hundreds of gigabytes, if not terabytes of data depending on the number of hardware

nodes used.

Evaluating a single stack — To evaluate the performance of a single stack, I can use cur-

rent GPU platforms which approximate the DRAM capacity, DRAM bandwidth, and compute

capability of a single stack. However, it may be impossible to fully examine the design space us-

ing real hardware. Therefore, to evaluate design trade-offs, I can use simulation (e.g., GPGPU-

Sim [3] or gem5-gpu [33]). When using simulation, it may be necessary to reduce the size of the

database that is executing. However, I do not believe that there will be a large impact on steady-

state behavior with smaller inputs as long as they are significantly larger than the cache size.

Evaluating energy consumption — Estimating the energy and power of novel architec-

ture systems is challenging. One solution is to use a first-order model that is guided by current

hardware and data sheets for future hardware. I can collect hardware performance counters with

utilization, number of local and non-local memory reference, etc. and apply a this first-order

model. Additionally, I can construct a system with a predicted maximum power equal to other

similar systems (e.g., the ones listed above) and compare performance to those similar-power sys-
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tems.

5.5 Future research directions

We found in BitWarp that after accelerating the scan portion of the analytic workload the ag-

gregate part of the computation became the bottleneck to performance. I believe there is a space

to develop new algorithms and new hardware to accelerate this portion of the computation. The

aggregate is made up of many random memory accesses and a few arithmetic operations. There-

fore, if gather operations can be accelerated, the aggregate computation will benefit.

There are many interesting directions which this research could lead after initially developing

the ADBM architecture. For instance, what would the impact of non-volatile memory be on the

ADBM system? Could I replace the stacked-DRAM with stacked-FLASH or another non-volatile

memory technology? How would the increased latency or write energy effect the overall system

performance and energy efficiency? Specifically, racetrack or domain-wall memory may be a good

fit. This new non-volatile memory technology can only read and write a single bit at a time simi-

lar to how the BitWeaving and BitWarp algorithms break the scan computation down bit-by-bit.

Also, would this ADBM architecture be applicable to other workloads? It is likely that other

workloads that are amenable to scale-out style architecture, but need access to global data, will

work well.

5.6 Research Deliverables

Below is an ordered list of the deliverables I am currently planning to create as I explore the

ADBM research space.

1. Re-submit BitWarp work. This also includes getting the rest of TPC-H working correctly

and implementing HSA support. These two points are also required for the ADBM work.

2. Develop ADBM simulation infrastructure. This requires two main parts, separating the

execution into smaller subsets to run on each stack and creating the network simulation

model.
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Oct 2014 All TPC-H queries and HSA working Jun 2015 Begin exploring
write and collect data other ADBM ideas

Nov 2014 Submit to SIGMOD Jul 2015 continue
Dec 2014 Work on cluster ADBM impl. Aug 2015 continue
Jan 2015 Break & revisions for SIGMOD Sep 2015 HPCA
Feb 2015 Initial ADBM numbers (re)submission?

Oct 2015 Write thesis
Mar 2015 Develop and evaluate energy model Nov 2015 Write thesis
Apr 2015 Finalize ADBM numbers & design Dec 2015 Defend thesis
May 2015 Write ADBM paper

(For MICRO or ASPLOS)

Table 2: Schedule to complete my thesis.

3. Write paper which introduces the ADBM architecture to an architecture conference (maybe

ASPLOS). Key takeaways from this paper will be the fundamental inefficiencies of both

CPUs and current GPU systems for analytic workloads and a new architecture to overcome

these inefficiencies (ADBM).

6 Schedule and Other Work

6.1 Schedule

Table 2 contains my planned schedule to complete my thesis.

6.2 Other Work

This section highlights some work I have done as a graduate student that I currently plan to not

include in my dissertation.

Heterogeneous System Coherence — As previously discussed, there are two challenges

to design a memory system for tightly-integrated CPU-GPU platforms: unified virtual address

space (Section 3) and coherence between the private caches. Heterogeneous system coherence

(HSC) targets the latter challenge [32]. In the HSC paper we show that the central directory in

modern coherence protocols is a bottleneck in future heterogeneous system. To alleviate this bot-

tleneck, we leverage coarse-grained coherence to move most data requests off of the low-bandwidth

coherence network, onto the high-bandwidth incoherent network present in heterogeneous sys-
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tems. We find that HSC can reduce directory bandwidth by 94% and increase performance by

2×, on average. This work was largely done during an internship at AMD and published in MICRO

2013.

gem5-gpu — gem5-gpu [33] is a heterogeneous system simulator that combines the state-of-

the-art simulators gem5 [4] and GPGPU-Sim [3] which simulate a CPU system and a GPGPU,

respectively. gem5-gpu provides full-system simulation of the heterogeneous system. gem5-gpu

also leverages Ruby in gem5 and provides detailed cache models opening the door to research in

heterogeneous cache architectures. We released gem5-gpu as an open source project which can

be found at http://gem5-gpu.cs.wisc.edu, and an overview paper was published in Computer

Architecture Letters.

7 Conclusions

My thesis aims to increase the efficiency of data-intensive workloads in three ways. First, I pro-

vide a hardware mechanism for the CPU and GPU to share the same virtual address space, in-

creasing the efficiency and easing the programming of general-purpose GPU applications. Sec-

ond, I specifically target analytic database workloads and present a novel software system that

targets heterogeneous hardware to significantly increase the efficiency of these workloads. And

third, I propose a new system hardware architecture which tightly-couples the CPU and GPU

with DRAM to further increase the efficiency of analytic database queries. With these and other

architectural and software innovations, hopefully we will continue to see growth in data and ap-

plication complexity for many more years.
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