
Packet Classifiers In Ternary CAMs Can Be Smaller

Qunfeng Dong
University of Wisconsin

Madison, WI 53706

qunfeng@cs.wisc.edu

Suman Banerjee
University of Wisconsin

Madison, WI 53706

suman@cs.wisc.edu

Jia Wang
AT&T Labs - Research

Florham Park, NJ 07932

jiawang@research.att.com

Dheeraj Agrawal
University of Wisconsin

Madison, WI 53706

dheeraj@cs.wisc.edu

Ashutosh Shukla
University of Wisconsin

Madison, WI 53706

shukla@cs.wisc.edu

ABSTRACT
Serving as the core component in many packet forwarding,
differentiating and filtering schemes, packet classification
continues to grow its importance in today’s IP networks.
Currently, most vendors use Ternary CAMs (TCAMs) for
packet classification. TCAMs usually use brute-force paral-
lel hardware to simultaneously check for all rules. One of the
fundamental problems of TCAMs is that TCAMs suffer from
range specifications because rules with range specifications
need to be translated into multiple TCAM entries. Hence,
the cost of packet classification will increase substantially
as the number of TCAM entries grows. As a result, net-
work operators hesitate to configure packet classifiers using
range specifications. In this paper, we optimize packet clas-
sifier configurations by identifying semantically equivalent
rule sets that lead to reduced number of TCAM entries when
represented in hardware. In particular, we develop a number
of effective techniques, which include: trimming rules, ex-
panding rules, merging rules, and adding rules. Compared
with previously proposed techniques which typically require
modifications to the packet processor hardware, our scheme
does not require any hardware modification, which is highly
preferred by ISPs. Moreover, our scheme is complementary
to previous techniques in that those techniques can be ap-
plied on the rule sets optimized by our scheme. We evaluate
the effectiveness and potential of the proposed techniques
using extensive experiments based on both real packet clas-
sifiers managed by a large tier-1 ISP and synthetic data
generated randomly. We observe significant reduction on
the number of TCAM entries that are needed to represent
the optimized packet classifier configurations.

Categories and Subject Descriptors
C.2.5 [Computer Communication Networks]: Local

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMetrics/Performance’06, June 26–30, 2006, Saint Malo, France.
Copyright 2006 ACM 1-59593-320-4/06/0006 ...$5.00.

and Wide-Area Networks—Internet ; C.2.6 [Computer Com-
munication Networks]: Internetworking—Routers

General Terms
Algorithms, Design, Performance

Keywords
Packet Classification, Semantic Equivalence, Ternary CAM

1. INTRODUCTION
The problem of packet classification can be stated as fol-

lows: match an incoming packet against a packet classifier,
which is a set of rules defined over a number of packet header
fields. Packet classification is one of the most basic opera-
tions performed in IP networks. A simple example of packet
classification is the packet forwarding operation in an IP
router by which each incoming packet is classified based on
its destination IP address field onto one of the forwarding ta-
ble entries that specifies the outgoing link. Similarly, Access
Control Lists (ACLs) in routers are classifiers in which each
rule usually specifies five fields including source IP prefix,
destination IP prefix, source port number (or range), des-
tination port number (or range), as well as protocol type.
Each field can also be specified as a wildcard, which means
“do not care” and hence matches any value. Besides the
fields used for matching, each rule also specifies a decision
(or action) to be carried out. For example, the decision
may be deny if packets that match the rule are classified as
unwanted traffic. Some example rules are given in Table 1.

1.1 Packet classification
Each rule in a packet classifier typically specifies a con-

junction of multiple clauses. In general, there is one clause
for every field in the rule. Three types of match may be
performed on the specified fields. An exact match returns
true if and only if the packet field value and the rule field
value being compared are the same and contain no wild-
cards, e.g., the protocol field clauses in Rules 1-3 of Table 1.
A prefix match returns true if and only if the packet field
value coincides with the rule field value in all non-wildcard
bits, e.g., the Destination IP address field clause of Rule 1,
and the Source IP address field clause of Rules 2 and 3. A
range match returns true if and only if the packet field value

Rule # Source IP Destination IP Source Port Destination Port Protocol Action
1 * 10.112.*.* 5000-65535 * UDP deny

2 32.75.226.* * * 1001-2000 ICMP deny

3 199.36.184.* * 49152-65535 * ICMP deny

4 * * * * * permit

Table 1: Example rules in a packet classifier.

is contained in the range specified by the rule field clause,
e.g., the source port field clause in Rules 1 and 3, and the
destination port field clause in Rule 2. When matching a
packet against a rule, the specified fields of the packet are
compared against their counterparts in the rule. If and only
if every field match returns true, the rule is considered to
match the packet, and vice versa.

In general, there are two representative models of packet
classification. The most commonly seen model is the first-
match model, where each rule is assigned a distinct priority
and the rule set is typically sorted in decreasing order of
priority. The objective of packet classification in this model
is to find for each incoming packet the first (i.e., highest
priority) rule in the rule set that matches the packet, and
carry out the action specified by that rule. The other model
is the multi-match model [26], where rules do not have pri-
orities. The objective of packet classification in this model
is to find for each incoming packet all the rules that match
the packet, and carry out the action of each matching rule.
As we will later see, it is this lack of an ordering of rules
that disables multi-match solutions to be applicable to the
first-match model. In this paper, we focus on solutions for
the first-match model. By “packet classification”, we refer
to packet classification in the first-match model.

Beyond ACLs, any network service that requires differ-
entiation of packets into one or more classes requires an
efficient implementation of packet classification. Examples
of such services, which include network address translation
(NAT), virtual private networks (VPNs), and other qual-
ity of service mechanisms such as metering, traffic shaping,
monitoring, policing, etc., are continuously growing in im-
portance in today’s networks.

1.2 State-of-the-art
The challenging aspect of packet classification is its need

to be implemented at line speeds. Assuming 40-byte pack-
ets, if each incoming packet needs to be classified at OC-
768 speeds, the total time budget available to a packet is
8 nanoseconds. This is expected to be further exacerbated
as the number of rules in classifiers increases. For example,
it has been envisioned that greater deployment of differen-
tiated services will lead to packet classifiers that contain a
few hundred thousand rules in edge routers [15].

A long thread of research has defined various algorith-
mic techniques for fast and efficient software-based packet
classification [11, 20, 7, 21, 8, 25, 18, 2, 1, 24, 19, 10, 23].
Unfortunately, packet classification as a general problem is
inherently hard. Overmars and van der Stappen [17] have
shown that for packet classification over d > 3 fields, which
is very common in real applications, the best known algo-
rithms have either O(logn) search time at the cost of O(nd)
memory space or O(logd−1n) search time at the cost of O(n)
memory space, where n is the number of rules in the packet
classifier. Therefore, in many scenarios, such software-based

solutions prove to be fairly slow with respect to the available
time budget (such as those pioneering algorithms [11, 20])
or consume exorbitant memory space (such as [7, 8]). More-
over, they unanimously exploit various statistic characteris-
tics of real packet classifiers to improve speed and memory
requirement, and hence are not considered general.

Given some of these limitations of software-based solu-
tions, many router vendors favor hardware solutions based
on Ternary Content Addressable Memory (TCAM) [16, 9, 4]
because of its fast and stable lookup speed. Unlike software
solutions, TCAMs work for all rule sets, not just “typical
rule sets”. Basically, TCAMs compare a given search key
with all TCAM entries in parallel and is thus able to return
the first matching entry in one single clock. The focus of this
paper is on such TCAM-based packet classification systems.

1.3 Design challenges for TCAM-based
systems

While TCAM-based solutions are fast, the following are
four important issues that need to be tackled when designing
such systems.

- Inefficient representation of ranges: An exact match or a
prefix match clause can be efficiently represented by TCAMs
using a single entry. However, a single range match clause
may need to be partitioned into smaller ranges that can be
represented in the form of prefixes, often requiring many
TCAM entries. For example, rules often use the port range
1024–65535, which needs to be represented using the follow-
ing 6 prefixes.

000001xxxxxxxxxx : 1,024 – 2,047
00001xxxxxxxxxxx : 2,048 – 4,095
0001xxxxxxxxxxxx : 4,096 – 8,191
001xxxxxxxxxxxxx : 8,192 – 16,383
01xxxxxxxxxxxxxx : 16,384 – 32,767
1xxxxxxxxxxxxxxx : 32,768 – 65,535

In general, an m-bit range may take up to 2(m−1) prefixes
to represent (e.g. the range [1, 2m− 2]). If the 16-bit source
port range and destination port range are both specified,
it may take as many as 30 × 30 = 900 TCAM entries to
represent a single rule! Based on an analysis of 12 real packet
classifiers, Taylor [22] reported that the number of TCAM
entries needed can be as large as 6.2 times their number of
rules. As a result, network operators hesitate to configure
packet classifiers using range specifications.

- Hardware cost: TCAM costs have been a significant part
of the cost of line cards or routers. Therefore, in order to
reduce hardware costs of line cards and routers, an impor-
tant design requirement of TCAM-based packet classifiers is
to express the rule set using as few TCAM entries as might
be possible.

- Power consumption: TCAMs can account for a consid-
erable portion of the power consumption of a router line

card. Technically, power consumption is a key problem in
large core routers. Economically, power supply and cooling
costs account for a major part of an ISP’s operational ex-
penses [3]. Efficient representation of classifiers using as few
TCAM entries as possible leads to greater power efficiency.

- Area constraints: For many routers, board area is a crit-
ical issue. TCAMs occupy much more physical space than
SRAMs (which can be used for software-based packet clas-
sification systems). Hence, it is again important to fit a
packet classifier into as small-sized a TCAM as possible.

1.4 Proposed approach and key contributions
Based on these observations, the goal of our work is to

design TCAM-based packet classification systems that at-
tempt to reduce the number of TCAM entries used in repre-
senting packet classifiers. We achieve this by using semantically-
equivalent packet classifiers — given a packet classifier, we
define a new packet classifier that takes the same action on
any incoming packet as the original packet classifier but re-
quires fewer TCAM entries to represent. This semantically
equivalent packet classifier is constructed through an algo-
rithmic sequence of operations which include trimming rules,
expanding rules, merging rules, and sometimes even adding
rules to meet the reduction objectives. Compared with pre-
viously proposed techniques (e.g. [14, 24, 12]) which typi-
cally require modifications to the packet processor hardware,
our scheme does not require any hardware modification,
which is highly preferred by ISPs. Moreover, our scheme
is complementary to previous techniques in that those tech-
niques can be applied on the rule sets optimized by our
scheme.

The following, therefore, are the key contributions of this
work.

• We propose a set of practical techniques for defining se-
mantically equivalent packet classifiers that are smaller
in TCAM size.

• Using extensive empirical results on random as well as
real rule sets from routers of a large tier-1 ISP, we eval-
uate the effectiveness and potential of our proposed
techniques in current and emerging applications. In
our experiments, the proposed mechanisms often lead
to a reduction of TCAM sizes by almost an order of
magnitude.

1.5 Roadmap
The rest of the paper is organized as follows. In Section

2, we present the motivations of this work. The detailed
solution is schemed in Section 3, and we evaluate its effec-
tiveness and potential using empirical results based on real
packet classifiers as well as random rule sets in Section 4.
After reviewing related work in Section 5, we conclude the
paper in Section 6.

2. MOTIVATIONS
In this section, we present the observations that motivate

our proposed techniques for defining semantically equivalent
packet classifiers requiring fewer TCAM entries to represent.
The examples we use to illustrate the observations here are
meant to be simple and intuitive. However, systematic so-
lutions are non-trivial to design, and we will present such a
design in details in Section 3.

Expanding rules: Consider the packet classifier shown in
the second column of Table 2. If literally translated into
TCAM entries, r2 takes 4 TCAM entries as shown in the
third column of Table 2. The observation is that we can
safely expand the range of r2 to be x ∈ [64, 255] as shown
in the fourth column of Table 2, which takes only 2 TCAM
entries to represent. The semantics of the rule set remains
the same while the number of TCAM entries needed reduces
from 6 to 4 as shown in the fifth column of Table 2.

Trimming rules: Consider the packet classifier shown in
the second column of Table 3. If literally translated into
TCAM entries, r2 takes 4 TCAM entries as shown in the
third column of Table 3. The observation is that r2 will
only match packets with x ∈ [128, 255], since packets with
x ∈ [100, 127] will first match r1. Therefore, we can safely
trim the range of r2 to be x ∈ [128, 255] as shown in the
fourth column of Table 3, which takes only 1 TCAM entry
to represent. The semantics of the packet classifier remains
the same while the number of TCAM entries needed reduces
from 5 to 2 as shown in the fifth column of Table 3.

Adding rules: Consider the packet classifier shown in
the second column of Table 4. If literally translated into
TCAM entries, r1 takes 3 TCAM entries as shown in the
third column of Table 4. The observation is that if we add
a new rule r0 to cover the small “hole” of x ∈ [120, 127], we
can safely expand r1 to cover the range of x ∈ [64, 127] as
shown in the fourth column of Table 4, which takes only 1
TCAM entry to represent. In the new packet classifier, r0

takes 1 TCAM entry and r1 takes only 1 TCAM entry as
well. The semantics of the packet classifier remains the same
while the number of TCAM entries needed reduces from 4
to 3 as shown in the fifth column of Table 4.

Merging rules: Consider the packet classifier shown in the
second column of Table 5. If literally translated into TCAM
entries, r2 and r3 take 1 TCAM entry and 3 TCAM entries,
respectively, as shown in the third column of Table 5. The
observation is that r2 and r3 have the same decision and
can be merged into one single rule r′2 as shown in the fourth
column of Table 5. The semantics of the packet classifier
remains the same while the number of TCAM entries needed
reduces from 6 to 3, as shown in the fifth column of Table 5.
Note that this merger can also be thought of as expanding
either r2 or r3 into r′2 and then removing the other, which
now becomes redundant. As we will later see, this is exactly
how the idea of merging rules is carried out in our solution.

3. DESIGN
The observations and ad hoc solutions presented in Sec-

tion 2 is a good starting point but not yet a complete roadmap
toward our objective of defining a semantically equivalent
packet classifier that takes fewer TCAM entries to repre-
sent. To be practical, we need a systematic solution. In
this section, we present such a solution in details. Before
we proceed to present the detailed design, we first build a
formal foundation for understanding the problem.

3.1 Preliminaries
In the first-match model, a packet classifier is an ordered

set R = {r1, r2, · · · , rn} of rules, where each rule ri is com-
posed of two parts: a conjunctive predicate and a decision.

Before expanding After expanding
Rule TCAM entries Rule TCAM entries

r1: x ∈ [32, 79]→ deny 001xxxxx → deny x ∈ [32, 79]→ deny 001xxxxx → deny

0100xxxx → deny 0100xxxx → deny

r2: x ∈ [72, 255]→ permit 01001xxx → permit x ∈ [64, 255]→ permit 01xxxxxx → permit

0101xxxx → permit 1xxxxxxx → permit

011xxxxx → permit

1xxxxxxx → permit

Table 2: Packet classifiers and their TCAM representations before/after expanding.

Before trimming After trimming
Rule TCAM entries Rule TCAM entries

r1: x ∈ [96, 127]→ deny 011xxxxx → deny x ∈ [96, 127] −→ deny 011xxxxx → deny

r2: x ∈ [100, 255]→ permit 011001xx → permit x ∈ [128, 255] −→ permit 1xxxxxxx → permit

01101xxx → permit

0111xxxx → permit

1xxxxxxx → permit

Table 3: Packet classifiers and their TCAM representations before/after trimming.

Before adding r0 After adding r0

Rule TCAM entries Rule TCAM entries
r0: x ∈ [120, 127]→ permit 01111xxx → permit

r1: x ∈ [64, 119]→ deny 010xxxxx → deny x ∈ [64, 127]→ deny 01xxxxxx → deny

0110xxxx → deny

01110xxx → deny

r2: x ∈ [0, 255]→ permit xxxxxxxx→ permit x ∈ [0, 255]→ permit xxxxxxxx→ permit

Table 4: Packet classifiers and their TCAM representations before/after adding r0.

Before merging After merging
Rule TCAM entries Rule TCAM entries

r1: x ∈ [96, 111]→ permit 0110xxxx → permit x ∈ [96, 111]→ permit 0110xxxx → permit

r2 (r′2): x ∈ [64, 95]→ deny 010xxxxx → deny x ∈ [64, 127]→ deny 01xxxxxx → deny

r3: x ∈ [100, 127]→ deny 011001xx → deny

01101xxx → deny

0111xxxx → deny

r4: x ∈ [0, 255]→ permit xxxxxxxx→ permit x ∈ [0, 255]→ permit xxxxxxxx→ permit

Table 5: Packet classifiers and their TCAM representations before/after merging.

Namely,

ri :
d̂

j=1

(xj ∈ [lj , hj]) −→ decision.

Each xj denotes a packet header field. Note that exact val-
ues and prefixes are both special cases of ranges. To fa-
cilitate our understanding and analysis, we can view each
distinct decision as a distinct “color” and view the seman-
tics of a packet classifier as a coloring of the d-dimensional
space defined by the d packet header fields specified in the
packet classifier, where the domain of each dimension is the
domain of the corresponding packet header field. For exam-
ple, the dimension corresponding to the source IP address
field has a domain of [0, 232 − 1].

Within this d-dimensional space, the conjunctive predi-
cate of each rule delimits a d-dimensional hypercube, which
we refer to as the definition region of the rule. Each packet
contains exact values in the specified fields and thus maps to
a specific point in the d-dimensional space. The decision of
a rule is the color that is used to color the definition region

of that rule. A packet classifier as an ordered set of rules de-
fines a coloring of the d-dimensional space with overwriting.
Specifically, each point in the d-dimensional space may be
contained in the definition region of multiple rules, but its
color is defined to be the color of the highest priority rule
whose definition region contains that point. The colors of
lower priority rules are overwritten by that color. The re-
gion that is first colored by rule r is considered dominated by
rule r, and we refer to this region as the domination region
of rule r.

A packet classifier is considered complete if and only if
every point within the d-dimensional space is colored and
hence dominated by some rule in that packet classifier. In
other words, a complete packet classifier partitions the d-
dimensional space into the domination regions of its rules.
In terms of packet classification, that means any packet is
matched by some rule. Real packet classifiers are inher-
ently complete, as they are defined to be able to handle
any incoming packet. Two packet classifiers are semanti-
cally equivalent if and only if they color any point with the

same color. In terms of packet classification, that means
they process any packet with the same decision.

3.2 Framework
Let us first consider an arbitrary rule ri in an ordered rule

set R = {r1, r2, · · · , rn}. To represent ri using as few TCAM
entries as possible, we need to figure out an answer to the
following questions. Our answer to these questions will also
shed some light on the design of an effective solution.

First, in order to preserve the semantics of the given rule
set, what should we do? We suggest that the TCAM entries
we use to represent ri should cover the portion of ri’s defi-
nition region that is neither covered by higher priority rules
(i.e., {r1, r2, · · · , ri−1}) nor covered by lower priority rules
(i.e., {ri+1, ri+2, · · · , rn}) of the same color. Because oth-
erwise, the coloring of this region will be different from its
original coloring defined by the given packet classifier. For
simplicity, we refer to this portion of ri’s definition region
as the core region of rule ri.

Second, while preserving the semantics of the given rule
set, what freedom can we have when reducing the number of
TCAM entries needed to represent ri? Consider the region
S covered by the TCAM entries we use to represent rule ri.
The general principle is that, if a point p ∈ S is contained in
the definition region of some rule in {r1, r2, · · · , ri−1}, the
TCAM entries we use can assign an arbitrary color to p.
Otherwise, since we want to preserve the semantics of the
rule set after processing ri, the TCAM entries should assign
to p a color that is the same as the color assigned to p by
the rule set.

Third, with the allowed freedom, how should we maneuver
to reduce the number of TCAM entries needed? As moti-
vated in Section 2, we can achieve our objective by trim-
ming, expanding, adding and merging rules. Based on the
understanding and insights we have achieved so far, we de-
sign our solution using these techniques as follows.

In particular, we start with a relatively simple solution
that processes individual rules in a bottom-up fashion, seek-
ing to represent individual rules using as few TCAM entries
as possible. Meanwhile, after processing each rule, the se-
mantics of the packet classifier should remain the same. This
local improvement can be done by trimming, expanding and
possibly adding rules. Later on, we consider the more com-
plicated interaction between rules and extend the local im-
provement solution to more aggressively reduce the number
of TCAM entries needed through merging rules. As we will
see, adding rules and merging rules are both implemented
as extensions to expanding rules in our design.

3.3 Trimming rules
Based on our above answer to the first question, as the

first step of our solution we trim each rule ri along all di-
mensions so that the definition region of ri after trimming
is the minimum d-dimensional hypercube that encloses the
core region of ri. To focus on our proposed techniques and
main results, in this paper we use the algorithms proposed
in [13] for computing the core region of each rule. The objec-
tive of [13] is to minimize the total number of rules instead
of TCAM entries. Therefore, they either remove a rule (if its
core region is empty) or leave the rule intact (if its core re-
gion is not empty). Partial trimming of rules as we propose
here is not considered in [13]. We refer interested readers to
[13] for the technical details of those algorithms.

0xxx 1xxx

xxxxLevel 0

Level 1

3 - 14

Level 2

000x 001x 010x 011x 100x 101x 110x 111xLevel 3

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111Level 4

Range

0 15

0 7 8 15

0

0

3 7 114 8 12 15

151413121110987654321

8 9 10 11 12 13 14 150 1 2 3 4 5 6 7

00xx 01xx 10xx 11xx

Figure 1: Partition of a range into prefixes.

Besides that, some additional issues specific to partial
trimming of rules also need to be taken care of here. For
example, for dimensions that are typically in the form of pre-
fixes (e.g. source IP address and destination IP address), we
prefer to keep them as a prefix after trimming. Because oth-
erwise we risk dramatically increasing the number of TCAM
entries needed to represent those dimensions and hence rule
ri. If necessary, we can always expand the trimmed rule ri

along these dimensions to be a (possibly smaller) prefix so
that such a dimension of ri can still be represented using one
single TCAM entry. Note that at least we can restore such
a dimension to its original prefix. For a dimension that is
typically in the form of a non-prefix range (e.g. source port
range and destination port range), we leave it as is for now
and will explain how to process such ranges in upcoming
subsections.

3.4 Expanding rules
Starting from the trimmed rule ri, we may be able to re-

duce the number of TCAM entries needed to represent ri by
expanding ri along the non-prefix range dimensions. This
expansion operation has a limit. In particular, without ad-
ditional post-processing, we should not expand ri too much
so that the semantics of the rule set is changed. Thus, we
have delimited a scope within which ri can be expanded.
However, it still remains to figure out a specific strategy for
expanding ri.

We start by looking into the details of how should a range
be expanded to reduce the number of prefixes needed to
represent it. First of all, there are m + 1 different levels of
partition of an m-bit domain [0, 2m−1] into a set of prefixes.
For each 0 ≤ i ≤ m, the level i partition cuts the entire
domain into 2i prefixes each of size 2m−i. In particular, for
each 0 ≤ j ≤ 2i − 1, the jth level i prefix starts at j · 2m−i.
An example of a 4-bit domain is given in Figure 1. Range
[3, 14] can be represented using two level 2 prefixes 01xx and
10xx, one level 3 prefix 110x, and two level 4 prefixes 0011

and 1110.
Every prefix corresponds to exactly one TCAM entry. To

reduce the number of TCAM entries needed, we need to
reduce the number of prefixes by merging two or more con-
tiguous prefixes into a larger prefix. Such a merger may be
enabled by expanding the range such that the larger prefix
we target is covered by the expanded range. From the illus-
tration in Figure 1, it is easy to see that only prefixes on the
left end (i.e., lower end) or the right end (i.e., upper end)
can be merged through expansion. Then the question will
be: Which end of the range should we expand and how much
should we expand it?

rule id the index of the rule in processing
idx the index of the dimension in processing
c[i] the color of the ith rule

P l[i][j] the lower end of the jth leftmost prefix of the range xi ∈ [l[i], h[i]]
Ph[i][j] the upper end of the jth leftmost prefix of the range xi ∈ [l[i], h[i]]

N [i] the number of TCAM entries needed to represent the range xi ∈ [l[i], h[i]]
∆[i] the maximum amount by which N [i] can be decreased through a minimum expansion of the range xi

B[i] B[i] denotes whether N [i] can be reduced by expanding the rule along the range xi or not
lstride the amount by which the range needs to be expanded toward the left (i.e., lower) end
rstride the amount by which the range needs to be expanded toward the right (i.e., upper) end

Table 6: Notations

void Expand Range (int rule id, idx)
1 if N [idx] = 1
2 B[idx] = false;
3 return;
4 find the minimum prefix [lower, upper] that contains

the leftmost 2 prefixes of dimension idx;
5 lstride = MAX;
6 if Allowable (rule id, idx, lower, upper)
7 lstride = (P l[idx][1]− lower) + (upper − Ph[idx][2]);
8 find the minimum prefix [lower, upper] that contains

the rightmost 2 prefixes of dimension idx;
9 rstride = MAX;

10 if Allowable (rule id, idx, lower, upper)
11 rstride = (P l[idx][N [idx]− 1]− lower)+

(upper − Ph[idx][N [idx]]);
12 if lstride = MAX && rstride = MAX

13 B[idx] = false;
14 return;
15 if lstride ≤ rstride

16 P l[idx][1] = lower;
17 Ph[idx][2] = upper;
18 while [P l[idx][1], Ph[idx][2]] is a prefix
19 merge the leftmost two prefixes;
20 if lstride > rstride

21 P l[idx][N [idx]− 1] = lower;
22 Ph[idx][N [idx]] = upper;
23 while [P l[idx][N [idx] − 1], Ph[idx][N [idx]]] is a prefix
24 merge the rightmost two prefixes;
25 update N [idx];
26 B[idx] = false;

bool Allowable (int rule id, idx, lower, upper)
1 insert before rule rule id a new rule r such that

dimension idx is [lower, upper] &&
other dimensions are the same as rule rule id;

2 compute the core region of rule r;
3 remove rule r;
4 if the core region is empty
5 return true;
6 else
7 return false;

Table 7: Pseudo code description of the simple
greedy algorithm for expanding a range. Notations
are annotated in Table 6.

One intuition is that in each expansion we prefer to ex-
pand a dimension as little as possible to enable a merger,
so that hopefully we will be less constrained when expand-

ing other dimensions. Based on this intuition, we propose
the following simple greedy algorithm. Given the sequence
of prefixes of a range, let us first consider the leftmost two
prefixes. We want to find the smallest prefix that contains
the leftmost two prefixes. In the example in Figure 1, the
leftmost two prefixes are 0011 and 01xx, and the smallest
prefix that contains them is the level 1 prefix 0xxx. In or-
der to merge 0011 and 01xx into 0xxx, we need to expand
the range by 3 (from [3, 14] to [0, 14]). Then let us look
at the rightmost two prefixes 1110 and 110x. The small-
est prefix that contains them is the level 2 prefix 11xx. In
order to merge 1110 and 110x into 11xx, we need to ex-
pand the range by only 1 (from [3, 14] to [3, 15]). Therefore,
we prefer to merge the rightmost two prefixes by expanding
the range from [3, 14] to [3, 15]. The pseudo code descrip-
tion of this simple greedy algorithm is presented as function
Expand Range in Table 7.

So far in our description of the range expansion algorithm,
an important detail has been deliberately ignored in order
to focus on the question we just proposed and answered
above. Now we turn to the previously ignored problem of
whether an expansion should be allowed or not. Our solu-
tion is very simple. In particular, we temporarily insert the
expanded new rule r before the rule rule id that is currently
in processing, and then compute the core region of this new
rule. If its core region is empty, that means expanding the
rule rule id does not change the semantics of the rule set
and thus can be allowed. Otherwise, the semantics of the
rule set will be changed by the proposed expansion and the
expansion should not be allowed. The pseudo code descrip-
tion of this simple greedy algorithm is presented as function
Allowable in Table 7. The correctness of this algorithm is
easy to verify. Because the expanded new rule r changes the
color of some point(s) if and only if its core region contains
the point(s).

Now we have figured out how should we expand a range to
reduce the number of prefixes needed to represent it. Note
that some rules may specify range clauses on more than one
fields. In such cases, another question that needs to be an-
swered is, In what order should we expand the non-prefix
dimensions? To facilitate our understanding of the prob-
lem, we establish for now the simplifying principle that each
time we only seek to merge either the leftmost or the right-
most two prefixes. Although it is possible to merge more
than two prefixes through one expansion, we can view such
a merger as a series of mergers involving two prefixes, where
all mergers except the first one can be done without range
expansion. For example, by expanding the range in Figure 1
to [3, 15] (if allowed), we can merge the rightmost three pre-
fixes 1110, 110x and 10xx into one single larger prefix 1xxx.

void Expand Rule (int rule id)
1 for each dimension i

2 B[i] = true;
3 bool done = false;
4 while (!done)
5 idx← i such that

B[i] = true && N [i] is minimum;
6 Expand Range (idx);
7 done = true;
8 for each dimension i

9 if B[i] = true
10 done = false;

Table 8: Pseudo code description of the simple
greedy algorithm for expanding a rule. Notations
are annotated in Table 6.

Alternatively, we can also view this merger as two consecu-
tive mergers. The first merger involves expanding the range
to [3, 15] and merging the rightmost two prefixes 1110 and
110x into 11xx. The second merger involves no range ex-
pansion but merging the new rightmost two prefixes 10xx

and 11xx into 1xxx.
In general, let us assume that some rule r specifies k

non-prefix range fields x1, x2, · · · , xk. Assume that for each
1 ≤ i ≤ k, Ni prefixes are needed to represent the range
xi ∈ [li, hi]. The total number of TCAM entries needed

to represent rule r is
Qk

i=1 Ni. If we choose to expand the
range xi ∈ [li, hi] and decrement Ni by 1, the total number
of TCAM entries needed to represent rule r is decreased by
Qk

j=1
Nj

Ni
. Therefore, it follows that we would prefer to ex-

pand the range xi ∈ [li, hi] such that Ni is the smallest and
hence reducing Ni by 1 will lead to the largest reduction in
the total number of TCAM entries needed to represent rule
r. A pseudo code description of this simple greedy algorithm
for choosing a dimension to expand is presented in Table 8.

In this simple greedy algorithm, if a dimension xi is cho-
sen for expansion, that means Ni is the smallest. As Ni is
only decreasing, Ni will always be the smallest and hence
we will keep expanding xi until it can not or should not be
further expanded. Therefore, this simple greedy algorithm
expands ranges in non-decreasing order of their Ni values.
Intuitively, this fixed order (except ties) may not be as effec-
tive as we expect. An improved greedy algorithm can take
into account the maximum amount ∆i by which Ni can be
reduced through a minimum expansion. In particular, we
prefer to expand the range xi ∈ [li, hi] that will maximize
∆i×

Qk
j=1

Nj

Ni
or ∆i

Ni
. Intuitively, a minimum expansion of such

a dimension xi will yield the largest reduction in the total
number of TCAM entries needed to represent rule r among
all choices of xi. Once such a range xi ∈ [li, hi] is chosen,
we perform a minimum expansion of it and merge all the
prefixes that can be merged. Then, based on the expanded
range, we update all the ∆i values and Ni values, and choose
the next dimension for expansion based on these new ∆i val-
ues and new Ni values. A pseudo code description of this
improved greedy algorithm is given in Table 9.

3.5 Adding rules
In Section 2, we have seen adding rules as an effective

means of reducing the number of TCAM entries needed to
represent a rule set. We now proceed to the design of a

void Expand Rule (int rule id)
1 for each dimension i

2 B[i] = true;
3 bool done = false;
4 while (!done)
5 idx← i such that

B[i] = true && ∆[i]
N[i]

is maximum;

6 Expand Range (idx);
7 update ∆;
8 done = true;
9 for each dimension i

10 if B[i] = true
11 done = false;

Table 9: Pseudo code description of the improved
greedy algorithm for expanding a rule. Notations
are annotated in Table 6.

systematic implementation of this idea. Before that, we first
need to know the answer to the following question: When
and how should we add rules?

Very nicely, the idea of adding rules can be viewed as a
natural choice during the process of expanding a rule. To
facilitate our understanding, consider the example in Fig-
ure 2(a). When we try to expand rule 1 in order to merge
its leftmost two prefixes, we find that the required expansion
is unfortunately not allowed. Because otherwise we would
change the color of [0, 0], which is originally colored by rule
2. In the function Allowable in Table 7, we simply give up.
Similarly, we have the same problem when trying to expand
rule 1 toward its right end in order to merge its rightmost
two prefixes, and we simply give up as well. In such cases
where we can not proceed to expand a rule, adding rules
arises as a natural step over the “hole”. In the example in
Figure 2(a), if we add a new rule 0 before the current rule
in processing (i.e., rule 1) to “fill up” the hole of [11, 15], we
can safely expand rule 1 to cover [1, 15] so that its rightmost
two prefixes can be merged into one single prefix 1xxx.

Now the question is: Is there such a new rule that will
enable the proposed expansion? If yes, what should the color
of the new rule be? We can use exactly the solution pro-
posed as the function Allowable in Table 7, except that we
here explore the possibility of adding a new rule r′ if the
core region of r is not empty. Along the dimension under
expansion, rule r′ covers the minimum range that is needed
to enclose the core region of r. Along other dimensions, rule
r′ covers the same range as rule rule id and r. In order
to figure out the feasible color of r′ (if such a color exists
at all), for each possible color we temporarily insert a new
rule r′ of that color before the rule rule id. We then com-
pute the core region of rule r′. If its core region is empty,
that means at the presence of r′, expanding the rule rule id

will not change the semantics of the rule set and thus can
be allowed. Otherwise, the semantics of the rule set will
be changed by the proposed expansion and we continue to
try other colors. If none of the colors works out, then the
expansion is not allowed.

However, an allowed solution is not necessarily a desirable
one. After all, adding rules is a technique that is meant to
approach the ultimate objective of reducing the number of
TCAM entries needed. For example, the proposal of adding
a new rule to cover [11, 15] will actually increase the num-

0xxx 1xxx

Level 0

Level 1

00xx 01xx 10xx 11xxLevel 2

Rule 1

0 15

0 7 8 15

0

0

3 7 114 8 12 15

151413121110987654321

8 9 10 11 12 13 14 150 1 2 3 4 5 6 7

0 - 15Rule 2

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111Level 4

Level 3

1 - 10

000x 001x 010x 011x 100x 101x 110x 111x

xxxx

(a) Before adding

Level 0

Level 1

00xx 01xx 10xx 11xxLevel 2

Rule 1

0 15

0 7 8 15

0

0

3 7 114 8 12 15

151413121110987654321

8 9 10 11 12 13 14 150 1 2 3 4 5 6 7

0 - 15Rule 2

Level 4

Level 3

0 - 10

000x 001x 010x 011x 100x 101x 110x 111x

Rule 0

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0xxx 1xxx

0

xxxx

(b) After adding rule 0

Level 0

Level 1

Level 2

Rule 1

0 15

0 7 8 15

0

0

3 7 114 8 12 15

151413121110987654321

8 9 10 11 12 13 14 150 1 2 3 4 5 6 7

Level 4

Level 3

0 - 15

000x 001x 010x 011x 100x 101x 110x 111x

Rule 0

0xxx 1xxx

0

xxxx

Rule -1 11 - 15

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

00xx 01xx 10xx 11xx

(c) After adding rule -1 and removing rule 2

Figure 2: An example of adding rules.

ber of TCAM entries needed and hence is not a desirable
choice. Because we are adding two more prefixes to remove
only one. Therefore, we still have to calculate the cost ef-
ficiency of an allowed solution. If we are not reducing the
number of TCAM entries needed, we should give up. For
the example in Figure 2(a), the right choice is to add a new
rule 0 before rule 1 to fill up the hole of [0, 0]. As is shown in
Figure 2(b), we will be able to expand rule 1 to cover [0, 10],
which takes only 3 prefixes to represent. Consequently, the
total number of TCAM entries needed is reduced from 6 to
5. A pseudo code description of the modified Allowable al-
gorithm considering the additional choice of adding rules is
given in Table 10.

bool Allowable (int rule id, idx, lower, upper)
1 insert before rule rule id a new rule r such that

dimension idx is [lower, upper] &&
other dimensions are the same as rule rule id;

2 compute the core region of rule r;
3 remove rule r;
4 if the core region is empty
5 return true;
6 else for each color c

7 insert before rule rule id a new rule r′ of color c

such that
dimension idx is minimum to enclose the core
region of r &&
other dimensions are the same as rule rule id;

8 compute the core region of rule r′;
9 if the core region of r′ is empty

10 if the number of TCAM entries will be reduced
11 return true;
12 remove rule r′;
13 return false

Table 10: Pseudo code description of the modified
algorithm for determining whether a proposed range
expansion should be allowed or not, considering the
additional choice of adding rules. Notations are an-
notated in Table 6.

Interestingly, now the first proposal of adding a rule to
fill up the hole of [11, 15] becomes a good idea. As is shown
in Figure 2(c), by adding a new rule -1 before rule 1, we
can safely expand rule 1 to cover [0, 15], which is repre-
sented by one single prefix xxxx. Meanwhile, rule 2 now
becomes redundant and hence can be removed from the rule
set. Consequently, we further reduce the total number of
TCAM entries needed from 5 to 4.

3.6 Merging rules
So far in our Expand Range algorithm, we have only been

focusing on the potential benefit of reducing the number of
TCAM entries needed to represent the current rule (we are
processing), without considering the possibility of merging
with other rules. Specifically, if expanding a rule r along a
dimension (with possibly adding rules) will not reduce the
number of TCAM entries needed to represent r, we will not
perform the expansion. However, such “locally useless” ex-
pansions may potentially make some other rules or TCAM
entries become redundant and hence we can reduce the total
number of TCAM entries needed to represent the rule set
after removing those redundant rules or TCAM entries. As
we have discussed in Section 2, merging two rules can be
viewed as expanding one rule to make the other rule redun-
dant and then removing it. Throughout the discussion of
our algorithm, we will always focus on the rules that have
already been processed by our algorithm. Because rules to
be processed may be changed after processing, which may
invalidate the considerations we currently make.

Within a rule set R = {r1, r2, · · · , rn}, redundant rules
can be categorized as either upward redundant or downward
redundant [13], which can be formally defined as follows.
The intuition is that, after removing redundant rules from
a packet classifier, the action taken on any packet by the
packet classifier should remain the same.

Definition 1 (Upward Redundancy). Rule ri ∈ R

is considered upward redundant if and only if the domination
region of ri is empty, i.e., the definition region of ri is con-
tained by the union of the definition regions of r1, r2, · · · , ri−1.

Definition 2 (Downward Redundancy). Rule ri is
considered downward redundant if and only if the following
conditions hold. (1) ri is not upward redundant; (2) For
each point p in the domination region of ri, the first rule in
{ri+1, ri+2, · · · , rn} whose definition region contains p must
have the same decision as ri.

It is clear that expanding the current rule will not make
any already processed rule become downward redundant if
originally it is not downward redundant. Thus, in our al-
gorithm we only need to consider upward redundancy. If
expanding a rule rule id along dimension idx will reduce
the number of TCAM entries needed to represent rule id,
we still expand it as usual. Otherwise, we consider the
minimum expansion of rule rule id along dimension idx (in
terms of the number of additional TCAM entries needed)
that will make some TCAM entry/entries of some processed
rule(s) become upward redundant. If the total number of
TCAM entries will be reduced, we will perform this mini-
mum expansion. To avoid later repeated counting of those
upward redundant TCAM entries, we immediately remove
them from the rule set. Such a minimum expansion of
rule id repeats until at some point we cannot further de-
crease the total number of TCAM entries needed.

To take advantage of this technique, there are two places
in our current algorithms that can be improved. (1) In lines
1–3 of the Expand Range algorithm in Table 7, we give up
expanding a range if it is already a prefix. With the addi-
tional option of merging rules, now we want to check out the
possibility of expanding such a prefix to make some TCAM
entry/entries of some already processed rules become up-
ward redundant. If this is possible and the total number of
TCAM entries needed will be reduced, we will expand the
prefix and remove the TCAM entries which now become
upward redundant. For example, consider the rules in Fig-
ure 3(a). Although rule 2 is already a prefix, we find that
expanding it to cover [0, 7] will make rule 3 upward redun-
dant. After expanding rule 2 and removing rule 3, we reduce
the total number of TCAM entries needed from 5 to 4, as
is shown in Figure 3(b). Note that when processing rule 3,
we do not expand it. Because as we have previously pointed
out, at that point we only consider rules below rule 3 and
thus we cannot benefit from expanding rule 3. (2) In line 10
of the Allowable algorithm in Table 10, when determining
if the total number of TCAM entries will be reduced or not,
we can take the possibility of merging rules into account as
well.

3.7 Removing redundancy
During our bottom-up processing of individual rules, some

rules or TCAM entries may become redundant due to vari-
ous reasons such as rule expansion and insertion. Thus, after
the whole processing is completed, we need to remove pos-
sibly upward redundant and downward redundant TCAM
entries in a bottom-up round and a top-down round, re-
spectively. Again, we refer interested readers to the litera-
ture [13] for technical details about how to remove upward
redundancy and downward redundancy.

0xxx 1xxx

Level 0

Level 1

01xx 10xx 11xxLevel 2

Rule 2

0 15

0 7 8 15

0 3 7 114 8 12 15

0 - 15Rule 4

0 - 3

xxxx

Rule 3 6 - 7

00xx

3 - 5Rule 1

0 151413121110987654321

Level 3 000x 001x 010x 011x 100x 101x 110x 111x

8 9 10 11 12 13 14 150 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111Level 4

(a) Before merging

Level 0

01xx 10xx 11xxLevel 2

Rule 2

0 15

0 7 8 15

0 3 7 114 8 12 15

0 - 15Rule 4

0 - 7

xxxx

00xx

3 - 5Rule 1

0 151413121110987654321

Level 3 000x 001x 010x 011x 100x 101x 110x 111x

8 9 10 11 12 13 14 150 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111Level 4

0xxx 1xxxLevel 1

(b) After expanding rule 2 and removing rule 3

Figure 3: An example of merging rules.

3.8 Summary of design
To better convey a picture of our proposed techniques,

we here briefly summarize the entire design of our solution.
Four techniques are proposed, namely trimming rules, ex-
panding rules, adding rules and merging rules. As the first
“preprocessing” step of our scheme, we first trim each in-
dividual rule such that its trimmed definition region is the
minimum hypercube that encloses its core region. If neces-
sary, non-prefix range dimensions of the trimmed rule can
be expanded to be the minimum prefix that contains the
trimmed range.

After trimming the rules, we try to reduce the number of
TCAM entries needed to represent the rule set by expand-
ing, adding and merging rules. Specifically, adding rules and
merging rules are both designed as extensions to the basic
idea of expanding rules. In many cases, when simply trying
to expand a rule is not possible or helpful, further reduction
in the number of TCAM entries needed can be achieved by
adding new rules and merging with other rules, which make
rule expansion either possible or helpful.

Interestingly, we observe that repeatedly applying our pro-
posed techniques can achieve significantly more reduction in
the number of TCAM entries needed. This is because the
new rules added by our scheme can also be optimized by
our proposed techniques of expanding, adding and merging

0%

45%

30%

15%

0% - 25%

F
ra

ct
io

n
 o

f
ru

le
 s

e
ts

60%

25% - 50% 50% - 75% 75% - 100%

44.1%

49.7%

3.4%2.8%

Compression ratio

Figure 4: Optimization results of real rule sets.

0

60%

40%

20%

C
o

m
p

re
ss

io
n

 o
f
T

C
A

M 80%

50% 49%47%

73%

After tri
mming

After 1st pass

80%

100%

Rule Set 1

Rule Set 2 Rule Set 3

47%

After 2nd pass

80%

50% 49%

After tri
mming

After 1st pass

After 2nd pass

After tri
mming

After 1st pass

After 2nd pass

Figure 5: Optimization results of real rule sets.

rules. This interesting observation will be made clear in
further details through experiments in Section 4.

4. EVALUATION
In this section, we evaluate the effectiveness as well as the

potential of our proposed techniques. Two sets of experi-
ments are conducted. We first evaluate the effectiveness of
our techniques on a large collection of real packet classifiers
provided by a tier-1 ISP. To study our scheme in further de-
tails and to evaluate its potential in emerging applications,
we then conduct a set of experiments based on randomly
generated rule sets. The results reported in this section are
obtained by applying expanding, adding and merging rules
for two passes. As we will explain later on, little further
compression is obtained when applying these techniques for
more than two passes.

4.1 Real rule sets
We carefully examined a large collection of thousands of

packet classifiers obtained from routers of a large tier-1 ISP
backbone network. The size of these packet classifiers varies
from dozens to hundreds of rules. In the data set we have
examined, packet classifiers typically have at most one port
range in each rule. Rules that specify two port ranges are
very rare. Therefore, the multiplicative explosion in the
number of TCAM entries needed to represent a rule is rarely
observed. Nevertheless, our proposed techniques of trim-
ming, expanding, adding and merging rules can still signifi-

0

75%

50%

25%

C
o

m
p

re
ss

io
n

 o
f
T

C
A

M 100%

71%
67%

81%

100%

After tri
mming

After 1st pass

100%

125%

1 Range Clause 2 Range Clauses 3 Range Clauses

80%

After 2nd pass

100%

35%

19%

After tri
mming

After 1st pass

After 2nd pass

After tri
mming

After 1st pass

After 2nd pass

66%

100%

4 Range Clauses

11%

After tri
mming

After 1st pass

After 2nd pass

Figure 6: Optimization results of random rule sets.

cantly reduce the number of TCAM entries needed. Let us
define compression ratio to be the ratio between the num-
bers of TCAM entries needed after compression and before
compression. The average compression ratio achieved on
real rule sets is 1 : 1.85 = 54%. Specifically, trimming rules
reduces the number of TCAM entries needed by 32%; ex-
panding, adding and merging rules reduce the number of
TCAM entries needed by 14%. The distribution of com-
pression ratios achieved on these rule sets is presented in
Figure 4.

Optimization results of three rule sets randomly selected
from the collection of real rule sets are presented in Figure 5
for further details. On average, trimming rules reduces the
number of TCAM entries needed by 20%−30%; expanding,
adding and merging rules can further achieve approximately
as much compression. For these rule sets, we observe few
rules being added. Consequently, little further compression
is achieved during the second pass.

4.2 Random rule sets
As finer and finer differentiation of packets becomes nec-

essary, more and more fields are being checked by packet
classifiers and hence range clauses are expected to be spec-
ified more and more frequently. For example, some firewall
packet filters have been checking application level data for
security purposes. To better evaluate the effectiveness and
potential of our proposed techniques in emerging applica-
tions, we have also done simulations based on random rule
sets, which are generated as follows. For source IP address
and destination IP address, we generate a random IP ad-
dress prefix for each of them. A random number is assigned
to the protocol type field. Source port range and desti-
nation port range are generated as a random sub-range of
[0, 65535]. The action of each rule is randomly picked from
the set of actions observed in the real packet classifier. To
avoid redundant rules, the last default rule (which matches
any incoming packet that is not matched by any other rules)
specifies an action that is different from any other rule. This
is consistent with our observation that real rule sets typically
have a default rule whose decision is different from the deci-
sion of most other rules. As we expect, redundant rules are
rarely observed in our simulations.

For different numbers of range clauses, we run simulations
on 100 such random rule sets, each of which contains 1000
rules. The average compression ratios are presented in Fig-
ure 6, and the average increase in the number of rules (which

0

9

6

3

E
xp

a
n

si
o

n
 o

f
ru

le
 s

e
ts 12

6.94

9.54

3.98

1.00

After tri
mming

After 1st pass

1.00

15

1 Range Clause

2 Range Clauses

3 Range Clauses

4.30

After 2nd pass

1.00

7.29

9.87

After tri
mming

After 1st pass

After 2nd pass

After tri
mming

After 1st pass

After 2nd pass

12.52

1.00

4 Range Clauses

12.86

After tri
mming

After 1st pass

After 2nd pass

Figure 7: Optimization results of random rule sets.

we refer to as expansion ratio) is presented in Figure 7. As
more range clauses are specified, our proposed techniques
can achieve even higher compression ratios and compression
ratio tends to decrease faster than the increase in the num-
ber of range clauses. For rule sets with 1 range clause, our
proposed techniques can reduce the number of TCAM en-
tries needed by 20%. For rule sets with 2 range clauses, the
number of TCAM entries needed is reduced by a factor of
roughly 3. For rule sets with 3 range clauses, we can reduce
the number of TCAM entries needed by a factor of 5. For
rule sets with 4 range clauses, our proposed techniques can
reduce the number of TCAM entries needed by a factor of 9.
The sharp decrease in the number of TCAM entries needed
(Figure 6) is achieved by the sharp increase in the number
of rules (Figure 7), which clearly reveals the effectiveness of
expanding through adding rules.

Note that the compression is completely achieved by ex-
panding, adding and merging rules, which is essentially dif-
ferent from the case of real rule sets. Intuitively, this is be-
cause randomly generated rules rarely overlap and interact
with each other – the definition regions of two rules over-
lap if and only if they overlap on every dimension, which
rarely happens in random rule sets. Meanwhile, the default
rule has a different decision from other rules. Therefore,
the other rules can barely be trimmed without changing the
semantics of the rule set.

By comparing the results in Figures 6 and 7, we can also
clearly understand the reason why the second pass can sig-
nificantly compress the TCAM while more passes can hardly
help. The reason is because the first pass adds a significant
number of new rules, which make the overall compression
achieved by the first pass not so striking but can be later
optimized by the second pass. The optimization during the
second pass is mostly expanding and merging rules. Only
a small number of new rules are further added during the
second pass. Therefore, little further compression can be
achieved by more than two passes.

5. RELATED WORK
There has been two orthogonal lines of research on packet

classification in the most commonly used first-match model.
Given a packet classifier, a long thread of research [11, 20,
7, 21, 8, 25, 18, 2, 1, 24, 19, 10, 23] aims to design efficient
solutions for performing packet classification. The other line
of research aims to reduce the size of the given rule set, in

terms of either the number of rules or the number of TCAM
entries needed to represent that rule set. In some sense, the
latter can be viewed as a preprocessing stage preceding the
former: after compressing the rule set, packet classification
solutions can apply on the compressed rule set and hence
benefit from its reduced size. Our work in this paper belongs
to the second type, and we here briefly review the related
work of the second type.

Given the inherent hardness of general packet classifica-
tion as a theory problem, some researchers have proposed
to reduce the number of rules in a given rule set in order
to improve the efficiency of packet classification. In his
Ph.D. thesis [6], Gupta identifies backward redundancy and
forward redundancy. In particular, a rule ri in a rule set
R = {r1, r2, · · · , rn} is backward redundant if and only if
R contains some other rule rj such that (1) j < i and (2)
the definition region of rj contains the definition region of
ri. A rule ri is considered forward redundant if and only if
R contains some other rule rj such that (1) j > i, (2) the
definition region of rj contains the definition region of ri,
(3) ri and rj have the same decision, and (4) for any k such
that i < k < j, either the definition regions of ri and rk do
not overlap or ri and rk have the same decision. It is easy to
verify that the backward redundant rules and the forward
redundant rules in a rule set form a subset of the upward
redundant rules and the downward redundant rules (which
are identified by Liu and Gouda in [13]), respectively. In
their earlier paper [5], Gouda and Liu design algorithms for
removing redundant rules generated from a firewall decision
diagram.

The objective of these previous work is to reduce the num-
ber of rules instead of reducing the number of TCAM entries
needed to represent the given rule set. As we have seen in
this paper, reducing the number of rules does not necessarily
reduce the number of TCAM entries needed to represent the
rule set, and vice versa. Actually, we propose adding rules
as an effective technique for reducing the number of TCAM
entries needed. Our simulation results based on random rule
sets have demonstrated that our proposed scheme typically
produces a semantically equivalent packet classifier that con-
tains much more rules than the given rule set, but requires
much less TCAM entries to represent.

Prior to this work, some other complementary techniques
have also been proposed to reduce the size of TCAM needed.
For example, range encoding techniques [14, 24, 12] aim to
reduce the number of TCAM entries needed to represent
a rule set by employing sophisticated schemes for encoding
ranges specified in a rule set. Typically, range encoding tech-
niques involve dividing an m-bit range into k blocks. Then,
various encoding schemes can be applied on the blocks. Such
inherent nature of these techniques makes them plagued by
the following problems, which are not present in our scheme.
First, modifications to the packet processor hardware are
needed to interpret and perform the range encoding schemes.
Second, some techniques (e.g. [14, 24]) exploit statistical
features of the given rule set and hence are not considered
general. If preferred, these complementary techniques can
be applied on the rule set produced by our scheme to achieve
further performance benefits.

6. CONCLUSIONS
TCAM as the de facto solution for packet classification

suffers from multiplicative explosion in size due to range

specifications. Compressing the TCAM representation of
packet classifiers without requiring hardware modification
is a challenging problem of significant value. In this paper,
we propose a set of practical techniques for defining seman-
tically equivalent packet classifiers such that the amount of
TCAM entries needed is much smaller. Thus, packet classi-
fication can be carried out using much smaller TCAMs with-
out any hardware modification. Experiments conducted on
thousands of real rule sets provided by a tier-1 ISP demon-
strate that our proposed techniques reduce the number of
TCAM entries needed by 46%, although these rule sets typ-
ically have only one range clause. Furthermore, experi-
ments based on random rule sets with varying number of
range clauses demonstrate that the power of our proposed
techniques grows rapidly with the number of range clauses.
These results clearly demonstrate the enormous potential of
our proposed techniques in emerging applications.

7. REFERENCES
[1] F. Baboescu, S. Singh, and G. Varghese. Packet

classification for core routers: is there an alternative
to CAMs? In IEEE INFOCOM, 2003.

[2] F. Baboescu and G. Varghese. Scalable packet
classification. In ACM SIGCOMM, 2001.

[3] A. Gallo. Meeting traffic demands with
next-generation internet infrastructure. Lightwave,
18(5):118–123, May 2001.

[4] G. Gibson, F. Shafai, and J. Podaima. Content
addressable memory storage device. United States
Patent 6,044,005, March 2000.

[5] M. G. Gouda and A. X. Liu. Firewall design:
Consistency, completeness and compactness. In IEEE
ICDCS, 2004.

[6] P. Gupta. Algorithms for Routing Lookups and Packet
Classification. Ph.d. thesis, Stanford University, 2000.

[7] P. Gupta and N. McKeown. Packet classification on
multiple fields. In ACM SIGCOMM, August 1999.

[8] P. Gupta and N. McKeown. Packet classification using
hierarchical intelligent cuttings. In HOTI, 1999.

[9] R. A. Kempke and A. J. McAuley. Ternary CAM
memory architecture and methodology. United States
Patent 5,841,874, November 1998.

[10] M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and
A. T. Campbell. Directions in packet classification for
network processors. In NP2 Workshop, 2003.

[11] T. Lakshman and D. Stiliadis. High-speed
policy-based packet forwarding using efficient
multi-dimensional range matching. In ACM
SIGCOMM, September 1998.

[12] K. Lakshminarayanan, A. Rangarajan, and
S. Venkatachary. Algorithms for advanced packet
classification with Ternary CAMs. In ACM
SIGCOMM, 2005.

[13] A. X. Liu and M. G. Gouda. Removing redundancy
from packet classifiers. Technical Report TR-04-26,
Department of Computer Sciences, The University of
Texas at Austin, Austin, Texas, U.S.A., June 2004.

[14] H. Liu. Efficient mapping of range classifier into
Ternary-CAM. In Hot Interconnects, 2002.

[15] C. Matsumoto. CAM vendors consider algorithmic
altervatives. EE Times, May 2002.

[16] R. K. Montoye. Apparatus for storing “don’t care” in
a content addressable memory cell. United States
Patent 5,319,590, June 1994.

[17] M. H. Overmars and A. F. van der Stappen. Range
searching and point location among fat objects.
Journal of Algorithms, 21(3):629–656, November 1996.

[18] L. Qiu, G. Varghese, and S. Suri. Fast firewall
implemention for software and hardware based
routers. In IEEE ICNP, 2001.

[19] S. Singh, F. Baboescu, G. Varghese, and J. Wang.
Packet classification using multidimensional cutting.
In ACM SIGCOMM, 2003.

[20] V. Srinivasan, G. Varghese, S. Suri, and
M. Waldvogel. Fast and scalable layer four switching.
In ACM SIGCOMM, pages 191–202, September 1998.

[21] V. Srinivasan, G. Varghese, S. Suri, and
M. Waldvogel. Packet classification using tuple space
search. In ACM SIGCOMM, 1999.

[22] D. E. Taylor. Survey & taxonomy of packet
classification techniques. Technical Report
WUCSE-2004-24, Department of Computer Science &
Engineering, Washington University in Saint Louis,
May 2004.

[23] D. E. Taylor and J. S. Turner. Scalable packet
classification using distributed crossproducting of field
labels. In IEEE INFOCOM, 2005.

[24] J. van Lunteren and T. Engbersen. Fast and scalable
packet classification. IEEE Journal on Selected Areas
in Communications, 21(4):560–571, 2003.

[25] T. Y. Woo. A modular approach to packet
classification: Algorithms and results. In IEEE
INFOCOM, 2000.

[26] F. Yu and R. H. Katz. Efficient multi-match packet
classification with TCAM. In Hot Interconnects, 2004.

