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ABSTRACT

Packet classification is the foundation of many Internetfioms
such as QoS and security. A long thread of research has mpos
efficient software-based solutions to this problem. Sudiwsoe
solutions are attractive because they require cheap mesysry
tems for implementation, thus bringing down the overalt odshe
system. In contrast, hardware-based solutions use moensixe
memory systems, e.g., TCAMs, but are often preferred byerout
vendors for their faster classification speeds. The godiisftaper

is to find a ‘best-of-both-worlds’ solution — a solution thaturs

a cost of a software-based system and has a speed of a hardwar

based one. Our proposed solution, caietart rule cach@chieves
this goal by using minimal hardware — a few additional regjist
— to cacheevolvingrules which preserve classification semantics,
and additional logic to match incoming packets to thesesrulés-
ing real traffic traces and real rule sets from a tier-1 ISPshav
such a setup is sufficient to achieve very high hit ratios &=t f
classification in hardware. Cache miss ratios&re 4 orders of
magnitude lower than flow cache schemes. Given its low cabt an
good performance, we believe our solution may create sagmifi
impact on current industry practice.
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C.2.6 [Computer Communication Networks]: Internetworking—
Routers
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each packet header fiell, a rule specifies a range literal <
[a,b]. When matching a packet against a rule, each literal in the
rule is evaluated on the corresponding packet header fiéleh- |
ery literal is evaluated to bier ue, the rule is considered tmatch
the packet. Besides the literals, each rule also specifiesiaidn.
Although a packet may match more than one rule, there is& stri
ordering among rules and the goal is to find fingt matching rule,
i.e., the one with the highest priority.

Packet classification as a theory problem is inherently.Haxer-
mars and van der Stappen [18] have shown that for packet clas-
esification overd > 3 packet header fields, the best known algo-
rithms have eithe©(logn) search time at the cost 6i(n?) space
or O(log?~*n) search time at the cost 6¥(n) space, where: is
the number of rules in the rule set. While fast network preoes
have been successfully designed to keep up with wire spéeals,
widening gap between memory access speeds and wire speeds re
resents an increasingly tough challenge to pure softwanticos?

Therefore, most router vendors favor hardware solutioseda
on Ternary Content Addressable Memory (TCAJ] for its fast
speed. Basically, TCAMs can compare a given search key &i.e.
packet) with all entries (i.e., stored rules) in paralled aeturns the
first matching entry in one single clock cycle. However, asaaem
complex technology, TCAM is more expensive and more power
consuming than conventional DRAM/SRAM-based systems.eMor
over, TCAM is well known to suffer size explosion due to inef-
ficient range specification [6]. As wire speeds and rule sa& si
rapidly increase, pure TCAM-based solutions will becontweéas-
ingly expensive.

To summarize, hardware solutions are attractive for thigilr a
ity to classify packets at wire speeds, but are quite experemd
are a significant part of the cost of a line cardn the other hand,
software solutions reduce expensive hardware costs (Hiegean
be implemented in much less expensive DRAMS), but can rarely
match the speed of hardware solutions. In this paper, we-ther
fore, address the following challenging problemis-it possible to
design a classification system that has a cost similar to avsoé-

As the foundation of many Internet functions such as QoS and based system and speed of a hardware-based systéenanswer

security, packet classification involves matching eacbrnmiog packet

this question in the affirmative and present an approachiwtan

against a set of rules defined over some packet header fietds. F Provide the best-of-both-worlds solution to packet clésaion.
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Our approach calledmart rule cachénas the following attrac-
tive properties. First, it uses just a few cache entries thea few
specially-crafted rules. A unique aspect of our propos#ias we
do not necessarily cache an exact rule from the rule seeddstve
cache independently constructed rules that are derived the se-

YIn [7], Estan and Varghese report that DRAM speeds improve
7% ~ 9% per year while wire speeds impro¥60% per year.
2TCAMs installed on a line card typically cost hundreds oflai,

and can be more expensive if we target higher wire speeds.



Rule | (F1 € [30,70]) A (F2 € [40,60]) — permit
Rule Il : (F1 € [10,80]) A (F» € [20,45]) — permit
Rule lll : (F1 € [25,75]) A (F» € [55, 85]) — permit
Rule IV: (Fy € [0,100]) A (F5 € [0,100]) — deny

Table 1: A rule set of 4 rules. Rules ordered by priority.

\
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Figure 1: Caching an independently defined and dynamically evolving
rule based on the rule set in Table 1.

mantics of the rule set. In order to preserve correctnesgnsere
that such rules presergemantic equivalencef the classification
task. Second, the cached rueslveover time. This rule evolution
process is driven by (changing) characteristics of incantiaffic
that are continuously learned by smart rule cache.

Use of fast caches for fast packet classification is nauegt
pealing and has been studied in the past, e.g., flow cachmssti28,
4]. (In this paper, dlow corresponds to a set of all packets with
the sameprojection and the projection of a packet is defined as
the d-tuple consisting of the values of thepacket header fields
specified in the rule set.) In flow cache schemes, the cactses u
to store the projection and decision of recently observexketa,
with the expectation of speeding up the classification otead-
ing packets with the same projections. Given that most flaws a
short-lived [19], it is not uncommon for individual routeies ob-
serve millions of concurrent flows [8] and we expect this nemb
to only grow with time. Hence, a large flow cache would be nec-
essary to achieve high and stabbche hit ratios when using such
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Figure 2: Framework of the smart rule cache.

servation is reinforced by recent study [5], which reporitrang
Zipf-like pattern in the usage of rules in rule sets of a fidSP,
where a very small number of rules match most of incominditraf
Moreover, cache hit ratio can also be much more stable. Becau
popular rule in cache can match a series of flows and hencaeont
ues to remain in cache. In contrast, a flow cache may suffersev
thrashing. Such stability also implies enhanced robustagainst
malicious attacks. Although an attacker can forge a largelmax

of short-lived flows to occupy and thrash a flow cache, it is Imuc
harder for the forged flows to match sufficiently many rules tre
not needed by legitimate flows with sufficiently many hits eBvf
the attacker may manage to figure out the rule set, it is exdiyem
difficult for the attacker to obtain accurate real tikmeowledge of
concurrent legitimate flows. Section 3.4 presents quaivitanal-
ysis on the security property of our smart rule cache.

Construct new rules for better cache performance If we
construct a new rule, Rul¥: (Fy € [32,55])A(F» € [23,68]) —
permit, as illustrated by the dashed box in Figure 1(a), this sin-
gle rule is able to match all six flows and execute the sameracti
Thus, caching this single new rule is adequate.

Evolve cached rules over time Now consider the scenario (as
shown in Figure 1(b)) where a new flow, starts. RuleX will not
match this flow. But we now construct another new rule, Rudle
(F1 € [32,55]) A (F» € [23,80]) — permit, as illustrated by the
dashed box in Figure 1(b), and this new rule will continue &ich

flow cache schemes. For instance, using 16K cache entries, th all the seven flows. Thus, by evolving the cached rule (frorfeRu

flow cache scheme proposed in [28] delivers a cache missahtio

X to RuleY’) based on incoming traffic pattern, we can continue to

8% on a sample trace with less than 14,000 concurrent flows. A match a great fraction of the incoming traffic with a singlkeru
more recent flow cache scheme [4] uses a 4KB size cache and re- Based on these insights, we propose smart rule cache, wieere t

ports a cache miss ratio df85% on a sample trace containing up
to 567 concurrent flows.

1.1 A motivating example

In this section, we illustrate our proposed smart rule caghe
proach through a simple example. Through this process, s al
present an intuitive understanding why such an approachtis n
rally superior to flow cache schemes. Consider the rule setish
in Table 1, which is also pictorially illustrated in Figure In the
figure, the two packet header fields; and F», are represented

classification task can occur in two stages, as shown in &igur
The first stage occurs in the small on-chie cache which is com-
posed of a few registers and corresponding hardware logach E
rule cache entry stores an evolving rule and the hardwaie isg
used to match packets against the stored rule. Rule cactiesent
are organized in such a way that allows parallel search a@ibs
cached rules. The search ends with either the right dectmian
cache miss, within one clock cycle. Zache managemodule, im-
plemented in software, is responsible for creating andicoatsly
updating (i.e., evolving) the rules in cache. The goal of¢hehe

alongz andy axes, respectively. The shaded boxes correspond to manager is to minimize the number of packets that are nasitilas

rules whose decision iger mi t whereas the white boxes corre-
spond to rules whose decisiondeny. In the scenario depicted in
Figure 1(a), there are six flows observed by the router, egmtes
sented by a corresponding dot. Each of Rules |, I, and |licmet
two flows. We now make three observations:

Cache rules instead of flows If we cache any one of the first
three rules (instead of caching any of these flows), a gréater
tion of packets will be classified using the cachehis simple ob-

3Caching a flow and caching a rule both involve caching some val

able by the rules in cache, which are then pass to the secage st
of the classification process, where they are matched dgaias
entire original rule set by a full-fledged backup classifigefer-
ably implemented in software. While this software clasatfimn is

a slower operation, our results using real traffic tracesraledsets
from a tier-1 ISP indicate that a good cache manager desigidwo
require less thaf.07% of packets to take this slower path.

ues of those relevant packet header fields plus the deciShare-
fore, the cache space per entry is comparable.



1.2 Challenges and results

Although the basic idea is conceptually clear, a number gf ke
problems remain to be addressed.

(1) What (not which!) rules should be placed in the cachehén t
motivating example in Figure 1, we have only created an évglv
rule withper nmi t as its decision. But in general, the cache man-
ager can create rules with any decision to effectively reciache
miss ratio. For example, we may create and cabbey rules to
quickly deny a lot of malicious flows.

(2) How should rules in cache evolve in response to incoming
traffic pattern changes?

(3) How can we guarantee the semantic integrity of the rule
cache? Namely, for each incoming packet, how can we ensate th
the decision output by the rule cache is always consistetht thve
original rule set? In flow cache, this is not a problem. Butuler
cache, this issue needs to be carefully handled due to tbhetpri
based ordering among rules. For example, caching Rule Iyianl
Table 1 suffices to match all the flows but gives the wrong d®tis

fields: source IP address, destination IP address, sourtedps-
tination port, and protocol type. For convenience, we deffiree
projectionof a packet to be the-tuple consisting of the packet's

d header fields specified in the rule set. A rule and a packet are
considered tanatchif the conjunctive predicate of the rule is eval-
uated to be r ue on the projection of the packet. If a rule is the
first rule in the rule set that matches a packet, the actiqueitifies

is performed on the packet.

Either explicitly or implicitly, rule sets contain a defaulile that
matches every incoming packet. If none of the precedingsrule
matches a packet, the action of the default rule is perforometthe
packet. Thus, each rule set covers the entidimensional space
defined over thel packet header fields specified in that rule set.
The domain of each dimension is the domain of the correspgndi
packet header field. For example, the dimension correspgridi
the 32-bit source IP address field has a domaiid &> — 1].

Within this d-dimensional space, the conjunctive predicate of
each rule delimits al-dimensional hypercube, which we refer to

(4) How can we smooth out the effect of cache management de-as thedefinition regionof the rule. We can think of the decision

lay on cache hit performance? To minimize the cost, we only re
quire low cost and slow memory for cache management. Therefo

of a rule as a ¢olor” that colors the definition region of that rule.
For simplicity, we refer to it as the color of that rule. A ridet as

cache management delay can be long (compared with the packe@n ordered set of rules essentially defines a coloring of titiece

classification speed we target). The updated rule cachenwill
be available until after cache management. This means fltgn
decreased cache hit ratios during cache management delays.

In this paper, we present effective solutions to these dgmigb-
lems and evaluate the performance of our smart rule cachg usi
real rule sets and traffic traces from a tier-1 ISP. We showeben
for backbone routers carryint® concurrent flows, a small rule

d-dimensional space, which we refer to as $kenanticof the rule
set. The projection of a packet/flow can be viewed as the ¢oord
nate of a specific point in thé-dimensional space, which we often
use to represent the packet/flow. (Recall théiba corresponds to

a set of all packets with the same projection.) Each poinhé t
d-dimensional space may be contained in the definition regfon
multiple rules. The color of a point is defined to be the colicthe

cache composed of just a few entries has been enough tordelive first rule whose definition region contains that point.

stable cache hit ratios abo¥8.93%. Such a small cache can be
easily implemented in network processors to perform wirgesp
packet classification, at negligible cost. For 40Gbps O8-1lte
volume of missed traffic is less than 0.03Gbps, which can bityea
classified using a software classifier. Both the softwaresifi@r

As we have pointed out in Section 1, we need to ensure that the
rules stored in the rule cache are consistent with the ruls se-
mantics. To facilitate the enforcement of this semantiegrnity,
we need an efficient data structure to represent the rule set’
mantics for verification. In this paper, we use such an efiiailata

and the software cache manager can be implemented in low coststructure callegpruned packet decision diagram (PPDjiven a

DRAM. Given its negligible implementation cost and supeper-
formance, we believe our smart rule cache represents a ffiost e
cient solution for wire speed packet classification. Mos¥pwe
believe the value of this solution will only increase as tlap tpe-
tween wire speeds and memory access speeds keeps widening.

1.3 Roadmap

The rest of the paper is organized as follows. We first present

preliminaries of packet classification in Section 2. Thaddssign
of smart rule cache is then described in Section 3. Sometiefiec
optimization techniques are proposed in Section 4. We ataline
performance of our smart rule cache using real traffic traces
real rule sets from a tier-1 ISP and present the results iid3es.
After reviewing related work in Section 6, we conclude thpgra
in Section 7.

2. PRELIMINARIES

Arule setis an ordered s& = {ri,r2,--- ,r,} of rules. Each
rule r; is composed of two parts: predicateand adecision(or
action). The predicate is a conjunction dfliterals defined over
d packet header fields. In the most generalized form, eadtallite
can be written as a range literB} € [I;, h;], whereF; denotes a
packet header field. A rule defined overl packet header fields is
thus written as\/_, (F; € [I;, hy]) — decision.

The industry standard of packet classification comes froseci
Access Control Lists (ACLs) [1]. Currently, the predicafeeach
rule may specify a literal on each of the following five padkeader

rule set, we obtain its PPDD by trimming is¢éandard packet de-
cision diagram (SPDD)which is proposed by Liu and Gouda in
[15]. The SPDDf of a rule set defined over packet header fields
Fy, F»,--- | Fyis adirected tree that has the following properties.

1. Each node in f has a labeF'(v). If v is a leaf nodeF'(v)
specifies an action. If is an internal nodef’(v) specifies a packet
header field.

2. Each internal node has a sef¥(v) of outgoing edges point-
ing to its children and only one incoming edge from its par&atch
edgee € E(v) has alabel (e), which denotes a non-empty subset
of the domain of field¥’(v). In general,/(e) can be represented as
a set of non-overlapping ranges. For any two edggse’ in F(v),
I(e)N1(e') = ¢. Meanwhile,U.c r(.)I(e) is the entire domain
of the packet header fielll(v) (denoted byD(F(v)). Namely, the
labels ofv’s outgoing edges form a partition 6#( F'(v)).

3. On the path from the root to any leaf node (which is re-
ferred to as alecision path, there are exactlyl internal nodes.
The label of theith internal node denotes théh packet header
field F3, i.e., theith dimension of thel-dimensional space. Recall
that the label of the leaf node denotes the decision. Thesideci
path, denoted byieivses - - vaeqvat1, actually represents the
rule /\,(L.i:1 (FZ S I(ez)) — F('Ud+1).

For the example rule set in Table 2, its SPDD is given in Fig-
ure 3(a). To facilitate discussion, we start with a more lagiorm
of SPDD as shown in Figure 3(b). Compared with the original
form of SPDD in Figure 3(a), the regular form of SPDD possgsse
the additional property thahe label of each edge denotes a single
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Figure 3: SPDD of the rule set in Table 2.
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31,50
1,100
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) — deny
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1.
r9.
r3.

Table 2: An example rule set.

range In the sequel, we use “SPDD” to denote the regular form of
SPDD for simplicity.

Let F; denote theth dimension of thel-dimensional space. In
general, each nodg in a decision path ejvzes - - - vgeqva41 €CaAN
be viewed as representing thielimensional hypercube:

i—1 d
Ho, = (/\ (Fj € I(Sj))) A (/\ (Fj € D(Fj))> :

j=1 j=i

When context is clear, we use “nodé and “the hyper-cube rep-
resented by node” interchangeably for ease of presentation. It
is not hard to verify that for any internal nodein the SPDD’s
children form a partitiorof H,. Furthermore, it can be verified
that all the leaf descendants ofalso form a partition off,,. As

a special case, all the leaf nodes in the SPDD form a partitfon
the entired-dimensional space, which is represented by the root
node of the SPDD. Recall that each leaf node is labeled wita d
cision. Together, all the leaf nodes actually define a coloring of the
d-dimensional space, which is consistent with the semaafitise
rule set. To verify this semantic integrity of the SPDD, we refer
interested readers to [15], which also contains a detalfgatithm

for building the SPDD of a given rule set.

Given the semantic integrity of SPDD, if needed we can diassi
any packet by checking through a decision path from the ot t
some leaf node. At théth internal nodey; on the path, we follow
the outgoing edge whose label contains the value of #i&loh the
packet header. Let denote the number of ranges denoted by the

throughout the packet classification process until the séingof
the rule set has changed. In practice, rule sets are not mdifi
very frequently, especially compared with the classif@maspeeds
we target. Therefore, the time spent on building the PPDilsho
not raise any concern on the packet classification perfocmai
smart rule cache. Nonetheless, we point out that our algorfor
trimming SPDD to obtain a PPDD is quite simple and efficient.

In this paper, our primary concerns are cache hit ratio and-ha
ware cost. To help deliver high and stable hit ratios, we woul
rather spend enough preprocessing time to build as good ®PPD
as possible. As we will see in Section 3, the semantic integfi
the smart rule cache is ensured by making the stored rulesgem
cally consistent with the SPDD/PPDD. To improve cost efficie
if necessary low cost DRAMs can be used to store the computed
PPDD as well as other cache management related data sésictur
Actually, all these data structures are stored in low cosADIR in
our evaluation. Thus, our results demonstrate the perfocmaf
smart rule cache in such a cost efficient solution.

3. DESIGN

Our smart rule cache design consists of two parts: a smial
cache(the hardware component) anccache manage(the soft-
ware component). The rule cache is a small number of on-chip
cache entries each storing an evolving rule. Each cachg emtr
sists of a register storing the evolving rule and some singge
for matching incoming packets against the stored rule. Eubhe
entries are designed to match each incoming packet in phrall
Synchronized with the network processor, the rule cachdls a
to report either a cache miss or the right decision on thegqidnk
a single network processor cycle. Such a simple hardwaigrdes
of the rule cache is presented in Section 3.3. This smallcathe
is the only additional hardware needed by our smart ruleecdeh

outgoing edges. The number of memory accesses needed to piclsign. Its size and simplicity make it easy to implement invoek

the right outgoing edge is bounded 6Y¢). The number of mem-
ory accesses needed to classify a packet is thus boundedday),
whereA is the maximumy value over all nodes in the SPDD. In
the regular form of SPDDA is the maximum fanout of any node
in the SPDD.

As the size of SPDD can be potentially large for large ruls,set
we propose to obtain the PPDD of a rule set by trimming its SPDD
Our proposed algorithm is presented in Section 4. As we wél s
PPDD preserves the semantic integrity of SPDD but contaiweif
and shorter decision paths. Therefore, PPDD can also betased
classify each incoming packet (usidg(dA) memory accesses),
and its average performance is much better than SPDD.

Computing and optimizing the PPDD is a one-time preprocess-

ing task before packet classification. The PPDD remaing vali

processors at negligible cost.

The core part of smart rule cache is the cache manager. On
one hand, its effective and efficient management of the rathe
decides the cache hit ratios that can be delivered. Bagitht
cache manager decides cache hit performance by placingptite r
rules into the rule cache and dynamically evolving thosesih
response to incoming traffic pattern changes. On the othed,ha
as the cost of the rule cache is negligible, the overall cbstart
rule cache is largely decided by the cost of implementingtehe
manager. Thus, itis critical to design a cost efficient canhaager
that requires as little additional resource as possible wAswill
see in Section 3.1 and Section 3.2, our design of the cachagaan
requires nothing more than a small amount of low cost memory
such as DRAM. Through evaluation using low cost DRAM-based
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Figure 4: Data structures of smart rule cache.

systems, we demonstrate that smart rule cache is able tedeli
extremely high hit ratios on real traffic traces and real sdts ob-
tained from backbone routers of a tier-1 ISP. Nonethelesssiare
free to equip line cards with more powerful network processmd
more fast memories to achieve even better performance.

To achieve good performance, the cache manager needs to col-

lect sample packets to acquire knowledge about incomirffictra
We discuss detailed sampling strategies in Section 5.4oWiolg

(IV) Evolving rules either have the same action or are non-
overlapping. This greatly simplifies cache management, because
the ordering of evolving rules in the rule cache is not imaotiand
hence we can place each evolving rule in an arbitrary cache en
try. As we will see shortly, this also greatly simplifies trerthware
design of rule cache. Because it guarantees that if multipthe
entries match the same packet, they must have the sameodecisi

The data structure of an evolving rule stores its range ad@of
dimension, color, weight, cache entry index (if it is in cagland
its current position in the RHL (for use in cache management)
tuitively, we should try to maximize the total weight of tteosvolv-
ing rules in cache. We thus sort the RHL in non-increasingood
weight. Assume the rule cache consistsioentries. Property IV
allows us to simply cache the first elements of the RHL, and the
semantic integrity of the rule cache is guaranteed.

3.2 Cache management

To be precise, cache management refers to the operations per
formed by the cache manager to update relevant data stesctur
and the rule cache after obtaining a new sample packet. Mere,

each traffic sampling is cache management. The cache managepresent a detailed description of these cache managemerd-op

conducts relevant statistics on the sample packets storadlid-

ing window which contains the most recentsample packeta is

the sliding window size). In particular, the cache manageds to
find out all distinct flows and their frequency (which we wiifer

to asweigh) in the sliding window. The cache manager uses this
flow weight statistics to (1) maintain a list of evolving ralaend (2)
determine which rules should be switched into/out of the caiche

in order to maximize cache hit ratio.

In this section, we first present relevant data structuresdohe
management in Section 3.1 and then present detailed dgwrfor
cache management in Section 3.2. A simple hardware design fo
the rule cache in Section 3.3. We conduct a preliminary dizine
analysis on the security property of smart rule cache ini@eét4.

3.1 Data structures

Sliding window: The data structure of the sliding window is
straightforward — a First-In-First-Out (FIFO) queue of thesam-
ple packets in the sliding window (as shown in Figure 4) istmos
appropriate. For each sample packet, its correspondimgegiiein
the queue records its projection and whether it is a cacherhit
cache miss.

Evolving rules: The cache manager maintains a data structure
called regular hyper-cube list (RHL.)which is of central impor-
tance in our design. Basically, each RHL element is an englvi
rule to be placed into the rule cache. The RHlragular in that it
possesses the following key properties.

(I) Each RHL element represents an evolving rule whose defini-
tion region is ad-dimensional hyper-cubé/Vhen context is clear,
we use “hyper-cube”, “evolving rule”, and “RHL element” é@nt
changeably for ease of presentation.

(I) Each hyper-cube in the RHL is colored by one single color
in the coloring of thel-dimensional space defined by the original
rule set. Thus, by assigning each evolving rule that corresponding
color, it is guaranteed that each evolving rule can be storeal
single entry in the rule cache and is semantically condistét
the original rule set.

(1) Each sample packet in the sliding window is assigned to one
evolving rule that matches iThis ensures the RHL contains all the
sampled information. Theveightof each evolving rule is defined
to be its number of assigned sample packets. To keep tratisof t
assignment, we add a pointer to each sample record, poiotihg
RHL element it is assigned to, as shown in Figure 4.

tions.

Delete the oldest sample:On obtaining a new sample packet,
we first remove the oldest sample packet from the sliding aind
Following its pointer to the evolving rul&f it is assigned to, we
decrement the weight off by one. These operations tak¥1)
time.

(1) If the weight of H comes down to zero, it is removed from
the RHL, which also take®(1) time. If H is currently in cache,
its cache entry is replaced with the first evolving réiéthat is cur-
rently notin cache (if such aH’ exists). In the worst case, locating
H'in the RHL take®) (min(m,n)) time, wheren is the length of
the RHL. In our evaluation, we have observed thalmost never
exceedd 0 and hence locating/’ can be done very quickly.

(2) If the weight of H is still positive, we moveH toward the
tail of the RHL until the weight of its successor (if any) is langer
than its own weight. In the worst case, this position adjestm
operation take®(n) time. If H is originally in cache (i.e., top
in the RHL) but not topm in the RHL after position adjustment,
we should place the nemth evolving ruleH' into the cache entry
of H. In particular, when movind{ toward the tail of the RHL,
if H is currently themth element and is about to switch with the
(m + 1)th element, we place then + 1)th element into the cache
entry of H.

Insert the new sample:After removing the oldest sample packet
from the sliding window, we append the new sample packeteo th
tail of the sliding window, which take® (1) time. Then, we check
through the RHL to find the first evolving rulE that matches the
new sample packet.

(2) If such anH is found, its weight is incremented by one and
we assign the new sample packeffo To keep the RHL sorted by
weight, we moveH toward the head of the RHL until the weight of
its predecessor is no less than its own weigh# Ifs currently not
in cache but ranks tom in the RHL after position adjustment, we
should placeH into the cache entry of the nefan + 1)th evolving
rule. In particular, when movingl toward the head of the RHL, if
H is currently the(m + 1)th element and is about to switch with
themth element’, we placeH into the cache entry off’.

(2) If none of the evolving rules already matches the new $amp
packet, we need to obtain an evolving rule that matches tthe ne
sample packet in order to preserve property lll. There acepos-
sible ways to achieve that: expanding an existing evolvirig or
creating a new evolving rule. We prefer to cover sample packe
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Figure 5: An example of maximally/minimally expanding an evolving
rule to cover new sample packets, based on the rule set in Tabll.

using as few evolving rules as possible. Because intujtitteht

that point only. When the second flow (denoted by
P, in Figure 5) appears, let us assume we maximally
expandH along X -axis to be the dashed box in Fig-
ure 5(a). Later on, there start five other flows, denoted
by those unlabeled points in Figure 5(b). We will not
be able to further expanH to cover these new flows,
due to the semantic integrity constraint imposed by
property Il. At least one more evolving rule has to be
created to cover these new flows. In contrast, if upon
appearance of the second flow we exp&hdo be the
small dashed box in Figure 5(b), later on we shall be
able to further expand’/ to be the large dashed box in
Figure 5(b), which covers all the flows. One evolving
rule is enough.

Verifying if the expanded hyper-culdé’ satisfies property IV is

will enable a small cache to cover as many incoming flows as pos not difficult. We can simply go through the RHL and check each
sible. For the same reason, we also prefer to cover new sampleevolving rule to see whether it overlaps witi but has a different

packets with the topmost evolving rules. Therefore, we goubh

the RHL and check each evolving rule to see if it can be exmande
to match the new sample packet while preserving propertids |
and IV. If none of the existing evolving rules can be expandesl
create a new evolving rule matching exactly the new samplkgia
only and append it to the tail of the RHL. It takéXd) time to
create a new evolving rule ar@(1) time to append it to the RHL.
As we have discussed in Section®2= 5 in Cisco ACL, which is
thede factoindustry standard.

Expanding a hyper-cub#& to cover a poinp while preserving
property | is straightforward. Assume on thia dimension, the
range ofH is denoted byl;, h;] and the coordinate qf is z;. If
x; < l;, we decreasg to z;. If z; > h;, we decreasé,; to x;. If
x; € [l;, hs], there is no need to expatid along theith dimension.
In total, expandingd to containp takesO(d) time.

Discussion: Here, we adopt an expand-remove ap-
proach to evolving existing rules. While we do not
shrink rules, a rule can be removed if it no longer matches
any sample packet in the sliding window (e.g. due to
traffic pattern changes). The reason of adopting this
expand-remove approach is two-fold. First, shrinking
rules is much more sophisticated to implement. Sec-
ond, as we will show in Section 3.4, the key security
properties of smart rule cache directly stem from this
expand-remove approach.

When expanding a hyper-culd&, we minimally ex-
pand it along each dimension to obtain a hyper-cube
H’ that contains the new sample packet. However,
one may suspect that, if instead we maximally expand
H along each dimension, then hopefully the expanded
hyper-cubeH’ will be able to match more incoming
packets later on. To better understand the design choice,
it is worth noting that we are actually solving an online
optimization problem, where the input is unpredictable
incoming traffic and the objective is to optimize cache
hit ratio. While such an aggressive expanding strategy
has some merits in its own right, we prefer the design
choice of minimally expanding hyper-cubes because
that leaves us more flexibility on subsequently expand-
ing existing evolving rules.

For example, let us again consider the rule set in Ta-
ble 1. Initially, there is no evolving rule and here comes
the first flow (denoted byP; in Figure 5). The cache
manager creates an evolving ruleto cover precisely

color from H'. In total, this operation takeS(nd) time.

Now it only remains to verify whetheH’ satisfies property II.
This is where the SPDD of the rule set can be used. Recallttbat t
leaf nodes of an SPDD form a partition of the entirdimensional
space and define a coloring that is consistent with the sérsanft
the original rule set. Therefore, property Il is presenfeahid only
if all the leaf nodes overlapping withl’ have the same color as
H’. This can be easily verified by traversing the SPDD and check
the color of each leaf node overlapping witlf. However, this
straightforward solution can potentially take a long tinne dence
result in a long cache management delay. We propose effectiv
optimization techniques in Section 4.

3.3 Hardware design of the rule cache

For each incoming packet, the rule cache should either repor
a cache miss or output the correct decision on that packet. Fo
wire speed packet classification, we require this to be ddtt@nw
one network processor cycle. In this section, we presennaplsi
hardware design of the rule cache to achieve this desigrctbge
Basically, each cache entry is composed of two parts: atezgis
for storing an evolving rule and some simple logic for matchi
packets against the stored rule. Cache entries are organizach
a way that allows parallel search within one processor cycle

First of all, each cache entry should be able to determinghvene
the stored rule matches the incoming packet or not. Testivegiver
a hyper-cube (i.e., rule) contains a certain point (i.eckp is ac-
tually a special case of testing overlapping hyper-cubesesa
point can also be expressed as a “hyper-cube”. Testingapmrg
hyper-cubes can be implemented using the more basic functio
testing overlapping ranges: two hyper-cubes overlap ifarid if
they overlap on every dimension. Consider two hyper-culies
and H,. Assume their ranges along tkth dimension arga;, b;]
and[z;, y;], respectively. Testing whethér;, b;] and[z;, y;] over-
lap can be done with the simp@verlapping Ranges Tester (ORT)
as shown in Figure 6. Using one ORT for testing each dimension
testing overlapping hyper-cubes can be easily done withépwo-
cessor cycle using ORTs in parallel. Such aBverlapping Hyper-
cubes Tester (OHTJesign is shown in Figure 7.

Assume the value ofth field in the incoming packet header is
z,; and the range specified by the stored rule on that field; i ].
The entire design of a cache entry is shown in the dashed box in
Figure 8. The decision of the cached rule is stored A pos-
itive integer (e.g.A1, Az, - - -, Ax in Figure 8).0 is reserved for
cache m ss. Eachone ofthé bits Ay, Az, --- , Ay islogically
ANDed with the output of the OHT. This yields the firfalbit out-
put of that cache entry, which is eitheache mi ss (i.e., all0s) if
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Figure 6: ORT design.

the output of its OHT i€ or the stored rule’s decisiaf; A; - -
if the output of its OHT isl.

It is easy to input a packet to all cache entries in paralléle®
simultaneous outputs from all cache entries, we need taeisat
the rule cache eventually presents the right output. Ptpjbleaind
property IV of the RHL play a critical role in making a simplels-
tion possible. As we have discussed in Section 3.2, properof
the RHL guarantees that if two or more stored rules match kepac
they must have the same decision. Moreover, property Il ef th
RHL guarantees that their decision is consistent with tte sat.
Thus, we can simply bit-wise OR tHebit output from all cache
entries, which yields the final output of the rule cache. Ih@of
the cache entries matches the incoming packet, the ruleadh
putscache ni ss (i.e., all 0s). Otherwise, the rule cache will
output the right decision.

The entire rule cache works as follows. The projection of the
incoming packet is input to all cache entries simultangpoushe
cache entries try to match the incoming packet in paralldl sin
multaneously report their matching result (i.e., eitheraision or
acache mi ss), which are bit-wise ORed to yield the final out-
put of the rule cache. If we only need a few cache entries, auch
simple and small rule cache can be easily implemented inarktw
processors at negligible cost. Synchronized with the nétwoo-
cessor, the rule cache is able to output its matching redthirw
one network processor cycle.

- Ap

Figure 7: Hardware design of OHT.

(OHT) !

Figure 8: Hardware design of a cache entry.

concurrent flows in a real time manner. We also assume the-adve
sary can arbitrarily decide the content of those samplextkitig
packets to baffle the cache manager, based on its perfectdahgsy
and hence equally perfect prediction of the cache manageroan
sequence. Furthermore, we assume the tough situation ieere
rule cache never has enough entries to accommodate allisyolv
rules.

Analysis: When combating such a perfectly informed adversary,
a commonly employed weapon is randomness. Here, our cache
manager employs a random sampling strategy. Using thisorand
sampling strategy, the probability with which a flow will bans-
pled is precisely the percentage of its traffic volume in thgragate
traffic traversing the router line card. While we assume thees
sary can arbitrarily decide the content of those samplextkitig
packets to baffle the cache manager, the presumed bottoofline
randomness prevents the adversary from deciding whichepgck
are going to be sampled by our random sampling process.

Let us first look at the moment when the adversary is about to
launch its attack. Suppose there are> m RHL elements,Ry,
R2, -+, Ry, sorted in non-increasing order of their weight. Let
w1, we, - - -, wy, denote their normalized weight, respectively. The
firstm RHL elements will be cached and the cache hit ratio of legal
traffic is given by ™" | w;.

Now, suppose the adversary injects attacking traffic at @sim
mum possible rate, and its generated attacking traffic axtsdar a

An issue that has not been addressed so far is cache update. Bapercentage of in the aggregate traffic. Recall that the cache man-

sically, to update a cache entry we only need to rewrite géster,
which stores the evolving rule. Since the rule cache is symibed
with the network processor, this can be easily done withiroags-
sor cycle. Only one packet will not be able to match the cacdty e

ager prefers to associate sampled packets with existing &gt
ments, in non-increasing order of their weight. New RHL edets
are created only if it has to. Suppose we now have n RHL
elements R}, R5, ---, R}, sorted in non-increasing order of their

being updated. As each cache management execution updates aveight. For eachR;, letw;” andw; denote the portion of its nor-

most one cache entry and lasts for no less than one milliskicon
our evaluation, the percentage of packets that are affégtedche
update is very low. Assuming OC-768 (40Gbps) and a packet siz
of 500 bytes, ten thousand packets will pass through durimgea
millisecond cache management delay. That is, only one otgrof
thousand packets will be affected by cache update. Noresthel
if a disturbance-free solution is preferred, we can use tiemti-

cal rule caches to achieve seamless hot-swap. The two rchesa
can be controlled using a simple 0/1 switch. Directing inoam
packets to one of them automatically disables the othergdate.

3.4 Security analysis

As a preliminary security analysis, we hereby derive an uppe
bound on the additional cache miss ratio of legal traffic taat

be caused by an attacker. To derive such a bound, we conduct ou be the case that™ < w

analysis under the following adversary model.
Adversary model: We assume an adversary who is perfectly in-
formed of the rule set, cache size, cache management algaaitd

malized weight contributed by sampled legal packets angkaim
attacking packets, respectively. Consider &hyof the n existing
RHL elements. Let us assume it is (possibly expanded in®) th
new RHL element?’;. Due to the dilution caused by the attacking
traffic, the random sampling strategy makejé = (1-6)w;. The
cache hit ratio of legal traffic achieved by this new RHL isagisby

wi
2t 5
Among the topm new RHL elementsR;, R5, ---, R.,, let us
assume without loss of generality thatof them, R”, R§2,
Rik, were not among the original top. RHL elements,R;, Rg,
, R Accordingly, there must bé other new RHL elements,
i R;2, -+, R}, that are not currently among top but were
originally among topn. Since the original RHL is sorted in non-
increasing order of welght we know for any< d < k, it must
o < . Similarly, since the new RHL is also
sorted in non- |ncrea5|ng order of weight, it must be the thae

—wi

7L>w — w; >w iy

w; —|—w >w . Twi, 2 ig 2



Summing this inequality over all € [1, k] gives us the following
key inequality:
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Dividing both sides byl — § leads us to our final conclusion:
m m + 5
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The left side of Equation (1) is precisely the increase indhehe
miss ratio of legal traffic, caused by the adversary, whict imost
%. For instance, if the attacking traffic generated by an kéiac
accounts forl0% of the aggregate traffic traversing a router line
card, the resulting increase in the cache miss ratio of kegfic is

at most11.1%.

4. SPDD OPTIMIZATION

As we will see in Section 5.1, the SPDD of large rule sets can
be potentially very large if not built in an appropriate wakgrify-
ing property Il by traversing a large SPDD can result in loaghe
management delays, which may decrease cache hit ratio.isln th
section, we propose effective techniques for optimizin@BPIn
Section 4.1, we present an algorithm for trimming the SPDiwi
out violating its semantic integrity. The obtained dataicture is
called Pruned Packet Decision Diagram (PPDOj Section 4.2,
we propose that an appropriate ordering of packet headds fiet
building the SPDD can lead to a much smaller SPDD and PPDD.

4.1 Pruned packet decision diagram (PPDD)

Our motivating observation is that we may significantly dese
the number of SPDD nodes we have to visit in order to verifyppro
erty I, by employing various early detection techniquebe Tirst
early detection technique is quite straightforward. Asswme are
currently at nodes in the SPDD. For each child of nodew, we
need to explore the subtree rooted dtlenoted byr’,) only if H,
overlaps with the expanded hyper-cubé. Becausev's leaf de-
scendants form a partition @f,,. If H, does not overlap witttl’,
none ofv’s leaf descendants can overlap witH. Therefore, there
is no need to exploré,. For example, assumé’ is defined by
(F1 € [45,70]) A (F» € [35,45]). In the SPDD in Figure 3(b),
there is no need to explore the subtrees rooted; a> andwvs,
since they cannot contain any leaf node overlapping With

Now supposef, overlaps withH’ and hence we may need to
exploreT,. The following two early detection techniques can be
employed to further avoid exploring,. (1) If H, is colored by
a single color that is the same &E, we can determine without
exploring T, that T, cannot contain any leaf node with a color
different from H’. For example, assume thaf is defined by
(F1 € [45,60]) A (F2 € [10,25]) with decisionper it and
the expanded?’ is defined by(Fy € [25,60]) A (F2 € [10, 25])
with the same decision. In the example SPDD in Figure 3(leyeth
is no need to explor&,, andT,,, since H,, and H,, are both
colored by the same single colpernm t. (2) If H, is colored
by a single color that is different fromil’, thenT,, must contain
some leaf node that overlaps witlf and has a different color from
H’. Thus, we can immediately fail the verification of property |
without exploringT,,. For example, assume théat is defined by
(F1 € [45,60]) A (F» € [35,45]) with decisiondeny and H’

int SPDD2PPDD1foder oot )
if (r oot is a leaf node)
root.col or =root. | abel ;
return r oot . col or;
prune =true;
col or =o0;
for (eachchi | d of r oot )
if (col or ==o0)
col or = SPDD2PPDD¢hi | d);
if (col or 1)
prune =f al se;
else if(col or '= SPDD2PPDD¢hi | d))
prune =f al se;

if ('prune)
root.color =-1;
return - 1,

for (eachchi | d of r oot )
disposechi | d;

root. col or =col or;
root. | abel =root.col or;
return r oot . col or;

Table 3: Algorithm for trimming SPDD to obtain PPDD.

is defined by(F1 € [45,70]) A (F2 € [35,45]). In the example
SPDD in Figure 3(b), we can immediately fail the verificatiai
property Il without explorindl’,, sinceH.,,, is colored by a single
colorper m t that is different fromH’.

The above two early detection techniques require some addi-
tional information: for each nodein the SPDD, we need to know
whetherH,, is colored by a single color and if yes what is that color.
This information can be easily obtained through a simpleresibn
of the SPDD. In particular, we mark each nadim the SPDD with
an additional fielccol or. Assume the decisions specified in the
rule set are encoded as non-negative integersl, Ifs colored by
more than one color, we assigr to thecol or field of nodev.
Otherwise, thecol or field of nodev is assigned the color that
colorsH,. This additional information can be easily computed in a
single bottom-up pass of the SPDD. In particular, ¢lo¢ or field
of each leaf node is the same as its labéf(v), which denotes
a decision. If all the children of an internal nodéhave the same
col or value, nodev is also assigned the samel or value. Oth-
erwise, thecol or field of nodev is assigned 1.

According to the early detection techniques described abue
will explore the subtredl’, rooted at a node only if node v's
col or value is- 1. This implies that we can safely remove the
descendants of a nodeif v's col or field value is not 1. That
will make nodev a leaf node and we label nodewith its col or
value, which is the same as the decision of all the leaf delscen
of nodew. This trimming operation can also be done in a single
bottom-up pass of the SPDD and can be easily implemented as a
simple recursive function, as shown in Table 3.

Our discussion so far has been based on the regular form of
SPDD. However, recall that there is only one difference ketw
the regular form of SPDD and the original form of SPDD: theelab
of each edge can contain multiple ranges in the latter butagm
only one range in the former. Since the trimming algorithnTan
ble 3 ignores the label of edges, it is clearly applicabléntodrig-
inal form of SPDD as well. The PPDDs obtained by trimming the
SPDDs in Figure 3 are shown in Figure 9.

4.2 Ordering packet header fields

Based on the PPDD we now have, some further optimizations
are definitely possible. For example, in the PPDD in Figut®,9(
v1 andvs can be merged into one node, andvs can be merged
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Figure 9: PPDDs obtained by trimming SPDDs in Figure 3.

ri: (F1 € [1,100]) A (F2 € [1,25]) — permait
ro: (F1 € [1,100]) A (F2 € [26,50]) — deny
r3: (F1 € [61,100]) A (F2 € [51, 75]) — permit
ra: (Fi € [76,100]) A (Fa € [76,100]) — deny
rs: (F1 € [1,100]) A (F2 € [1,100]) — permit

Table 4: An example rule set.

into one node, and the right two children®f can be merged into
one node. For another example, we can mefges, v4, andus

into a single node in the original form of the SPDD. Althoughtt
does not reduce the number of ranges, that does reduce thEnum
of nodes. However, as we have limited space, we prefer teleav
such less important optimizations in the extended versfaihie
paper. Instead, we stick to the regular form and presentanot
more fundamental optimization technique: we can signifigae-

Trace 1| Trace 2| Trace 3| Trace 4
Trace length (sec) 4793 5008 4645 5016
Number of flows 9.95M | 5.86M | 9.67M | 10.83M
Max # concurrent flows| 164420 | 143166 | 103591 | 176160
Max flow length 11821 | 28119 1485 24041
(pkt, sec) 334.10| 519.47| 164.76 | 520.30
Avg flow length 8.20 8.66 6.91 9.22
(pkt, sec) 62.65 92.05 39.46 72.00
% TCP flows 92.52 92.97 93.37 91.62
% UDP flows 6.28 6.26 6.06 7.64
% other flows 1.20 0.77 0.57 0.74

Table 5: Statistics of sampled traffic traces (1/21/2006).

rule sets, this (not necessarily the best) ordering alreadyces
the PPDD size byl ~ 2 orders of magnitude. For the other rule
sets, their PPDD size is reduced by at least a factar W¥e report
detailed evaluation results in Section 5.1.

5. EVALUATION

We evaluate the performance of our smart rule cache using
real traffic traces and0 real rule sets obtained from a tier-1 ISP
backbone network. The traffic traces are collected by Netkis-
ing l/a packet sampling at a number of links connected to edge
routers, wherex is a constant. For each flow, NetFlow maintains a
record containing a number of fields including the sourcedsesdi-
nation IP addresses, source and destination routing psefirerrce
and destination ASes, source and destination port nuntberpro-
tocol type, type of service, flow starting and finishing tita@sps,
number of bytes and number of packets transmitted. Eadfictraf

duce the size (number of nodes) of a PPDD by building the SPDD trace lasts about one day. The real rule sets include patiess fi

according to an appropriate ordering of the packet headelsfie

Notice that in the regular form, the number of ranges is tiheesas

the number of edges, which is the number of nhodes minus one.
Consider the rule set in Table 4. If we uBe as the first dimen-

configured at corresponding router interfaces. Each ruless
tains hundreds or thousands of rules. The decision of relefhier
pernit ordeny. In Section 5.5, we will extend these rule sets
to have more diversified decisions and evaluate the perfurenaf

sion andF; as the second dimension, the resulting SPDD contains Smart rule cache using such extended rule sets.

15 nodes as shown in Figure 10(a). This SPDD cannot be pruned

and hence the PPDD is of the same size. Interestingly, if vielsw
the order ofF} and Fx, the resulting SPDD will contain only1
nodes (shown in Figure 10(b)). After trimming the first foaat
nodes, the new PPDD will contain onfynodes. As we will see
in Section 5, the effect of a good ordering of packet headtisfie
on real rule sets (which typically use five packet headerd)etdn
be much more significant than its effect on sucB-dimensional
simple rule set.

In general, it is not easy to figure out the optimal ordering of
packet header fields that will lead to a PPDD of minimum size.

In the sampled traces, the maximum number of concurrent flows
is less tharl0°. As we target more thatD® concurrent flows, we
compact the sampled traces into shorter traces by possiisgna-
ing flows such that the maximum number of concurrent flows is
great thanl0°. Let the start time of a sampled trace (elf the
start time of a flow g, its start time in the compacted trace will
bet; = to MOD 4500 (in seconds). Its end time in the compacted
trace will bet] = t,+T, whereT is the duration of the flow. Some
statistics of the resulting traces are given in Table 5. Asaresee,
most flows are likely to be short-lived flows, which represemte-
rious challenge to cache schemes. We believe this chasiicter

However, as we have discussed in Section 2, building the PPDD of the traces makes our evaluation results more reliable.

is a one time preprocessing task and it is worth spending dime
building as good a PPDD as we can. Given that, a straightforwa
solution is to try out as many possible orderings as we carkeeg
the minimum size PPDD we have so far. In our evaluation, fal re
rule sets containing thousands of rules, it takes only a fesds
to build the SPDD and PPDD according to a certain ordering of
packet header fields. Given five packet header fields, thefe af
120 possible orderings, which take about ten minutes to check.
In future work, we are interested to search for more efficént
gorithms for finding the optimal ordering of packet headeldfie
For practical interest, after checking a number of real selis con-
taining up to thousands of rules, we have found the followdng
dering of packet header fields to be quite effective: (1)qarot
type; (2) source IP address; (3) destination IP addressadice
port; and (5) destination port. For a considerable porticth@real

5.1 PPDD

We conduct simulations on the rule sets to evaluate thetiféec
ness of using a better ordering of packet header fields areffde
tiveness of using PPDD. The default ordering we use is: (@jcg0
IP address; (2) destination IP address; (3) source porgdgina-
tion port; (5) protocol type. (It is worth emphasizing thathough
the rule sets we use for evaluation are defined over this atdnd
5-tuple, all our proposed techniques of smart rule cacheapé-
cable to rule sets defined over any number of packet headgs jiel
Through simulations, we find the following ordering perfarquite
well: (1) protocol type; (2) source IP address; (3) destomatP
address; (4) source port; (5) destination port. To evaltseffec-
tiveness of a better ordering, we report the PPDD size fiuenber
of nodes in the PPDD) achieved by both orderings in Table 6.



() (b)

Figure 10: SPDD and PPDD of the rule set in Table 4 derived from differentorderings of packet header fields.
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Figure 11: Cumulative cache miss ratios achieved using a single cachetg/ and a sliding window of 1024 packets.

Rule set|| # rules | Default ordering| Better ordering L
1 373 6703 3336 V72 Default ordering Rule set8
2 617 218602 8449 8 sf AUt
3 378 6099 3002 s
4 226 4003 1981 5
5 391 349990 14897 a
6 203 3736 1869 =
7 2755 27865 13768 £
8 666 203101 7378 8
9 539 5389 2677
10 628 6539 3187

Figure 12: Compression ratios achieved by the default ordering and

Table 6: PPDD size achieved by the default ordering and a better a better ordering of packet header fields.

ordering of packet header fields.

packet header fields universally enhances the effectigenfassing

For rule sets 2 and 8, the better ordering reduces their PR42D s PPDD

by two orders of magnitude. The PPDD size of rule set 5 is reduc
by one order of magnitude. For the other rule sets, the bexttier-

ing reduces their PPDD size by at least a factoR.ofAlthough
these real rule sets each contains as many as thousandesf rul
with the better ordering of packet header fields, their PP s
never exceeds 15K. In our simulations, we use a sliding windo
size of 1024 packetsand we find that the length of the RHL never ~ Only after cache management is done, the updated rule cache i
exceeds 10. Both are much smaller than the PPDD. Therefare, t available for matching incoming packets. To obtain rekatimu-
memory requirement of smart rule cache is dominated by PPDD lation results, we carefully simulate the cache managemelaty

and hence is very small. for each new sample packet.

To evaluate the effectiveness of using PPDD instead of SPDD, In our simulations, we keep track of two clocks simultanépus
we define the ratio between the size of an SPDD and the size of it One clock is thephysical clockof the machine running our simu-
PPDD as theompression rati@and report the compression ratios  lations, which can be read through a system call. The otlakcl
achieved by both orderings in Figure 12. It is clear that PBRi2 we maintain is théogical clockof the traffic trace — each packet in
much smaller than SPDDs. Moreover, using the better orderin the trace has its time of emergence in the trace. Right betwwke
management starts, we read the physical clock timand record

5.2 Cache management delay

As we have previously discussed, cache management delay can
potentially impact cache hit ratio. Because during cacheage-
ment, incoming packets are still matched against the olelgache.

4 . . . . .

In our experiments, we vary the sliding window size from 1 to : . : : :
4096 and do not observe perceptible change in the performainc the current logical timey in the traffic trace. Upon gomplet|9n
smart rule cache when the sliding window size if between @i an ©f cache management, we read the physical clock time again an
4096. To be conservative, we have been using a sliding window record itass. At = t» —t; is taken as the cache management de-
size of 1024 for all our experimentation. lay. We do not update the rule cache until logical tithe- to + At



in the traffic trace. Packets emerging befdrim the traffic trace are

matched against the old cache. In our simulations, we rettward

delay of every cache management execution. The observeat@ve
cache management delays are no less than one millisecond.

5.3 Results

To conduct an extensive evaluation of smart rule cache, we ru
each traffic trace through each rule set and simulate smket ru
cache at per packet level in that context. Using a singleecankry
and a sliding window of 1024 packets, we report the cumudativ
cache miss ratios observed on individual pairs of trafficarand
rule set in Figure 11. The cache miss ratios are calculated af
warm-up stage, which lasts for five minutes and one milliockpa
ets, whichever comes later. The cumulative miss ratio o&ffid¢r
trace accounts for all packets after the warm-up stage. Asamne
see in Figure 11, the cache miss ratios observed of0gkirs of
traffic trace and rule set never exce&d%. Actually, on all rule
sets except rule set 7, the cache miss ratios never efcEgd This
represents a decrease in cache miss ratio by two orders afimag
tude, compared with the cache miss ratios reported in [28, 4]

Note that, the use of sampled traffic traces does not invalid o
results. We demonstrate this via simulations based oncieed’
traffic traces. Given the sampling factor @f we keep the inter-
packet interval of each flow unchanged and evenly inject 1
packets between each pair of successive packets of eachTthsv.
gives us a traffic trace with times as many packets as the original
trace. We observed same cache hit ratios on enriched traces a
observed on sampled traces.

5.4 Tuning sampling strategy

Although the cache miss ratios reported in Figure 11 have bee
extremely low, we still find the relatively higher cache miatios
observed on rule set 7 quite intriguing. So we ask the quesko
there any specific reason underlying this, other than thébmage-
cial characteristics of rule set 7?” After careful analysisl exten-
sive experiments, the answer turns out to be “yes”. The dampl
strategy plays a decisive role there. For the results inrgidd,
our sampling strategy is to immediately collect the nexbming
packet after cache management is completed. This strarglafd
strategy seems not bad, as it allows the cache manager téesamp
coming traffic as frequently as possible. However, samptinge
frequently does not mean the cache manager will obtain nsme u
ful knowledge. To effectively evolve the rules to capturessed
flows, the cache manager needs to sample missed packetetfack
hitting the rule cache add no additional useful knowledgauain-
coming traffic. Because the cache manager ignores incomafg t
fic during cache management, sampled packets are its onlgesou
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Figure 13: Effect of sampling interval on cache miss ratio. Cache size
= 1. Sliding window size = 1024.

Rule Number of cache entries

set 1 2 3 4

3 419 x10°T [ 141 x 1071 1.84 x 1073 | 6.52 x 10~%
4 3.85x 1071 [ 3.00x 1072 [ 1.17x 1073 | 6.26 x 10~ %
6 3.89x 1071 [ 303x1072 [ 1.17x 1073 | 6.07 x 10~

Table 7: Cumulative cache miss ratios observed on different rule set
with different number of cache entries.

terval, this smart sampling strategy reduces the cacheratisshy
two orders of magnitude. Using traffic trace 2 and a sampling i
terval of 512 packets, we also evaluated the performancmafts
rule cache with smart sampling on other rule sets. The obderv
cache miss ratios are betwe@9158% and0.0003%. Compared
with the cache miss ratios reported in [28] and [4], this espnts

a decrease in cache miss ratioby- 4 orders of magnitude. That
means the workload on the full-fledged packet classifierdaced
by 2 ~ 4 orders of magnitude, which in turn means potentially
shorter packet classification delays experienced by migaekiets
and the possibility of using less efficient but cheaper smhgt

5.5 More complicated rule sets

So far our simulation has been based on real rule sets used for
packet filtering, each specifying two possible decisigmer mi t
anddeny. While packet filtering is a globally deployed application
of wire speed packet classification, there are also many af#i-
cations such as QoS and security that specify much moresdiver
fied decisions. To evaluate the effectiveness of smart rathe
on such applications, we also conducted simulations basedah
rule sets. As we do not have access to any such real rule sets, w
extend the real rule sets we have been using by randomlynassig
ing one 0f1024 different decisions to each rule. In practice, it is
unlikely that more thai024 different decisions will be specified.

of knowledge. As the cache miss ratio has been quite low, such Using traffic trace 2 and a sampling interval of 1024 packets,

a blind sampling strategy makes the cache manager obliabus
missed flows with high probability. Therefore, the rulesratrbe
effectively evolved to capture the missed flows and hencéecac
miss ratio cannot be further reduced.

To further decrease the cache miss ratios and to verify the co
rectness of this understanding, we have designed and &sdlaa
smarter sampling strategy. After cache management is atethl
we wait for a fixed number of packets (which we refer tosam-
pling interva) before collecting the next sample packet.If some
packet during the sampling interval results in a cache missake
that packet as our next sample and restart cache management i
mediately.

Using rule set 7 and traffic trace 2, we evaluate the perfocman
of smart rule cache with different sampling intervals arngbrethe
results in Figure 13. With an appropriate choice of sampiimg

we evaluate the performance of smart rule cache on the eedend
rule sets. For rule sets 1, 2, 5, 7, 8, 9 and 10, the cache hit per
formance of smart rule cache using one cache entry has defjyrad
very slightly, by a negligible amount. For rule sets 3, 4 an&é
do observe some impact on the performance of smart rule cache
We present the cumulative cache miss ratios observed wifdr-di
ent numbers of cache entries in Table 7. As we can see, using as
few as4 cache entries, our smart rule cache is still able to reduce
cache miss ratio to the order of—*.

We also conducted the same simulation for smaller numbers of
different decisions. To reduce cache miss ratio to the artien—*,
the number of cache entries needed appears to grow no faater t
logarithmically. For example, for rule set 3 with upto 2, 4 1
and 1024 different decisions, we need 1, 2, 3 and 4 cachesgntri
respectively.
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