
Uncovering Twilio: Insights into Cloud Communication Services
Ramnatthan Alagappan
ra@cs.wisc.edu

Sourav Das
souravd@cs.wisc.edu

1 Abstract
Cloud communication service (CCS) with its simplicity
and lower investment cost is becoming increasingly pop-
ular. In contrast to its growing popularity, very little is
known about the internals of CCS with respect to its ar-
chitecture and protocols. To gain insights into CCS, we
study a popular cloud communication service ”Twilio” us-
ing gray box techniques. In our study, we provide insights
into the Twilio ecosystem, its components, the interaction
among components and the protocols. We also measure
some guarantees provided by Twilio and show how the
measurements fair against what is promised. Our analysis
un-veils a number of interesting aspects about the Twilio
ecosystem and have strong implications for developers
who want to build applications on top of Twilio APIs.

2 Introduction
CCS is an upcoming service model which provides so-
phisticated APIs for enterprises to develop applications
and offload communication related tasks from enterprise
applications. All the communication services are offered
through simple REST APIs for the applications to make
use of them. Cloud communication services have a lot
of advantages compared to on-premise hosted commu-
nication infrastructure. Firstly, it offloads the burden of
communication from the applications and separates it as
a separate service. The applications can seamlessly inter-
act with the communication APIs to accomplish complex
communication tasks like sending promotional messages
to customers, providing critical real-time information to
mobile phones, etc. Secondly, the development effort in-
volved in integrating an application with CCS is very less
compared to developing and maintaining a home-brewed
communication infrastructure. Thirdly, enterprises can
build communication applications in a cost effective way
because of the pay-per-use model provided by most the
CC services.

Our work focuses on study of such cloud communi-
cation services. There are a lot of players in the market
which provides CC services like Avaya, Clickatell, Plivo,
etc. and we chose a popular CCS Twilio for our study pur-
pose. Twilio is one of the prominent players in the CCS
space and has a huge customer base which includes popu-
lar enterprises like Coca-Cola, WalmartLabs, Intuit, Box.
These enterprises use Twilio to accomplish a wide variety
of tasks ranging from two-step authentication, powering

lending machines with music, secure file sharing, deliver-
ing deals and ads to mobile phones, etc. Twilio enables lot
of new scenarios for businesses that were rather cumber-
some to implement in the past. The APIs are simple and
intuitive to understand and develop. Twilio also provides
rich documentation and code examples to build simple ap-
plications like VoIP communication.

For our study, we developed a simple VoIP service atop
Twilio APIs which we call as VoT (VoIP on Twilio). Cou-
pled with logs collected at several places in the system we
present a detail study of Twilio which we believe is some-
what representative of CC service in general and is first of
its kind. We give insights into the Twilio ecosystem, the
high level as well as packet level protocol details and mea-
surement of some guarantees that Twilio provides. We
also discuss some interesting oddities that we found dur-
ing the course of our study and point to some possible
enhancements in the system.

The reminder of the paper is organized as follows. In
section 3, we motivate our study. In section 4, we provide
a detailed analysis of the Twilio ecosystem, architecture of
the system, our experimental setup, some of the scenar-
ios that Twilio supports, high level protocols and packet
level analysis for some key scenarios. We give detailed
measurements with respect to call and message dequeu-
ing rates in section 5. Then, we present some oddities that
we found in the ecosystem in section 6. In section 7, we
discuss some of the possible enhancements to the system.
Finally we conclude by presenting the implications of our
study and our future work.

3 Motivation and Related Work
Businesses want to delegate communication from their
applications and services because of the advantages pro-
vided by CCS. The number of enterprises using CCS has
seen a steady increase since its advent. Though there
are not enough evidences that this pattern is going to
continue, but because cloud communication services pro-
vide an attractive cost-model and easy-to-use APIs, we
strongly believe that this trend is going to continue in the
future. As more and more enterprises start using CC ser-
vices like Twilio, there is a good chance that this traffic
may contribute to a good fraction of Internet traffic in the
future.

There have been lot of studies on VoIP services like
Skype in the past [4]. There have been recent studies

1

on cloud storage services like Dropbox [3]. Best to our
knowledge, we are the first to study cloud communica-
tion services. [6] provides a thorough characterization
of the Dropbox protocol and traffic patterns. They pro-
vide insights into how traffic to Dropbox varies across four
different networks including home and campus networks.
Our study on the other hand does not deal with traffic anal-
ysis since we did not have the sophistication of collect-
ing the packet traces on the campus network. Our study
aims at studying the architecture and protocols of the en-
tire Twilio ecosystem. Driven by our study, we also aim at
exploring some possible enhancements to the entire Twilio
ecosystem. [4] provides a detailed packet level study of
the Skype protocol. The authors also provide deep insights
into the Skype architecture. Our study involves studying
the architecture of the system and the protocols involved
using a suite of gray box tools that we have developed.

4 Twilio Overview
In what follows, we describe the Twilio Ecosystem, some
of the possible scenarios using the Twilio APIs, the ex-
perimental setup that we used for our study, high level
protocol study and then packet level protocol study.

4.1 Twilio Ecosystem
The Twilio ecosystem, as depicted in the Figure 1 can be
viewed as a layered architecture. In the bottom most layer
lie the Twilio servers. These servers lay the foundation
of this ecosystem by exposing a set of data and voice com-
munication APIs for sending and receiving voice calls and
messages.

In the middle layer, lie the Application servers.
These servers are installed by Twilio customers with ded-
icated Twilio accounts. For e.g. These application servers
might belong to some company X that wants to provide
VoIP service to its customer. Each Twilio account is
linked to 1) one or more Twilio numbers, 2) an Account
SID and 3) an Auth Token. A Twilio number is a ten
digit phone number. Account SID is an unique identi-
fier for a Twilio account. Auth Token is a token used by
Twilio Servers to authenticate an account. The Applica-
tion server uses the Account SID and Auth Token to ac-
cess the Twilio APIs. The cost model for this second layer
Application servers (or Twilio customers) is typically pay
per message or pay per call.

In the top most layer, lie the Clients which could be
browser based clients or phone based clients. An impor-
tant thing to note here is that these Clients are not the
direct customers of Twilio, instead they are the customers
of the services that are built on top of Twilio. For e.g.
These clients could be the customers of company X that
is providing VoIP service. These clients, can be free cus-
tomers or paid customers of company X. Also, depend-
ing on the type of service that the layer two based Twilio

Figure 1: Twilio Ecosystem

Figure 2: Sample TwiML Snippet

customers wants to provide, it is possible that these layer
three is non-existent. The Clients when present, in order
to use the services and communicate with each other need
to register with the layer three Twilio servers. This is done
using a capability token which is provided by the Appli-
cation Server.

So far we have only discussed how the Twilio clients
connect to each other in the Twilio ecosystem. The Twilio
clients and the Application servers can also interact with
the external phones belonging to different carriers via the
Twilio servers. Hence, these external phones also form a
part of the Twilio ecosystem.

Application Container: Each Twilio number is linked
to an application container. The application container
contains two URLs: V oiceURL and MessageURL.
These URLs are configurable and are usually configured
by the Application server administrators (or Twilio cus-
tomers). Whenever an incoming call or message for a
Twilio number arrives, the Twilio server makes post re-
quest to these URLs. The content generated by these
URLs direct Twilio servers to perform the needed actions
on the incoming calls or messages. These contents are
in form of a special markup language called TwiML de-
scribed in the subsequent section. Additionally, Twilio
appends the query parameters that it obtains from the
end-clients before making the requests to the application
servers.

TwiML: It is a markup language developed by Twilio.

2

Script Twilio AppServer Phone

Queue Call (#, url)

Async ACK
Dequeue and place call

On attend

Fetch TwiML

TwiML response

Parse TwiML and Stream content

Figure 3: Automated call to a phone

It contains a set of simple verbs that can be used by the
Application Servers to direct the Twilio servers about the
action that needs to be taken whenever a call or message
is received to its number. Various kinds of verbs are sup-
ported as shown below which can be used to create inter-
active applications atop Twilio.

• Say - Read text to the caller

• Play - Play an audio file for the caller

• Dial - Add another party to the call

• Record - Record the caller’s voice

• Gather - Collect digits the caller types on their key-
pad

• Sms - Send an SMS message during a phone call

• Hangup - Hang up the call

• Queue - Add the caller to a queue of callers.

• Redirect - Redirect call flow to a different TwiML
document

• Pause - Wait before executing more instructions

• Reject - Decline an incoming call without being
billed

For e.g. The TwiML snippet shown in Figure 2 will
say Hello World (dictated by the verb ”say”) to the caller
in female voice (dictated by the attribute ”voice”). Our
experience with TwiML suggests that it is very simple to

use and powerful with respect to the diversity of verbs that
it supports.

4.2 Scenarios
There are multiple scenarios that one can enable with the
help of Twilio Apis. Some of them are:

• Automated calls : Twilio APIs can be used to place
automated calls to phone numbers to deliver a pre-
recorded message.

• V oice calls : VoIP applications can be built atop
Twilio voice APIs which can be used to place voice
calls. There are three scenarios possible for VoIP ap-
plications:

– Call between VoIP Clients

– Call from Phone to VoIP Client

– Call from VoIP Client to Phone

• Messages : Twilio message APIs can be used to
send automated messages.

Voice calls between VoIP clients:

4.3 Experimental Setup
For our study, we developed a simple VoIP service (called
VoT) atop Twilio and deployed it on OpenShift RedHat
Cloud. The VoT server also hosts a simple web interface
which can be used to place voice calls by specifying a
phone number or the registered names of VoIP clients. For
making automated calls and sending automated messages

3

Mike Twilio AppServer Jenny

Ask for Capability Token
Ask for Capability Token

Capability token Capability Token

Call Jenny

Trigger incoming call

Fetch TwiML(Jenny)

TwiML Response

Parse TwiML - Call Jenny

Actual VoIP communication starts

Reg with capability token Reg with capability token

Figure 4: Call between two VoIP clients

we have developed python scripts using the Twilio client
libraries which directly calls into the Twilio APIs. For
our study, we extensively use traces collected at differ-
ent places. This includes application level trace messages
collected at our VoT server, logs in Twilio user portal,
Twilio object store queries and Wireshark traces collected
at client machines.

4.4 High Level Protocol Study
We now present a high level protocol study of some of the
important scenarios that Twilio supports.

Automated calls to phones: The protocol diagram for
this scenario is shown in Figure 3. At first, a script (our
python script) queues a call request specifying the phone
number to which the call needs to be placed and an url in-
dicating the location of the TwiML response. The Twilio
server acknowledges the request and places the call. Once
the phone attends the call, the Twilio server does a HTTP
POST or HTTP GET to the url in the call queue request to
fetch the TwiML response. In our experiments, we hosted
these pre-recorded messages in our application servicer.
The application server processes the request and sends a
TwiML response in return. The Twilio server parses the
TwiML response and finally streams the content to the
phone.

Voice calls from phone to VoIP clients: The proto-
col diagram for this scenario is shown in Figure 4. Let us
say, Mike and Jenny are the two VoIP clients and Mike
wishes to call Jenny. As shown in Section 4.1, for Mike
and Jenny to communicate they need to first register with

the Twilio Server. Hence, Mike and Jenny at first request
the Application server for capability tokens. Once the Ap-
plication server delivers the tokens, Mike and Jenny reg-
ister with the Twilio server using the tokens. Mike then
queues a call to Jenny. An interesting thing to note here
is that the Twilio server does not have information about
what to do with the call. It need to communicate with
the Application server to get this information. For this, it
triggers an incoming call to the Twilio number to which
Mike is linked to. As stated in Section 4.1, every incom-
ing call to a Twilio number generates a post request on the
voice URL present in the application container linked to
that number. This post request is directed to the Applica-
tion server with query parameter as ”Jenny”. The Appli-
cation server parses the request and generates the appro-
priate TwiML content indicating the action that needs to
be taken. In this case, the application server would serve
a response that contains a Dial verb and the client for the
Dial verb would be ”Jenny”. The Twilio Server parses the
TwiML and places a call to Jenny. Finally, Mike is noti-
fied about this and the voice communication starts. Note
that the actual voice communication is not peer-to-peer
and is routed via Twilio servers.

Voice calls from VoIP clients to phone: The proto-
col diagram for this scenario is not shown for space con-
straints and is similar to that shown in Figure 4 except that
Jenny has a dedicated phone number and hence does not
need to register with the Twilio server. Lets say, Mike is a
VoIP client and Mike wishes to call Jenny with a dedicated
phone number (may belong to any carrier). Mike will at

4

Mike Twilio AppServer Phone

Ask for Capability Token

Capability Token

Fetch TwiML

TwiML response

Call Twilio number

Trigger incoming call

Call Mike

Actual communication starts

Reg with Capability Token

Figure 5: Call from phone to a VoIP client

first request the Application server for a capability token.
Once the Application server delivers the token, Mike will
register with the Twilio server. Mike then places a call
to Jenny’s number. As in the case of two VoIP clients in
the previous section, the Twilio server communicates with
the Application server to get the information about the ac-
tion that needs to be taken for the queued call. For this,
it triggers an incoming call to the Twilio number linked
with Mike. This incoming call generates a post request
on the voice URL present in the application container.
This post request is directed to the Application server with
query parameter as ”Jenny’s phone number”. The Appli-
cation server parses the request, generates the appropriate
TwiML content for the action that needs to be taken and
delivers it to the Twilio server. The Twilio Server parses
the TwiML and places a call to Jenny’s phone. Finally,
Mike is notified about this and the actual communication
starts.

The protocol diagram for this scenario is shown in Fig-
ure 5. Lets say, Mike is a VoIP client and a phone wish to
call Mike. Mike will first request the Application server
for capability token. Once the Application server delivers
the token, Mike registers with the Twilio server. When
the phone calls the Twilio number associated with Mike,
the Twilio server triggers an incoming call to that Twilio
number. The incoming call generates a post request on the
voice URL present in the application container. This post
request is directed to the Application server. The Appli-

cation server parses the request, generates the appropriate
TwiML content for the action that needs to be taken and
delivers it to the Twilio server. The Twilio Server parses
the TwiML and places a call to Mike. Finally, the phone
is notified about this and the actual communication starts.

4.5 Packet Level Analysis
In this subsection, we dig deeper and present the packet
level analysis for a scenario where a browser makes a
voice call to a phone or another browser based client.

Figure 6 shows the sequence of events that happens
when a browser based client wants to make a VoIP call
to another browser based client or a phone. As shown, at
first the client browser does a HTTP GET request to the
application server that we have deployed. The application
server generates a capability token and passes it onto the
client. The client side javascript includes the twilio js li-
brary and does Twilio.Device.Setup to register its capabil-
ity with the Twilio servers. The sequence of messages for
the second block is also shown. The client passes the to-
ken as HTTP data after establishing a TLS session with the
server. After this step, the client is free to make a call to
either another browser based client or another phone num-
ber. The actual voice communication is tunneled through
Twilio servers and it involves RTMP protocol. This se-
quence of packet exchanges are not shown due to space
constraints.

5

C
lie

nt
 T

w
ili

o
A

ut
h

 S
er

ve
r

Client Capability Token Registration

S A CH A A

CKE,
CCS,
EH D

SA A SH C,SHD CCS,
EH

D

Legend
S-TCP SYN, A-ACK,CH-TLS Client Hello,
CKE-TLS Client Key Exchange, EH-Encrypted
Handshake, D-Data, FA-TCP FIN ACK, SH-Server Hello, C-
Certificate,SHD-Server Hello Done, CCS-Change Cipher Spec

Http Get to VoT Server

C
lie

nt
 V

oT
 S

er
ve

r

S A H/G A

SA A H/R

20
0

O
K,

 H
TM

L/
JS

H
tt

p
G

et
 to

 V
oT

Se

rv
er

C
ap

ab
ili

ty

To
ke

n
Re

g

Client
Browser

Client
Browser

VoT
Server

Twilio Auth
Server

V
oi

ce
 S

es
si

on

Client
Browser

Twilio Voice
Server

Time

Figure 6: Voice Call from Browser Client The figure shows sequence of packet exchanges that happen between the client and other

components of the system. The top diagram shows the high level operations. The participants are shown above and below the top and bottom lines.

The left bottom figure shows how the client interacts with the application server to obtain the capability token and it corresponds to the first block

in the top diagram. The right bottom diagram shows the sequence of messages exchanged between the client and the Twilio server when the client

executes the Twilio.Device.Setup method and corresponds to the second block in the top diagram.

5 Measurements
In this section, we provide measurements with respect to
call and message dequeuing rates. Twilio provides guaran-
tees that the placed calls and messages will be dequeued
at a rate of 1 per sec and placed onto the phones or the
browser clients [1]. We measure the degree to which this
guarantee is met. All the experiments were conducted on
Lenovo W530 laptop with 8 GB RAM running on 4 cores
connected to a 30 Mbps Internet link.

5.1 Calls
We developed scripts that can queue automated calls to
US phones and online browser clients. We queue the first
call to the browser client and queue a variable number
of calls to a US phone and then finally place one more
call to the browser client. Twilio dequeues the calls in the
order it was placed into the queue. Using Wireshark in
the browser client, we collect the packet traces and the
timestamps of the incoming call connections. We then
can calculate the time difference between the first call and
the second call received by the browser. A careful reader
would note that the call timestamps may not reflect the ac-
tual time when the call was dequeued from the queue and

Figure 7: Calls queuing and dequeuing. The figure shows

the queuing and dequeuing rate for calls

it will include the network latency involved in placing the
call to the browser client. We noticed that this latency was
lesser than 50 ms and so was discounted for the purpose
of our calculations.

Figure 7 shows the expected dequeue rate, observed de-
queue rate and queue rate for calls. The horizontal axis
shows increasing number of calls that we place to the
phone and the vertical axis shows the queue or dequeue
rate. As mentioned before Twilio gives a guarantee to de-

6

Figure 8: SMS queuing and dequeuing. The figure shows

the queuing and dequeuing rate for messages

queue calls at the rate of 1 per second. This is shown by
the flat line. We define the queue rate as the rate at which
the client library can place calls into the Twilio call queue.
It is quite possible to achieve higher values of queue rate
with high speed links. This value does not necessarily im-
ply that the Twilio server has a throttling mechanism for
adding calls into the queue. The Dequeue rate line shows
the observed dequeue rate in our experiments. We notice
that for a small number of calls such as 100, Twilio de-
queuing mechanism performs really well than expected.
As the number of calls increases, the dequeue rate drops
slightly below 1 but stays between 0.9 and 0.95. We be-
lieve that this behavior is completely acceptable if further
increasing the number of calls to say few thousands still
does not reduce the dequeue rate.

Summary.Twilio call dequeuing guarantees are met and
exceeded for small number of calls like 100. The dequeue
rate slightly falls below 1 as the number of calls increases
from 100. If applications need very critical and real time
data to be delivered to phones or clients, we believe it is
advisable to use one Twilio number for say around 100
outgoing client/phone connections. For applications that
do not need this level of delivery accuracy, we believe this
behavior is completely acceptable.

5.2 Messages
We developed scripts that can queue automated messages
to US phones. We queue 100 messages with varying mes-
sage sizes to a sinlge US phone number. Twilio dequeues
the messages in FIFO order similar to calls. We noticed
that telephone networks take a very variable amount of
time to deliver messages to phones. So, for calculating
the dequeuing rate, we used the timestamps present in the
message resource in the Twilio object store. We query
these message resources using the REST APIs and arrive
at the dequeue rate by looking at the sent timestamp in the
message resource.

Figure 8 shows the expected dequeue rate, observed de-
queue rate and queue rate for SMS. The horizontal axis
shows increasing size of the messages that we place to the

phone and the vertical axis shows the queue or dequeue
rate. As mentioned before Twilio gives a guarantee to de-
queue SMS at the rate of 1 per second. As mentioned
earlier in 5.1, the queue rate shows the rate at which the
client can push messages into the queue. It is interesting to
note that the expected rate itself drops as the message size
increases. Twilio treats a single message as just 160 bytes.
If the message contains say 170 bytes, Twilio considers
this as two messages and so it can queue at the rate of one
message per two seconds and so the expected rate falls to
0.5 from 1. Similarly for a 400 byte message, there are
three such chunks and so the expected rate drops to 0.33.
It can be noted that the observed rate closely follows the
expected rate.

Summary.Twilio message dequeuing guarantees are
well maintained. An interesting observation is that naive
developers who do not notice the size limits of the mes-
sages may wrongly believe that Twilio can dequeue at a
rate of 1 message per second irrespective of the message
size. We bring this out clearly in our study by showing
that the expected rate itself falls down as the message size
increases.

6 Oddities
We now present some of the oddities in the Twilio ecosys-
tem that we discovered during our study. First, as dis-
cussed in section 4, Twilio charges twice for making a
single outgoing call. We discovered this from the call logs
available in the Twilio user portal. On first seeing this, we
thought this was a problem in the VoIP service code that
we developed. But it turns out that even after using the
code examples from Twilio developer forums, we were
still observing this behavior. It should be noted that we
built our VoIP service on top of a single Twilio number.
Second, we noticed that some applications may require
ordered message delivery for the messages that they try
to send through Twilio APIs. For example, a message
based query system will require that the messages sent
are delivered to the mobile phone in the same order. We
understand that the telephone service provider can also re-
order messages when delivering them. We understand that
Twilio does not provide any guarantee as such for ordered
message delivery. But we wanted to measure to what ex-
tent the messages can be reordered.

Figure 9 shows the message re-orderings that can hap-
pen. It is understandable that Twilio does not itself pro-
vide ordered message delivery. Application developers
who develop on the Twilio platform should be aware of
this and should use suitable application level techniques
to solve this issue. For example, applications can use a la-
bel denoting the position of the message in the sequence.

Third, we injected few faults into some parts of the
system and observed how Twilio reacts to these corner
cases. For example we tested cases where in the TwiML

7

E
xp

ec
te

d
1

 b
yt

e
20

0
 b

yt
e

4th message was received 6th4

6

1 100

1 100

Sent order

Received order

60
0

 b
yt

e

Figure 9: SMS reordering The figure shows the extent to which messages can get reordered. The top line in each strip denotes the sent

order and the bottom line denotes the received order. The top most strip shows the ideal message delivery behavior. The second strip shows the

re-orderings that happened when 100 one byte messages were sent. The third strip shows the same for 200 byte messages and the last strip for 600

byte messages. Note that the sent time is identified from the sent timestamp from the resource store so it represents the time for nearest upstream

telephone carrier network to acknowledge the message was received and will be sent to the phone.

response returned by our VoIP server was malformed, un-
acceptably large, corrupted etc. We noted that the fault
handling mechanisms were not uniform across all error
scenarios. For example, if the TwiML Say verb contained
content greater than 4096 bytes, the call was placed but an
error message was delivered to the attendee. On a differ-
ent scenario when there are nested Say verbs in the TwiML
response, then a blank call was placed to the attendee. We
are barely scratching the surface in terms of fault injec-
tion. We strongly believe that much better extensive tech-
niques can be developed to analyze all the possible error
conditions in the service.

Fourth, during our study we observed a weird behav-
ior in the Twilio Python client v3.66 library. We observed
that when a client script tried to queue a call or a mes-
sage using the create() API, there was a HTTP level auth
failure that was happening before the actual sequence of
packets that were happening between the client and the
Twilio server. On further investigation and debugging, we

found that the client was not passing the Auth Token and
Account SID when the first REST API call is made to the
server. Then the exception is handled and then the re-
quired credentials are passed onto the server for the sub-
sequent REST API calls. We noted that this unwanted
auth failure wastes 6 RTTs. We also believe that this can
be easily optimized in the client library.

Figure 10 explains this client library behavior.

7 Discussion
We now discuss some possible enhancements to the entire
Twilio ecosystem.

Client Library Improvements: We showed that the
client library can be optimized to save few RTTs in the
previous section. It is important to notice that we iden-
tified this just by manually studying the behavior of the
client library. We believe that there should be more ro-
bust and extensive ways to study the client’s interaction
with the server. We also showed in the previous section

8

C
lie

nt
Tw

ili
o

Se
rv

er
C

lie
nt

 T
w

ili
o

 S
er

ve
r A
ut

h
Fa

ilu
re

Auth Failure

S

SA

A CH

A SH

A

Send SMS

C,SHD

A
CKE, CCS,
EH

CCS, EH

D

D FA

FA

A

H
ttp

 4
01

S A CH A A
CKE, CCS,
EH D FA

SA A SH C,SHD CCS, EH D FA

A

Legend
S-TCP SYN, A-ACK,CH-TLS Client Hello,CKE-TLS Client Key Exchange, EH-Encrypted
Handshake, D-Data, FA-TCP FIN ACK, SH-Server Hello, C-Certificate,SHD-Server Hello Done, CCS-
Change Cipher Spec

Time

6 RTTs wasted!

Figure 10: Packet analysis for creating automated SMS The figure shows the sequence of packets exchanged between the client

and the server when the client script tries to create a message.

that fault handling mechanisms are not uniform across the
system spanning the service and the client library. Also,
in most of the cases that we tested by inducing faults from
the caller side, we found that the callee is notified of the
error conditions instead of caller. We believe that, in such
scenarios it is best to inform caller with consistent error
notifications since it is the caller who can take actions
against those error and correct the errors.

Security: We found that presently there is no way
for Application servers to authenticate the Twilio servers
when the later makes the HTTP POST requests. In the
interest of securing the application servers from attacks,
we believe Twilio may provide IP whitelists which can be
used by the Application servers to authenticate requests.
Even IP whitelists might not be sufficient for scenarios
in which Application servers are located behind proxies
and the IP from which request originates gets masked (e.g.
application server hosted behind load balancer in PaaS ar-
chitecture). For such scenarios some more robust security
measures needs to be provided.

Intelligent TwiML fetching: As we have shown in Sec-
tion 4.4, in case of automated calls to phone, Twilio server

fetches the TwiML only after placing the call. We un-
derstand that this technique saves extra RTTs in case the
call is rejected by the phone. But from the perspective of
a callee and assuming that most calls will be answered,
we believe it is best to prefetch TwiML before placing
the call. Also, we see that in the current automated call
model the application server is contacted each time a call
is placed. One of the most popular use of automated call
is to send/broadcast a single message to multiple numbers
(e.g. to send promotional messages or alerts). In such
scenarios, it is wasteful to flood the application server to
fetch the same content multiple times both from Appli-
cation server as well as Twilio server point of view. To
handle such scenario Twilio might provide some special
options using which the application server can indicate
that the same message has to be used for a specified num-
ber of calls or for some specified period of time and the
Twilio server can then fetch the request once and cache it.

9

8 Future Work and Conclusions
In this section we discuss some of the possible avenues
to extend this work, then present the implications of our
study and finally conclude. As a future work, we think to
study other CC services and compare different services
in terms of traffic characters, usage patterns, user base
diversity etc. We also intend to develop a much more
generic and sophisticated gray-box framework to study
CC services. Our current implementation of the toolbox
is highly specific to Twilio. We also started looking at the
security aspects of the Twilio servers by doing port scans
using nmap. From our initial analysis, the servers have
only ports 80 and 443 open. As a future work, we would
like to analyse if some impersonation attacks are possible
with AuthTokens. We also want to study how misbehav-
ing clients can attack or cause some form of interference
in the system.

Our study has implications for both application devel-
opers and Twilio developers. First, we showed different
components of the Twilio ecosystem and how they inter-
act. Our study gives more insights for developers to build
robust applications atop Twilio platform. We also showed
how Twilio meets its guarantees in terms of call and mes-
sage dequeuing rates. This gives the application develop-
ers a good sense of what to expect from the Twilio service.
Second, we should some possible improvements to Twilio
in sections 6 and section 7.

To conclude, we developed a simple VoIP service atop
Twilio platform and a graybox toolset to gain insights in to
the protocols and the architecture of the system. We also
empirically measured call and message queue/dequeue
rates. We showed some interesting oddities in the service
and the client library. We also pointed out to some pos-
sible enhancements to the Twilio ecosystem. We showed
that our study has implications for both application devel-
opers and Twilio developers. Our study is a small step
towards studying the rapidly growing Cloud Communi-
cation Services arena and we strongly believe further re-
search is required in exploring this area.

References
[1] Twilio Call Rate Limit. https://www.twilio.com/help/faq/twilio-

basics/what-are-the-limits-on-outbound-calls-and-sms-messages-
per-second.

[2] Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. Infor-
mation and Control in Gray-Box Systems. In Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP ’01),
pages 43–56, Banff, Canada, October 2001.

[3] Paul Barford and Mark Crovella. Critical path analysis of tcp trans-
actions. SIGCOMM Comput. Commun. Rev., 31(2 supplement):80–
102, April 2001.

[4] Salman A. Baset and Henning Schulzrinne. An analysis of the skype
peer-to-peer internet telephony protocol. 2004.

[5] Nathan C. Burnett, John Bent, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Exploiting Gray-Box Knowledge of
Buffer-Cache Contents. In The Proceedings of the USENIX Annual
Technical Conference (USENIX ’02), pages 29–44, Monterey, CA,
June 2002.

[6] Idilio Drago, Marco Mellia, Maurizio M. Munafo, Anna Sperotto,
Ramin Sadre, and Aiko Pras. Inside dropbox: Understanding per-
sonal cloud storage services. In Proceedings of the 2012 ACM Con-
ference on Internet Measurement Conference, IMC ’12, pages 481–
494, New York, NY, USA, 2012. ACM.

[7] James Nugent, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Controlling your PLACE in the File System with Gray-
box Techniques. In Proceedings of the USENIX Annual Techni-
cal Conference (USENIX ’03), pages 311–324, San Antonio, Texas,
June 2003.

10

	Abstract
	Introduction
	Motivation and Related Work
	Twilio Overview
	Twilio Ecosystem
	Scenarios
	Experimental Setup
	High Level Protocol Study
	Packet Level Analysis

	Measurements
	Calls
	Messages

	Oddities
	Discussion
	Future Work and Conclusions

