
Guarantees in Program Synthesis
Qinheping Hu , Jason Breck , John Cyphert,

Loris D'Antoni , Thomas Reps

Program synthesis is the classic problem of automatically finding a program 𝑷 in some search space that satisfies a given correctness specification.

Unfortunately, it is not always enough to produce any correct solution.

QSyGuS

In SyGuS with Quantitive Objective (QSyGuS), users can assign weights

to grammar productions and ask the solver to find solutions with

minimized/maximized weights.

For example, if the user wants to minimize the number of ITE in the

above SyGuS problem, he can assign weights to productions as follow

Weighted grammar 𝑊:

Start := Start+Start 0

| ITE(BExpr,Start,Start)    1

| 𝑥 | 0 | 𝑦 | 1 0

Observe that weights of terms in the above grammar is equal to the

number of ITE in the terms.

Algorithm of finding optimized solution

Idea: iteratively refining current solution.

Solution 𝑃2 with weight 2:

ITE( 𝑥>𝑦, ITE(𝑥>0, 𝑥, 𝑥), 𝑦 )

Grammar 𝐺<2 producing terms Grammar 𝐺<1:

with weight less than 2:

Observation

The problem of finding a solution 𝑃 in 𝐺<1 is already unrealizable for

the following input examples

𝐸: 𝑃 0,0 = 0, 𝑃 1,0 = 1, 𝑃 0,1 = 1, 𝑃 0,2 = 2

Idea

We reduce the problem of checking unrealizabity based on the

examples to the following verification problem that can be solved using

off-the-shelf verifiers

Introduction

SyGuS + Quantitative Objective Proving a SyGuS problem is Unrealizable

• Other quantitative objectives in program synthesis:

• Semantic quantitative objectives

• Resource bounded synthesis

• Proving unrealizability for synthesis problems beyond SyGuS

Future Work

Synthesizer

Specification Program 𝑃

Search space

Quantitative 

objective
Unrealizable

Program synthesizer with more Guarantees

Syntax-Guided Synthesis (SyGuS)

A logic formula

𝜙 𝑃 : ∀𝑥, 𝑦. 𝑃 ≥ 𝑥 ∧ 𝑃 ≥ 𝑦 ∧ 𝑃 = 𝑥 ∨ 𝑃 = 𝑦

A grammar 𝐺

Start := Start+Start | ITE(BExpr,Start,Start) | 𝑥 | 0 | 𝑦 | 1
BExpr := NOT(BExpr) | Start > Start | Start AND Start

Possible solution 𝑃 :

ITE( 𝑥>𝑦, ITE(𝑥>0, 𝑥, 𝑥), 𝑦)

BExpr := NOT(BExpr)

| Start > Start 0

| Start AND Start      0

QSyGuS SyGuS

Weighted 
grammar 

𝑊

Grammar 𝐺
Grammar 

𝐺<2

Ignore 

weights Grammar
𝐺<1 ?

Solution

𝑃2

Solution

𝑃1

Start   := Start0 | Start1

Start1 := Start1+Start0

| ITE(BExpr0,Start0,Start0)

| 𝑥 | 𝑦 | 0 | 1
Start0 := Start1+Start0

| 𝑥 | 𝑦 | 0 | 1
BExpr0 := NOT(BExpr0)

| Start0 > Start0

| Start0 AND Start0

Solution 𝑃1 with weight 1:

ITE( 𝑥>𝑦, 𝑥, 𝑦 )

Start := Start+Start

| 𝑥 | 𝑦 | 0 | 1

𝑃1 is optimal

Iff 𝐺<1 is unrealizable

int[4] Start(x_0,y_0,x_1,y_1,x_2,y_2,x_3,y_3){
if(??){return (0,0,0,0);} // Start -> 0
if(??){return (1,1,1,1);} // Start -> 1
if(??){return (x_0,x_1,x_2,x_3);} // Start -> x
if(??){return (y_0,y_1,y_2,y_3);} // Start -> y
else{ // Start -> Start+Start

int[4] L = Start(x_0,y_0,x_1,y_1);
int[4] R = Start(x_0,y_0,x_1,y_1);
return (L[0]+R[0],L[1]+R[1],L[2]+R[2],L[3]+R[3]);}

}
int[4] P = Start(0,0,0,1,1,0,2,0);
assert (P[0]!=0 || P[1]!=1 || P[2]!=1 || P[3]!=2);

The SyGuS problem is unrealizable

Iff the assert always holds

1. Synthesizers may return a worse solution. Contributions

To address the above two problems,

we introduce two types of guarantees

in program synthesis: quantitative

objectives and the ability to proof

unrealizable—no solution.

Search space

Program 𝑃 found 

by the synthesizer

A “better” 
potential solution

2. Enumeration-based synthesizers have no ability to

prove there is no solution in infinite search space.

𝑃0 𝑃1 𝑃2 𝑃3 …

Enumerating an infinite space

…

We illustrate the syntax-guided synthesis by an example of synthesizing a function computing the maximum of two integers.

0

[CAV18] [CAV19]

[CAV18] Hu, D'Antoni. Syntax Guided Synthesis with Quantitative Syntactic Objectives

[CAV19] Hu, Breck, Cyphert, D'Antoni, Reps. Proving Unrealizability for Syntax-Guided Synthesis


