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Abstract

In this report, we discuss the application of frequent episode discovery techniques in analysing multi-

neuronal spike train data. Frequent episode discovery is a popular framework in temporal data

mining. In the frequent episode discovery framework, the data is a sequence of events occurring at

different time instants. The events are characterized by event types and are ordered according to

their time of occurrence in the event sequence. An episode is defined as a collection of events types

with a specified partial order. An occurrence of an episode is an ordered collection of events in the

data sequence which have the same event types as in the episode and are consistent with the order

as specified in the episode. There are efficient algorithms for discovering episodes with a total or null

order. In this report, we study the algorithms for discovering episodes with general partial orders

from event streams.

Multi neuronal data corresponds to the recording of spiking activities of neurons in a tissue.

A major goal of the multi neuronal data analysis is to characterize how neurons that are part

of a network interact with each other in-order to achieve higher functions. The objective of the

analysis is to discover different temporal dependencies in the spikes from the neurons. Neurons in

a network exhibit correlated spikings. Simultaneous firing of neurons, also called as synchronous

firing, is a widely observed pattern. People have also observed what is known as “ synfire ” chains

in multineuronal data. Here the neurons in a pattern fire in a sequence regularly. Efficient data

mining algorithms for unearthing such patterns already exists in the literature. In this work, we

directly look to unearth the underlying connectivity of neurons by mining for graph patterns using

the frequent episode discovery frame work.

An important issue in frequent episode discovery is that of assessing statistical significance of the

discovered episodes. This is particularly important in the application of spike train data analysis.

The availability of statistical techniques enables us to distinguish between embedded patterns and

those that occur by chance. A method to assess statistical significance of serial episodes is available.

We extend the idea to the case of parallel episodes. The conventional techniques for analyzing spike

train data are essentially correlation based. They are found to computationally inefficient. We
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illustrate the computational advantage offered by the data mining techniques. Together with the

techniques for assessing statistical significance, we project the frequent episode discovery as a useful

tool for multi-neuronal data analysis.
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Chapter 1

Introduction

1.1 Introduction

The field of datamining is mostly concerned with analysing large volumes of data to automatically

unearth interesting information that is of value to the data owner [1, 2]. Interestingness may be

defined as regularities or correlations in the data depending upon the nature of the application.

There are several application areas of datamining which benefit from finding such patterns in data.

A few of them are: finding customer buying pattern in market research [3], weather forecast using

remote sensing data, motif discovery in protein and gene sequences etc. The regularities found in

the data can be represented as association rules, clusters, and recurrent patterns in time series etc.

The methods used to discover patterns in data need to be efficient in terms of both memory and

time requirements, since in most of the applications one has to deal with large amounts of data.

The scope of the datamining techniques discussed in this report is restricted to temporal datamin-

ing. In temporal data mining the data is ordered (typically with respect to time) and the goal is

to find patterns that characterize underlying temporal dependencies. In this thesis we discuss al-

gorithms for finding certain class of temporal patterns in symbolic time series data. The project

is mainly motivated by application of temporal datamining techniques for analysing multi-neuronal

spike train data. This data consists of a time-ordered sequence of spikes recorded simultaneously

from a number of neurons in a neural tissue. The goal is to find underlying connectivity patterns

among the neurons.

This chapter is organized as follows. Section 1.2 gives a brief introduction to the field of temporal

datamining. It also introduces the different frameworks in temporal data mining and defines the

concept of episodes in event streams, which is the framework addressed in this project. Section 1.3
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gives an overview of the problem of understanding the coordinated behavior of a group of neurons by

analyzing the spike train data. The section introduces multi neuronal spike train data and motivates

the use of temporal datamining techniques for its analysis. Section 1.4 gives an overview of the

project work.

1.2 Temporal Datamining

Temporal datamining, a sub-field of datamining, is concerned with mining of large sequential or

ordered data streams. Examples of such data are alarms in a telecommunication network, fault

logs in manufacturing plants, genome data, multi-neuronal spike train recordings, etc. In many

applications the data items maybe symbolic (i.e. non-numeric) and thus standard time series analysis

techniques are often inadequate. In addition, temporal datamining differs from the classical time

series analysis in the kind of information that one seeks to discover. The exact model parameters

(e.g. co-efficients of an ARMA model or the weights of a recurrent neural network) are of little

interest here. Discovering trends or patterns in data that are more readily interpretable by the

user are of importance. Several efficient techniques have been proposed in temporal datamining

for learning different types of patterns in ordered data stream [4]. There are mainly two popular

frameworks in temporal datamining, namely, sequential patterns and episodes in event streams.

The sequential pattern discovery framework was introduced in [3]. The data here is viewed as a

collection of sequences. A sequence is an ordered list of itemsets. An itemset in turn is a set of items.

An example of such data is the credit card transaction data. It corresponds to the transaction details

(log of items purchased) of different credit cards. The number of sequences in the data is equal to

the number of cards that are monitored. Every sequence represents the transactions (ordered in

time) using a single credit card. An itemset in a sequence corresponds items purchased at a single

transaction. A sequence 〈a1a2 . . . an〉 is said to be contained in another sequence 〈b1b2 . . . bn〉 if

we can find integers i1 < i2 < · · · < in such that a1 ⊆ bi1 , a2 ⊆ bi2 , · · · , an ⊆ bin
. Thus, if one

sequence is contained in another then, each itemset of the first sequence is a subset of an itemset

in the second sequence and the corresponding itemsets of second sequence are in the same order

as the first sequence. A frequent sequential pattern is defined as a sequence of itemsets, which is

contained in sufficiently many sequences of the database. Finding such sequential patterns can be

of great use. For example, finding sequential patterns in credit card transaction data can help us in

understanding customer buying patterns. These insights can be used for targeted marketing.
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1.2.1 Frequent Episode Discovery

Another class of approaches to discovering temporal patterns in sequential data is the frequent episode

discovery framework [5]. The data for frequent episode discovery is viewed as a single sequence of

events, denoted by 〈(E1, t1), (E2, t2), . . . , (En, tn)〉, where n is the number of events in the data

sequence. In each event, (Ei, ti), Ei denotes the event type and ti the time of occurrence of the

event. The sequence is ordered with respect to time of occurrence of each event so that, ti ≤ ti+1,

for all i = 1, 2, . . .. For example, the following is an event sequence containing ten events:

〈(A, 1), (B, 3), (D, 4), (C, 6), (A, 11), (E, 14), (B, 15), (D, 17), (C, 20〉, (A, 21)〉 (1.1)

A,B,C,D and E are the five event types in (1.1). Fig.1.1 shows the same example graphically.

The implicit assumption here is that all the events are essentially instantaneous.

Figure 1.1: An example of event sequence

The patterns to be discovered in the event sequence are called Episodes. Informally, an episode

is a partially ordered collection of events occurring together. These ordered collections of events

may carry useful information regarding correlations among events types. Episodes can be described

by directed acyclic graphs. An episode is said to occur in an event sequence if there are events

of appropriate event types in the data sequence with a time ordering that conforms to the partial

order specified by the episode. Three different types of episodes are shown in Fig.1.2. Fig.1.2 a

shows a serial episode: it occurs in a data stream only if there are events of types X,Y and Z that

occur in this order ( though not consecutively) in the sequence. Fig.1.2 b shows a parallel episode:

no constraints on the relative order of X,Y and Z are necessary. Fig.1.2 c shows an example of

non-serial and non-parallel episode: it occurs in a sequence if events of type X and Y occur in any

order followed some time later by an event of type Z.

Consider the event sequence (1.1) and a 3-node serial episode (A → B → C). The events

〈(A, 1), (B, 3), (C, 6)〉 constitute an occurrence of the episode (A→ B → C), while 〈(B, 15), (C, 20), (A, 21)〉
does not. However both the sets of events are valid occurrences of the parallel episode (ABC).

An example of application of frequent episode discovery is that of analyzing fault logs in a

manufacturing plant [6, 7]. In a general assembly line there will be many zones and many controllers

organized in a hierarchical fashion. There will be many fault alarm reports generated by individual
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Figure 1.2: Types of episodes: a)Serial Episode, b)Parallel Episode, and c) Neither parallel nor serial

Episode

controllers. In general controllers are capable of recovering from many fault situations. However

when this is not possible and a manual intervention is needed to get the assembly line going again,

the most recent fault alarm generated is not necessarily the actual cause for the stoppage of the

assembly line. The problem is to infer the root cause. We can view the sequence of fault alarms

generated as an event sequence with the event type being the fault code. Then frequent episode

discovery in a proper window of the data stream can give useful information for the root cause

diagnosis.

The computational problem is to find all “frequent episodes” up to a given size. An episode is said

to be frequent if its frequency (some measure of the number of occurrences) exceeds an user-defined

threshold. In any frequent episode discovery algorithm (or, in general, in any frequent pattern mining

method) the episodes (or patterns) output by the algorithm depends on the frequency threshold

used. If we use a very low threshold then many frequent episodes may correspond only to random

patterns. On the other hand, if the threshold is too high, then significant temporal dependencies

may not be captured by the frequent episodes discovered. Hence an important consideration is to be

able to find a frequency threshold so that frequent episodes would represent statistically significant

correlations. There has not been much literature addressing such statistical analysis if datamining

methods. (See, for example, [] for a recent analysis of this kind). In this thesis we will also address, to

some extent, the issue of statistical significance if the discovered episodes in the application domain

of multi-neuronal spike train data analysis.

In many applications of frequent episodes method, one may need to impose certain temporal

constraints on the occurrence if the episodes that are counted. One useful constraint is the so called

expiry time constraint where we count only those occurrences whose span in time is below some

threshold. For example, in the application of analyzing fault alarm logs, the faults that are far

separated in time are not likely to be related to each other. While discussing algorithms for frequent
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episode discovery we will also be considering the expiry time constraint.

1.3 Analysis of Multi-Neuronal Spike Train Data

Neuroscience is concerned with the study of the structure and functioning of the nervous system.

Different branches of Neuroscience focus at the different levels of organization of the nervous sys-

tem, ranging from the macroscopic aspects like, learning and memory, to the microscopic level of

understanding the electro-physiological and anatomical features of the cells constituting the nervous

system. The current micro-level understanding of each cell (neurons) in the neuronal network is

impressively detailed. What is not that well understood is how these neurons interact to form a

neural circuit capable of producing different behaviours. Thus an important problem in neuroscience

is to discover the interactive principles governing the organization of the neural systems. In this

project we try to study the application of temporal datamining techniques to certain aspects of the

problem of understanding the interactive principles governing the behavior of a group of neurons.

Neurons communicate with each other through characteristic electric pulses called action po-

tentials or spikes. Hence one can study the activity of a specific neural tissue by gathering data

in the form of sequences of action potentials or spikes generated by each of a group of potentially

interconnected neurons. Such data is known as multi-neuronal spike train data.

Over the past thirty years or so, increasingly better methods are becoming available for simul-

taneously recording the activities of many neurons. By using techniques such as micro electrode

arrays, imaging of currents, voltages, and ionic concentrations etc., spike data can be recorded si-

multaneously from hundreds of neurons. Vast amounts of such data is now routinely gathered from

different neuronal systems. For example, in [8] the authors describe experiments where tens of cor-

tical cultures are maintained for over five weeks and on each day the spiking activities of neurons

(both with and without external stimulation) in each culture are recorded for tens of minutes. Each

recording session contains data with tens of thousands of spikes. Such multi-neuronal spike train

data can now be obtained in vitro from neuronal cultures or in vivo from brain slices, awake behaving

animals, and even humans. Such spike train data is a mixture of the stochastic spiking activities of

individual neurons as well as correlated spiking activity due to interactions or connections among

neurons.

The availability of such data has resulted in development of various techniques for analysing

multi-neuronal data. The computational challenge is to make reasonable inferences regarding the

connectivity information or the microcircuits present in the neuronal tissue. The grand objective

is to come out with a host of data processing and analysis techniques that would enable reliable
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inference of the underlying functional connectivity patterns which characterize the microcircuits in

the neuronal systems [9].

Most of the existing techniques for analyzing spike train data essentially rely on correlations

between the spike trains of different neurons. They infer the underlying functional connectivity

among neurons by obtaining correlation based counts of co-occurrences of spikes from different

neurons and using statistical techniques to assess the significance of these counts. A couple of such

techniques are briefly discussed in Chapter 3. The techniques based on such correlation counts are

computationally inefficient and suffer from combinatorial explosion when used analyze interactions

involving many neurons.

One can view the spike train data as a stream of events as in the frequent episode framework.

Here the event types are the name/identity of the neurons and the time of occurrences associated

with the event types are the spiking times of the corresponding neurons. Frequent episodes discovery

techniques can then be used to obtain temporal dependencies or patterns in the spiking times of

neurons. These frequent episodes can characterize the significant connection structures among the

neurons. Recently some of the frequent episode discovery techniques are shown to be efficient for

unearthing functional connectivity for spike train data [10].

1.4 Overview of the Project

The objective of the project is to develop efficient temporal datamining algorithms for discovering

frequent episodes of different types and to explore their utility in inferring the connectivity structure

of neurons given the multi-neuronal spike train data.

As explained earlier, when multi-neuronal spike train data is viewed as an event stream the serial

episodes correspond to a chain of neurons. Similarly parallel episodes (whose occurrence spans a

small amount of time, as explained in Chapter 3) correspond to synchronous firing by a group of

neurons. The current methods used for analysing spike train data are only aimed at finding such se-

quential patterns or synchronous firing patterns [11]. Currently, in temporal datamining, algorithms

exist only for discovering serial and parallel episodes. Thus the current temporal datamining ap-

proaches also can discover sequential pattern of firing or synchronous firing patterns only. However,

the connectivity structure among the neurons is, in general, a graph. Inferring such connectivity

structure needs datamining algorithms that can discover episodes with general partial order (rather

that serial or parallel episodes). In this project we developed an algorithm that can discover frequent

episodes with general partial orders when we restrict the search to episodes where event types do

not repeat. This new algorithm is discussed in Chapter 2
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As explained earlier, an important issue in frequent episode discovery is that of assessing sta-

tistical significance of the discovered episodes. This is particularly important in the application of

spike train data analysis. A method to assess statistical significance of serial episodes is available.

We extend the idea to the case of parallel episodes. This is presented in Chapter 3. The chap-

ter presents simulations to show effectiveness of assessing statistical significance of both serial and

parallel episodes.

We show the effectiveness of the algorithms through simulations on synthetically generated spike

trains. For this, we have built a simulator that generates spike trains for a number of neurons with

embedded inter-dependencies
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Chapter 2

Frequent Partial Orders

2.1 Introduction

Finding frequent episodes from event streams is an important problem in datamining. The task

is to unearth all episodes whose frequency exceeds an user-defined threshold. An episode is essen-

tially a small, partially ordered collection of nodes with each node being associated with an event

type. The partial order, defines the time-ordering of nodes in the event sequence such that they

constitute an occurrence of an episode. Many algorithms exist for discovering episodes from event

streams. However, in all of these, separate algorithms for mining serial and parallel episodes have

been proposed. Algorithms for finding frequent episodes with general partial orders have not been

considered before.

In this work we consider a sub-class of episodes, called injective episodes. All the nodes of these

episodes are mapped to distinct event types. There is no restriction on their partial order structure.

We propose a single algorithm for finding such generalized episodes (includes serial and parallel

episodes). Two other measures of interestingness of a partial order (apart from the frequency of

occurrence) are also proposed. We use them as post-processing filters to refine the output of the

algorithm. Empirical studies are done, on both synthetic and spike train data, to verify the utility

of the algorithm.

This chapter is organized as follows. Section 2.2 formally defines the event sequence, episodes,

frequency of episodes, etc. The counting algorithms for finding frequent episodes with and without

expiry time constraint are presented in Section 1.2.1. Section 2.5 discusses in detail the candidate

generation procedure. Simulation results on synthetic are presented in Section 2.7. Section 2.8 di-

cusses the utility of partial order mining algorithm in obtaining graph patterns from Multi-Nueronal
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Spike Train Data.

2.2 Episodes in event streams

The data, referred to as an event sequence, is denoted by D = 〈(E1, t1), (E2, t2), . . . (En, tn)〉, where

n is the number of events in the data stream. In each tuple (Ei, ti), Ei denotes the event type and

ti the time of occurrence of the event. The event types Ei, take values from a finite set, E . The

sequence is ordered so that, ti ≤ ti+1 for all i = 1, 2, . . .. The following is an example sequence with

10 events:

〈(A, 2), (B, 3), (A, 3), (A, 7), (C, 8), (B, 9)

(D, 11), (C, 12), (A, 13), (B, 14), (C, 15)〉 (2.1)

Definition 1 [5] An N -node episode α, is a tuple, (Vα, <α, gα), where Vα = {v1, v2, . . . , vN} denotes

a collection of nodes, <α is a strict partial order1 on Vα and gα : Vα → E is a map that associates

each node in the episode with an event-type (out of the alphabet E).

When <α is a total order, α is referred to as a serial episode and when <α is empty α is referred

to as a parallel episode. In general, episodes can be neither serial nor parallel. We denote episodes

using a simple graphical notation. For example, consider a 3-node episode α = (Vα, <α, gα), where

v1 <α v2 and v1 <α v3, and with gα(v1) = B, gα(v2) = A and gα(v3) = C. We denote this episode

as (B → (AC)), implying that B is followed by A and C in any order.

Definition 2 [5] Given a data stream, 〈(E1, t1), . . ., (En, tn)〉 and an episode α = (Vα, <α, gα), an

occurrence of α is a map h : Vα → {1, . . . , n} such that gα(v) = Eh(v) for all v ∈ Vα, and for all

v, w ∈ Vα with v <α w we have th(v) < th(w).

For example, 〈(B, 3), (A, 7), (C, 8)〉 and 〈(B, 9), (C, 12), (A, 13)〉 constitute occurrences of (B →
(AC)) in the event sequence (2.1), while 〈(B, 3), (A, 3), (C, 8)〉 is not a valid occurrence since B

does not occur before A.

Given any N -node episode, α, it is sometimes useful to represent an occurrence, h, of α as a

vector of integers [h(1), h(2) . . . h(N)], where h(i) < h(i + 1), i = 1, . . . , (N − 1). For example, in

sequence (2.1), the occurrence corresponding to the sub-sequence 〈(B, 3), (A, 7), (C, 8)〉 is associated

with the vector [2 4 5] (since (B, 3), (A, 7) and (C, 8) are the second, fourth and fifth events in (2.1)

respectively).

1A strict partial order is a relation which is irreflexive, asymmetric and transitive.
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Definition 3 [5] Episode β = (Vβ , <β, gβ) is said to be a subepisode of α = (Vα, <α, gα) (denoted

β � α) if there exists a 1 − 1 map fβα : Vβ → Vα such that (i) gβ(v) = gα(fβα(v)) for all v ∈ Vβ ,

and (ii) for all v, w ∈ Vβ with v <β w, we have fβα(v) <α fβα(w) in Vα.

In other words, for β to be a sub-episode of α, all event-types of β must also be in α, and the order

among the event-types in β must also hold in α. Thus,(AB), (B → A), (B → C) and (AC) are the

2-node subepisodes of (B → (AC)). We note here that if β � α, then every occurrence of α contains

an occurrence of β.

2.2.1 Frequency of an Episode

Given an event sequence the datamining task here is to discover all frequent episodes, i.e., those

episodes whose frequencies exceed a given threshold. Frequency is some measure of how often an

episode occurs in the data stream. The frequency of episodes can be defined in more than one

way [5, 12]. In this paper, we consider the non-overlapped occurrences-based frequency measure for

episodes [12]. Informally, two occurrences of an episode are said to be non-overlapped if no event

corresponding to one occurrence appears in-between events of the other. The frequency of an episode

is the size of the largest set of non-overlapped occurrences for that episode in the given data stream.

Definition 4 [12] Consider a data stream (event sequence), D, and an N -node episode, α. Two

occurrences h1 and h2 of α are said to be non-overlapped in D if either th1(N) < th2(1) or th2(N) <

th1(1). A set of occurrences is said to be non-overlapped if every pair of occurrences in the set is

non-overlapped. The cardinality of the largest set of non-overlapped occurrences of α in D is referred

to as the non-overlapped frequency of α in D.

In a data sequence,like the multi-neuronal spike train data, events widely spread out in time may

not be related to each other. Chance occurrences of such spread out events should not be considered

in counting the frequencies of episodes. Therefore it may be useful to have some temporal constraints

on episode occurrences. One such temporal constraint is episode expiry constraint. This requires

all the events of an episode to occur within an expiry time TX . Span of an episode occurrence is

the time from the occurrence of the first event to the last event in it. With episode expiry in place,

frequency is defined as the maximum number of non-overlapped occurrences of an episode in the

event stream such that the span of each occurrence is less than TX time units.

2.2.2 Injective Episodes

In this work, we consider a sub-class of episodes called injective episodes. An episode, α = (Vα, <α

, gα) is said to be injective if the gα is an injective (or 1-1) map. For example, the episode (B → (AC))
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is an injective episode, while B → (AC) → B is not. Thus, an injective episode, is simply a subset

of event-types (out of the alphabet, E) with a partial order defined over it. This subset, which we

will denote by Xα, is same as the range of gα. The partial order that is induced over Xα by <α

is denoted by Rα. It is often much simpler to view an injective episode, α, in terms of the partial

order set, (Xα, Rα), that is associated with it. From now on, unless otherwise stated, when we say

episode we mean an injective episode.

We will use either (Vα, <α, gα) or (Xα, Rα) to denote episode α, depending on the context.

Although (Xα, Rα) is simpler, in some contexts, e.g., when referring to episode occurrences, the

(Vα, <α, gα) notation comes in handy. However, there can be multiple (Vα, <α, gα) representations

for the same underlying pattern under Definition 1. Consider, for example, two 3-node episodes,

α1 = (V1, <α1
, gα1

) and α2 = (V2, <α2
, gα2

), defined as: (i) V1 = {v1, v2, v3} with v1 <α1
v2,

v1 <α1
v3 and g(v1) = B, g(v2) = A, g(v3) = C, and (ii) V2 = {v1, v2, v3} with v2 <α2

v1, v2 <α2
v3

and g(v1) = A, g(v2) = B and g(v3) = C. Both α1 and α2 represent the same pattern, and they are

indistinguishable based on their occurrences, no matter what the given data sequence is. (Notice

that there is no such ambiguity in the (Xα, Rα) representation). In order to obtain a unique (Vα, <α

, gα) representation for α, we assume a lexicographic order over the alphabet, E , and ensure that

(gα(v1), . . . , gα(vN )) is ordered as per this ordering. Note that this lexicographic order on E is not

related in anyway to the actual partial order, ≤α. The lexicographic ordering over E is only required

to ensure a unique representation of injective episodes in the (Vα, <α, gα) notation. Referring to the

earlier example involving α1 and α2, we will use α2 to denote the pattern (B → (AC)).

Finally, note that, if α and β are injective episodes, and if β � α (cf. Definition 3), then the

associated partial order sets are related as follows: Xβ ⊆ Xα and Rβ ⊆ Rα.

2.3 Frequent episode discovery

Counting frequencies of all combinatorially possible episodes is computationally very intensive and

is infeasible in most applications. Hence frequent episode discovery techniques usually employ an

Apriori-style [13] procedure. This is an iterative process where, in each iteration, through one pass

over the data sequence, one finds frequent episodes of a given size. We start with discovering frequent

1-node episodes based on a frequency measure. The frequent 1-node episodes are then combined

to obtain a set of candidate 2-node episodes. And then by counting their frequencies, we declare a

subset of the candidates as frequent 2-node episodes. This process is continued till frequent episodes

of all different sizes are obtained. The entire procedure is captured in Algorithm 1 below.

However to employ such a process, the frequency count of an episode should guarantee that
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Algorithm 1: Episode Discovery Algorithm

Generate an initial list of candidate episodes1

repeat2

Count the number of occurrences of the candidate episodes3

Retain only those episodes whose count is greater that the frequency treshold4

Using the list of frequent episodes, generate the next level of candidates5

untill there are no candidate episodes remaining6

Output all frequent episodes discovered7

any sub-episode is at least as frequent as the episode itself. Both the non-overlapped count and

non-overlapped count with expiry time constraints meet this requirement. For example, comsider

the occurrence 〈(B, 3), (A, 7), (C, 8)〉 of the episode (B → (AC)) in the event sequence (2.1). The

above occurrence also corresponds to one occurrence each of (AB) , (B → A) , (B → C) and

(AC). The occurrences respectively are : (〈(B, 3), (A, 7)〉),(〈(B, 3), (A, 7)〉), (〈(B, 3), (C, 8)〉) and

(〈(A, 7), (C, 8)〉). From the examples it is clear that if the occurence of (B → (AC)) satisfies the

expiry time constraint then the corresponding occurrence of all the sub-episodes will also satisfy the

constraint. In the following sections we present the counting and the candidate generation algorithms

for mining frequent episodes with general partial orders.

2.4 Frequency Counting Algorithms

The inputs to the frequency counting algorithm(s) are a set of (candidate) episodes whose frequecies

we need to count, the data sequence (in which to count the frequencies) and a frequency threshold.

In case of counting occurrences under an expiry-time constraint (i.e. for Algorithm 3 described in

Sec. 2.4.3), the user also specifies an expiry-time for the episodes (i.e. the maximum time-span

allowed for a valid occurrence of the episode). The counting algorithms are based on Finite State

Automata.

The algorithms described in this section assume that the times of occurence of each event-type

are distinct, for the ease of illustration. It is easy to incorporate the general situation of non-distint

times of occurence for counting non-overlapped occurences (without any time constraints), but is a

bit tedious with expiry time constraints, as the associated algorithm spawns multiple automata.
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2.4.1 Finite State Automata for Partial Orders

Finite State Automata (FSA) is used to track occurrences of injective episodes under general partial

orders in a manner similar to the automata-based algorithms for parallel or serial episodes [12, 14, 5].

In this section, we describe the basic construction of such automata.

We first illustrate the automaton structure through an example. Consider episode (α = (AB)→
C). Here, Xα = {A,B,C} and Rα = {(A,C), (B,C)}. The FSA used to track occurrences of this

episode is shown in Fig. 2.1. Each state, i, is associated with a pair of subsets of Xα, namely,

(Qα
i ,Wα

i ); Qα
i ⊆ Xα denotes the event-types that the automaton has already accepted by the time

it arrives in state i; Wα
i ⊆ Xα denotes the event-types that the automaton in state i is ready to

accept. Initially, the automaton is in state 0, has not accepted any events so far and is waiting for

either of A and B, i.e., Qα
0 = φ and Wα

0 = {A,B}. If we see a B first, we accept it and continue

waiting for an A, i.e., the automaton transits to state 2 with Qα
2 = {B}, Wα

2 = {A}. At this

point the automaton is not yet ready to accept a C, which happens only after both A and B are

encountered (in whatever order). If, instead of encountering a B, the automaton in state 0 first

encountered an A, then it would transit into state 1 (rather than state 2), where it would now wait

for a B to appear (Thus, Qα
1 = {A}, Wα

1 = {B}). Once both A and B appear in the data, the

automaton will transit, either from state 1 or state 2, and move into state 3, where it now waits for

a C (Qα
3 = {A,B}, Wα

3 = {C}). Finally, if the automaton now encounters a C in the data stream,

it will transit to the final state, namely, state 4 (Qα
4 = {A,B,C}, Wα

4 = φ) and recognize a full

occurrence of the episode, ((AB)→ C).

In any occurence of an episode α, an event E ∈ Xα can occur only after all its parents in Rα

have been seen. Hence, we initially wait for all those elements of Xα which are minimal elements of

Rα. Further, we start waiting for a non-minimal element, E, of Rα immediately after all elements

less than E in Rα are seen. For each E ∈ Xα, we refer to the subset of elements in Xα that are

less than E (with respect to Rα) as the parents of E in episode, α, and denote it by πα(E). It may

be noted that not all possible tuples of (Q,W), where Q ⊆ Xα,W ⊆ Xα, constitute valid states of

the automaton. For example in Fig. 2.1, there can be no valid state corresponding to Q = {A,C}
(since C could not have been accepted without B being accepted before it).

2.4.2 Counting non-overlapped occurrences

For counting the number of non-overlapped occurences of a set of serial episodes, [14] proposed

an algorithm which uses one automaton per candidate episode. This algorithm can be generalized

to count non-overlapped occurences of a set of injective episodes (with general partial orders) by
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Figure 2.1: Automaton for tracking occurrences of the episode ((AB)→ C).

employing the more general automata described in sub-section 2.4.1. We spawn one automaton

(initially in its start state) for every candidate episode and then go down the data sequence. We

allow the automata to make transitions as soon as a relevant event-type appears in the data stream

to make the transition. Once an automaton reaches its final state, we increment the frequency of the

corresponding episode and spawn a new automaton, which would track another occurence (if any)

that is non-overlapped with the one that was just recognized. This process is continued till the end

of the input data sequence. Note that, at any give time, there exists only one automata per episode.

The pseudocode for counting non-overlapped occurrences of a set of candidate injective episodes

of size l is listed in Algorithm 2. The inputs to the algorithm are a set, C, of candidate episodes,

the event stream, D, the alphabet, E , and the frequency treshold, γ. The algorithm outputs the set,

Fl, of frequent episodes. The event-types associated with an l-node episode, α, are stored in the

α.g[] array – for i = 1, . . . , l, α.g[i] is assigned the value gα(vi). The main data structure, (as in case

of serial episode counting algorithms [5, 12, 14]), is the waits() list. For each event type, E ∈ E ,
waits(E) stores elements of the form (α, j), indicating that the automaton for episode α is currently

waiting for an event of type E to transit into state j. The state transitions of automata are effected

by making appropriate changes to the waits() list. Since we are considering episodes with general

partial orders, we need the partial order associated with the episode to decide which would be the

next state. The main difference between the automata-based serial episode counting algorithms of

[5, 12, 14] and Algorithm 2 is that, in case of serial episodes, the order information between the

event types (specified through <α in the definition of α) was implicitly encoded into the α.g[] array,

so that, for episode (A→ B → C), we would have α.g[1] = A, α.g[2] = B and α.g[3] = C. However,
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Algorithm 2: CountFrequency(C, D, γ, E)
Input: Set C of candidate episodes, event stream D = 〈E1, . . . , En〉, frequency threshold γ, set E of

event types (alphabet)

Output: Set Fl of frequent episodes out of C

Fl ← φ;1

foreach event type E ∈ E do waits[E]← φ;2

foreach α ∈ C do3

α.initwaits← φ, α.freq ← 0 and α.count ← 0;4

for i← 1 to |α| do5

j ← 1 and k ← 1; while (j ≤ |α| and α.e[j][i] = 0) do j ← j + 1 and k ← k + 1;6

if k = |α|+ 1 then7

Add (α, i) to waits[α.g[i]];8

Add (α, i) to α.initwaits;9

α.seen[i]← FALSE ;10

for t← 1 to n do11

foreach (α, j) ∈ waits[Et] do12

α.seen[j]← TRUE ;13

α.count← α.count + 1;14

Remove (α, j) from waits[Et];15

if α.count = |α| then16

α.freq ← α.freq + 1;17

α.count ← 0;18

foreach (α, k) ∈ α.initwaits do19

Add (α, k) to waits[α.g[k]];20

for k ← 1 to |α| do α.seen[k]← FALSE ;21

else22

for i← 1 to |α| do23

if α.e[j][i] = 1 then24

flg ← TRUE ;25

for (k ← 1; k ≤ |α| and flg = TRUE; k← k + 1) do26

if α.e[k][i] = 1 and α.seen[k] = FALSE then27

flg ← FALSE ;28

if flg = TRUE then Add (α, i) to waits[α.g[i]];29

foreach α ∈ C do if α.freq > γ then Add α to Fl;30

return Fl31
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in case of injective episodes with general partial orders, such a representation will not suffice. We

store the partial order <α, of episode α through a binary adjacency matrix, α.e[][]. The notation

is: α.e[i][j] = 1 if vi <α vj for vi, vj ∈ Vα (or equivalently, if (α.g[i], α.g[j]) ∈ Rα); else α.e[i][j] = 0.

Whenever an automaton for α is to be initialized, (i.e., an automaton is made to wait in startstate

or state 0), the automaton waits for the least elements of Xα (with respect to the partial order Rα).

Since we need to initialize an automaton several times as we go down the data stream, the initial

waits() list entries are stored in α.initwaits. The frequency of α is recorded in α.freq and α.count

gives the number of state transitions the automaton has made while tracking the current occurrence

(so that α.count = l implies that all events corresponding to all l nodes of the episode have been

accepted and that the current automaton has reached its final state). Finally, the α.seen[] array

implements Qα, the set of event-types currently accepted by the automaton. Thus, α.seen[i] = 1 if

the automaton has so far accepted α.g[i] as part of the current occurrence; otherwise, α.seen[i] = 0.

Algorithm 2, given as pseudocode, specifies the details of the counting procedure.

Consider counting episode β = (AB)→ (CD) in the following data stream:

〈(A, 1), (B, 2), (A, 3)(D, 4), (E, 5), (C, 6), (D, 7),

(A, 8), (B, 9), (B, 10), (C, 12), (D, 14)〉 (2.2)

Algorithm 2 tracks occurences h1 = 〈(A, 1), (B, 2), (D, 4), (C, 6)〉 and h2 = 〈(A, 1), (B, 2), (D, 4),

(C, 6)〉.

2.4.3 Counting non-overlapped occurrences with Expiry Time

Though Algorithm 2 is efficient (it uses only one automaton per episode), it cannot implement any

time constraints on occurrences of episodes. The span of an occurence is the largest difference

between the times associated with any two events in the occurrence. One useful time constraint on

episode occurrences is the expiry time constraint. Under this, the frequency of an episode is the

maximum number of non-overlapped occurrences such that span of each occurrence is less than a

user-defined threshold. (The window-width of [5] also implements a similar constraint).

Consider counting occurrences of β in sequence (2.2) with an expiry time constraint of 4. The

occurence h = 〈(B, 2), (A, 3), (D, 4)(C, 6)〉 of β in sequence (2.2) has a span of 4 (satisfying the

constraint). But Algorithm 2 will be unable to track this occurrence. With TX = 4, it would wrongly

report a zero frequency for β, as the span of both the occurences tracked by it are above 4. We now

describe a procedure to address this issue. Instead of spawning automata, only after the existing one

reaches its final state, we spawn new automata immediately after an existing automaton accepts its
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first event (when it actually transits out of its start state). When counting like this, it is possible for

two automata to simultaneously reach the same state. In such cases, we drop the older one and retain

only the most recent automaton. This strategy tracks, in a sense, innermost occurences amongst

a set of overlapping occurences that end together. For example h is the innermost occurence that

ends at (C, 6). For example, in (2.2), two automata reach the same state (labelled by the pair of

sets ({A,B}, {C,D}) on seeing event (A, 3). The more recent automaton among them which tracked

(B, 2) and (A, 3) is retained and this ultimately tracks the innermost occurence h. If the span of such

an innermost occurence does not exceed the expiry-time constraint, TX , frequency is incremented

and all automata for β are deleted except one in start state. This way, subsequent occurences tracked

will be non-overlapped with the one just counted. On the other hand, if h failed the expiry-time

constraint, we only remove the current automaton and continue looking for an innermost occurence

satisfying TX .

The pseudocode for counting non-overlapped occurrences with an expiry-time constraint is given

in Algorithm 3. It generalizes the serial episode non-overlapped counting algorithm with expiry

constraints[6]. The inputs to the algorithm are a set, Cl, of l-node candidate episodes, the event

stream, D, the alphabet, E , the frequency threshold, γ and TX , the expiry-time. The algorithm

outputs the set, Fl, of frequent episodes. As earlier, the event-types associated with an l-node

episode, α, are stored in the α.g[] array – for i = 1, . . . , l, α.g[i] is assigned the value gα(vi).

Similarly, the partial order <α, is stored as a binary adjacency matrix, α.e[][].

Unlike in Algorithm 2, the entries in the waits() list are now tuples of the form, (α,q,w, j). This

is because, we require to spawn multiple automaton for each episode α, and for every automaton

Aα, we will need to keep track of its own state information. Thus, (α,q,w, j) ∈ waits(E) represents

an automaton for α (with α.g[j] = E) waiting in a state (Qα,Wα) where, q and w are |Xα|-length

binary vectors encoding the two sets respectively. j encodes one of the |Wα| possible state transitions

that this automaton can perform on seeing α.g[j]. Hence, for an automaton in state (Qα,Wα), there

are |W| tuples in the different waits() lists differing only in the 4th position. α.init list for each

episode α, keeps track of the times at which the various currently active automata made their first

state transition(accepts the first meaningful event type). Each entry here is a pair (q, t), indicating

an automaton essentially initialized at time t and currently in a state with the set of accepted events

represented by q. The frequency of α is recorded in α.freq.

Lines 3-10 initialize all the waits() lists with automata waiting for the least elements of various

Xαs , for every candidate α ∈ Cl. In the main data pass loop (lines 11-39), we process each tuple

in the waits() list of the current event-type, Ek. The current automaton waiting to make one of

its transitions on seeing α’s jth event is represented as the 4-tuple (α,qcur ,wcur, j). In line 13,
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Algorithm 3: CountFrequencyExpiryTime(Cl, D, γ, E , TX)

Input: Set Cl of candidate episodes, event stream D = 〈(E1, t1), . . . , (En, tn)〉, frequency threshold γ, set E of

event types (alphabet), Expiry Time, TX

Output: Set F of frequent episodes out of Cl

Fl ← φ;1

foreach event type E ∈ E do waits[E]← φ;2

foreach α ∈ Cl do3

α.freq ← 0, α.count← 0 and wstart ← 0;4

for i← 1 to |α| do5

j ← 1 and k ← 1;6

while (j ≤ |α| and α.e[j][i] = 0) do j ← j + 1 and k ← k + 1;7

if (k = |α|+ 1) then wstart[i]← 1;8

for i← 1 to |α| do9

if wstart[i] = 1 then Add (α, 0,wstart, i) to waits[α.g[i]];10

for k ← 1 to n do11

foreach (α, qcur,wcur, j) ∈ waits[Ek] do12

addwaits← TRUE, qnxt ← qcur and qnxt[j]← 1;13

if (qnxt, t
′) ∈ α.init then14

Remove (qnxt, t
′) from α.init;15

addwaits ← FALSE;16

if qcur = 0 then Add (qnxt, tk) to α.init;17

else18

Update (qcur , tcur) in α.init to (qnxt, tcur);19

for i← 1 to |α| do20

if wcur[i] = 1 then21

Remove (α, qcur,wcur, i) from waits[α.g[i]]22

if (qnxt = 1 and (tk − tcur) ≤ TX) then23

α.freq ← α.freq + 1;24

Empty α.init list;25

for i← 1 to |α| do26

foreach (α, q, w, i) ∈ waits[α.g[i]] do27

if q 6= 0 then Remove (α, q,w, i) from waits[α.g[i]];28

if (qnxt 6= 1 and addwaits = TRUE) then29

wnxt ← wcur and wnxt[j]← 0;30

for i← 1 to |α| do31

if α.e[j][i] = 1 then32

flg ← TRUE ;33

for (k′ ← 1; k′ ≤ |α| and flg = TRUE; k′ ← k′ + 1) do34

if α.e[k′][i] = 1 and qnxt[k′] = 0 then flg ← FALSE ;35

if flg = TRUE then wnxt[i]← 1;36

for i← 1 to |α| do37

if wnxt[i] = 1 then38

Add (α, qnxt,wnxt, i) to waits[α.g[i]];39

foreach α ∈ Cl do if α.freq > γ then Add α to Fl;40

return Fl41
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the next state’s Q is computed. Immediately after transition, Lines 14-15 indicate the removal of

an older automaton in the next state, if one exists. Also, if there exists an automaton in the next

state, there already exist associated entries in the various waits lists corresponding to this state.

Hence, under this condition we dont have to add these various entries to the appropriate lists. This

information is stored in the flag variable addwaits which is set to FALSE here. If the current state

is the start state, there is no entry corresponding to it in the α.init list, as it has not made its first

state transition before. On seeing Ek, it performs its first state transition at the current time tk.

Hence, we add (qnxt, tk) as per line 17. Since an existing automata has moved out of its start state,

we need to initialize a new automaton. To do this, we dont remove the various waits() lists entries

corresponding to the start state, when qcur = 0. If the current automaton is not in the start state,

we update the (qcur, tcur) to (qnxt, tcur) as α.init list keeps track of all the existing automata. In

addition, lines 20-22 perform the removal of all waits() lists entries corresponding to the current

state. If there didn’t exist an automaton in the next state, we would need to explicitly add associated

entries into different waits() lists. This is performed in lines 29-39 whenever addwaits is TRUE and

the next state is not the final state. One computes wα
nxt in lines 30-35, based on the structure of

the episode.

For those i for which wnxt[i] = 1, a tuple (α,qnxt,wnxt, i) is added to the appropriate list

waits(α.g[i]). Finally, if next state is final state and if the span of the occurence just tracked is less

than TX , we do the following. We increment the frequency, retire entries of all the automata except

the one in the start state. Further the α.init list needs to be emptied. All these are performed in

lines 23-28.

Space and time complexity

The number of automata that may be active (at the same time) for each episode is central to the

space and time complexities of the Algorithm 3. The number of automata currently active for a given

episode, α, is one more than the number of elements in the α.init list. We now show that there can be

atmost l entries in the α.init list of Algorithm 3. Consider m entries in α.init, namely, (q1, ti1), . . . ,

(qm, tim
), such that ti1 < ti2 < · · · < tim

. Let {Qα
1 , . . . ,Qα

m} represent the corresponding sets of

accepted event-types for these active automata. Consider k, l such that 1 ≤ k < l ≤ m. The events

in the data stream that effected transitions in the lth(initialized) automaton would have also been

seen by the kth(initialized) automaton. If the kth automaton has not already accepted previous

events with the same event-types, it will do so now on seeing these events. Hence, Qα
l ( Qα

k for any

1 ≤ k < l ≤ m. Since Qα ⊆ Xα and |Xα| = l, there are at most l (distinct) telescoping subsets of

Xα, and so, we must have m ≤ l.
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The time required for initialization in Algorithm 3 is O(|E| + |Cl|l2). This is because, there are

|E| waits() lists to initialize and it takes O(l2) time to find the least elements for each of the |Cl|
episodes. For each of the n events in the stream, the corresponding waits() list contains no more

than l|Cl| elements as there can exist atmost l-automata per episode. The updates corresponding

to each of these entries takes O(l2) time to find the new elements to be added to the waits() lists.

Thus, the time complexity of the data pass is O(nl3|Cl|). For each automaton, we store its state

information in the binary l-vectors q and w. To be able to make |W| transitions from a given state,

there exist |W| elements in various waits() lists(with the same entry in the first 3 fields, but with a

different j entry(4th field)). Hence, for each automata we require O(l2) space to store the state and

its possible transitions. Since there are l such automata, the space complexity is O(l3|C|).

2.5 Candidate Generation

In Sec. 2.4, we described the frequency counting algorithms for injective episodes (with general

partial order constraints). In this section, we describe the candidate generation algorithm for partial

order episodes. The input to the candidate generation algorithm at level (l + 1), is the set, Fl, of

frequent episodes of size l. Under the non-overlapped frequency measure, we know that no episode

can be more frequent than any of its subepisodes. The candidate generation step exploits this

property, to construct the set, Cl+1, of (l + 1)-node candidate episodes, given the set, Fl, of l-node

frequent episodes (which was returned by the algorithm at the previous level).

The top level algorithm for candidate generation of partial order episodes resembles the approach

for parallel episodes described in [5]. Each (l + 1)-node candidate is generated by combining two

suitable l-node frequent episodes (out of Fl) in the following way: For every pair of l-node frequent

episodes, α, β ∈ Fl, such that exactly the same (l − 1)-node subepisode is obtained when their

respective last nodes are dropped, a potential (l+1)-node candidate, Y, is constructed by appending

the last node of β to the last node of α. If all l-node subepisodes of γ are frequent (i.e. if they can

all be found in Fl) γ is declared a candidate episode and is added to the output set, Cl+1.

For ease of access and manipulation, the episodes in Fl are organized into blocks. Two episodes

belong to the same block if the subepisodes obtained by dropping their respective last nodes are

identical. Thus, the episodes (A → (BC)) and (A → BD) would belong to the same block, while

((AB) → D) would belong to a different block (since different subepisodes, namely (A → B) and

(AB), are obtained on dropping the last nodes of (A → (BC)) and ((AB) → D)). The candidate

generation algorithm for parallel episodes [5] also employs a similar block structure, where each

(parallel) episode is represented by a lexicographically sorted array of event-types and the set, Fl,
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of frequent l-node (parallel) episodes, is maintained as a lexicographically sorted list of (parallel)

episodes. For our case of general episodes also, each episode is associated with a lexicographically

sorted array of event-types. (Recall from definiton of injective episodes that for episode α = (Vα,≤α

, gα), with Vα = {v1, . . . , vN}, our notation is such that the sequence (gα(v1), . . . , gα(vN )) obeys the

lexicographic ordering on the alphabet E). In Algorithm 4, we use the array, α.g[i] = gα(vi), i =

1, . . . , N , to access the event-types associated with α. In addition to this array, we need to explicitly

store the partial order information associated with each episode. This is done through the α.e[][]

binary matrix, where α.e[i][j] = 1 if vi ≤α vj , and α.e[i][j] = 0 otherwise. Thus, there can now

be several entries in Fl associated with the same array of event-types (i.e. with same α.g[] arrays),

but which are representing different episodes, because they differ in their associated partial orders

(i.e. they have different α.e[][] matrices). Within each block, episodes are sorted in lexicographic

order of their respective arrays of event-types. Note that, unlike the parallel episodes case, here,

the full Fl may not obey any lexicographic ordering. For example, the episodes ((AB) → C)) and

(A → (BC)) would both be represented by the same array of event-types, but would appear in

different blocks (with, for example an episode like ((AB) → D) appearing in the same block of

((AB) → C), but ahead of ((AB) → C) which, since it belongs to a different block, may appear

later in Fl).

Consider two frequent l-node episodes, α1 and α2, out of the same block of Fl. The associated

partial order set for α1 is denoted by (Xα1 , Rα1). Let Xα1 = {xα1

1 , . . . , xα1

l } denote the l distinct

event-types in α1, indexed in lexicographic order. In other words, we have xα1

i = gα1
(vi), i = 1, . . . , l.

Similarly, for the partial order set, (Xα2 , Rα2), associated with α2, we use Xα2 = {xα2

1 , . . . , xα2

l }
to represent the event-types in α2 (indexed in lexicographic order). Since α1 and α2 belong to the

same block, the subepisodes obtained by dropping the last nodes of α1 and α2 must be identical, and

this means the following two must hold: (i) xα1

i = xα2

i , i = 1, . . . , (l − 1), and (ii) Rα1 |(Xα1\{x
α1

l
})

= Rα2 |(Xα2\{x
α2

l
}) i.e. the restriction of Rα1 to the first l nodes of α1 is identical to the restriction of

Rα2 to the first l nodes of α2. It is possible that for α1 and α2 in the same block of Fl, we can also

have xα1

l = xα2

l , in which case, α1 and α2 differ only in the partial order constraints associated with

their last nodes (e.g. if episodes (ABC) and ((AB)→ C) are both frequent, they would both belong

to the same block in F3). Such episodes cannot be combined to generate next-size candidate(s),

since, to get an (l + 1)-node injective candidate episode, we need (l + 1) distinct event-types (but

altogether, there are only l distinct event-types in α1 and α2 put-together). Thus, our candidate

generation algorithm skips over episodes (in the same block) if they have exactly the same sets of

event-types (i.e. if Xα1 = Xα2).

The case of α1 and α2 in the same block, but with different event-types associated with their
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last nodes, can potentially lead to a new candidate. We first illustrate the procedure through some

examples. Consider the α1 and α2 of Fig. 2.4. We construct Y0 as a simple union of α1 and α2,

i.e. we set XY0 = Xα1 ∪ Xα2 and RY0 = Rα1 ∪ Rα2 (so every element in the union RY0 belongs

to either Rα1 or Rα2 or both). As it turns out, in this example, RY0 is a valid partial order over

XY0 (satisfying both anti-symmetry as well as transitive closure) and hence, Y0 is a valid injective

episode (and a potential 5-node candidate). There is no edge in Y0 between the last two nodes

(i.e. the nodes corresponding to event-types D and E respectively). By adding an edge from D to

E we get another valid partial order with the relation RY0 ∪ {(D,E)}, and this corresponds to a

second injective candidate, Y1, that we can construct using the α1 and α2 of Fig. 2.4. Similarly,

RY0 ∪ {(E,D)} corresponds to a valid partial order and this gives us a third potential candidate

from the same α1 and α2. But not all pairs, α1 and α2, of episodes can be combined in this

manner to construct three different potential candidates. For example, for the α1 and α2 of Fig. 2.2,

Y1 is the only potential candidate. While (XY1 , RY1) obeys transitive closure, (XY0 , RY0) is not

transitively closed because (D,C) and (C,E) belong to RY0 , but (D,E) does not. For the same

reason (XY2 , RY2) is not transitively closed either. In the example of Fig. 2.3, Y0 and Y1 are potential

candidates (but Y2 is not a valid potential candidate because (B,E) and (E,D) are in RY2 , while

(B,D) is not).

Thus, the general strategy for combining episodes, α1 and α2, in the same block (but with dif-

ferent event-types associated with their last nodes) is as follows. Assume, without loss of generality,

that α1 precedes α2 in the lexicographic ordering of their block in Fl (i.e. xα1

l precedes xα2

l as per

the lexicographic ordering on E). We will now attempt to construct an (l+ 1)-node candidate from

α1 and α2, by appending the last node of α2 to the last node of α1. There are three possibilities to

consider for combining α1 and α2 (and these possibilities differ only in respect of the edge between

the last and last-but-one nodes of the (l + 1)-node candidate):

XY0 = Xα1 ∪Xα2 = {xα1

1 , . . . , xα1

l , xα2

l } , RY0 = Rα1 ∪Rα2 (2.3)

XY1 = Xα1 ∪Xα2 = {xα1

1 , . . . , xα1

l , xα2

l } , RY1 = Rα1 ∪Rα2 ∪ {(xα1

l , xα2

l )} (2.4)

XY2 = Xα1 ∪Xα2 = {xα1

1 , . . . , xα1

l , xα2

l } , RY0 = Rα1 ∪Rα2 ∪ {(xα2

l , xα1

l )} (2.5)

In each case, if RYj is a valid partial order overXYj , then the (l+1)-node (injective) episode,Yj , (with

(XYj , RYj ) as the associated partial order set) is considered as a potential candidate. (Since Rα1

and Rα2 are already valid partial orders over Xα1 and Xα2 respectively, RYj is a valid partial order

over XYj if (XYj , RYj ) is closed under transitivity). To check for transitive closure of (XYj , RYj )

we would need to ensure that for every triple z1, z2, z3 ∈ XYj , if (z1, z2) ∈ RYj and (z2, z3) ∈ RYj ,
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then we must have (z1, z3) ∈ RYj . However, since RYj ⊆ (Rα1 ∪ Rα2) and since (Xα1 , Rα1) and

(Xα2 , Rα2) are already known to be transitively closed, we perform the transitivity closure check

only for all size-3 subsets of XYj that are of the form {xα1

l , xα2

l , xα1

i : 1 ≤ i ≤ (l − 1)}. Finally, if

the l-node subepisodes of Yj , each obtained by dropping one of the (l+1) nodes of Yj , can be found

in Fl then Yj is added to the final candidate list, Cl+1, that is output by the algorithm.

The pseudocode for the candidate generation procedure, GenerateCandidates(), is listed in

Algorithm 4. The input to Algorithm 4 is a collection, Fl, of l-node frequent episodes (where, Fl[i]

is used to denote the ith episode in the collection). The episodes in Fl are organized in blocks,

and episodes within each block appear in lexicographic order. The output of the algorithm is the

collection, Cl+1, of candidate episodes of size (l+1). Initially, Cl+1 is empty and, if l = 1, all (1-node)

episodes are assigned to the same block (lines 1-3, Algorithm 4). The main loop is over the episodes in

Fl (starting on line 4, Algorithm 4). The algorithm tries to combine each episode, Fl[i], with episodes

in the same block as Fl[i], but that come after it (line 6, Algorithm 4). In the notation used earlier to

describe the procedure, we can think of Fl[i] as α1 and Fl[j] as α2. If Fl[i] and Fl[j] have identical

event-types, we donot combine them (line 7, Algorithm 4). The GetPotentialCandidates() func-

tion, takes Fl[i] and Fl[j] as input and returns the set, P , of potential candidates corresponding to

them (line 8, Algorithm 4). (The pseudocode of the GetPotentialCandidates() function is listed

in Algorithm 5 and will described in the next paragraph). Now, P may contain either one, two

or three potential candidates that were formed by combining Fl[i] and Fl[j]. For each potential

candidate, α ∈ P , we construct its l-node subepisodes (denoted β in the pseudocode) by dropping

one node at-a-time from the potential candidate α (lines 13-19, Algorithm 4). Note that there is no

need to check the case of dropping the last and last-but-one nodes of α, since they would construct

the subepisodes Fl[i] and Fl[j], which are already known to be frequent. If all l-node subepisodes of

α were found to be frequent, then α is added to Cl+1, and the block information suitably updated

(lines 20-24, Algorithm 4).

Finally, we describe the pseudocode of the GetPotentialCandidates() function listed in Algo-

rithm 5. The input to Algorithm 5 is a pair of episodes, α1 and α2, both of size l, and both appearing

in the same block of the set, Fl, of frequent l-node episodes. Recall that α1 and α2 are identical in

their first (l − 1) nodes (in respect of both the associated event-types as well as the partial order

among these event-types). The output of Algorithm 5 is the set, P , of potential candidates that can

be constructed from α1 and α2. Initially, P is an empty set (line 1, Algorithm 5). The first step in

the algorithm is to construct Y0 as a simple union of α1 and α2 (lines 2-9, Algorithm 5). This is done

by assigning all the distinct event-types in α1 and α2 to the array, Y0.g[] (lines 2-3, 5, Algorithm 5).

Similarly, the union of partial order relations is stored in the binary matrix, Y0.e[][] (lines 2, 4, 6-9,
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Algorithm 4: GenerateCandidates(Fl)

Input: Sorted array, Fl, of frequent episodes of size l

Output: Sorted array, Cl+1, of candidates of size (l + 1)

Initialize Cl+1 ← φ and k ← 0;1

if l = 1 then2

for h← 1 to |Fl| do Fl[h].blockstart← 1;3

for i← 1 to |Fl| do4

currentblockstart← k + 1;5

for (j ← i+ 1; Fl[j].blockstart = Fl[i].blockstart; j ← j + 1) do6

if Fl[i].g[l] 6= Fl[j].g[l] then7

P ← GetPotentialCandidates(Fl[i], Fl[j]);8

foreach α ∈ P do9

flg← TRUE ;10

for (r← 1; r < l and flg =TRUE; r ← r + 1) do11

for x← 1 to r − 1 do12

Set β.g[x] = α.g[x];13

for z ← 1 to r − 1 do β.e[x][z]← α.e[x][z];14

for z ← r to l do β.e[x][z]← α.e[x][z + 1];15

for x← r to l do16

β.g[x]← α.g[x+ 1];17

for z ← 1 to r − 1 do β.e[x][z]← α.e[x+ 1][z];18

for z ← r to l do β.e[x][z]← α.e[x+ 1][z + 1];19

if β /∈ Fl then flg ← FALSE ;20

if flg = TRUE then21

k ← k + 1;22

Add α to Cl+1;23

Cl+1[k].blockstart← currentblockstart;24

return Cl+125
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Algorithm 5: GetPotentialCandidates(α1, α2)

Input: Patterns, α1 and α2, both of size l

Output: P , candidate possibilities from α1 and α2

Initialize P ← φ;1

for x← 1 to l do2

Y0.g[x]← α1.g[x];3

for y ← 1 to l do Y0.e[x][y]← α1.e[x][y];4

Y0.g[l + 1]← α2.g[l];5

for x← 1 to l do6

Y0.e[x][l + 1]← α2.e[x][l];7

Y0.e[l+ 1][x]← α2.e[l][x];8

Y0.e[l + 1][l+ 1]← 0;9

Copy Y1 ← Y0 and set Y1.e[l][l + 1]← 1;10

Copy Y2 ← Y0 and set Y2.e[l][l + 1]← 1;11

for (j ← 0; j ≤ 2; j ← j + 1) do12

Initialize flg← 1;13

for (i← 1; i ≤ l − 1 ; i← i+ 1) do14

if (Yj .e[i][l] = 1 and Yj .e[l][l+ 1] = 1 and Yj .e[i][l+ 1] = 0) then flg ← 0;15

if (Yj .e[i][l+ 1] = 1 and Yj .e[l + 1][l] = 1 and Yj .e[i][l] = 0) then flg ← 0;16

if (Yj .e[l][i] = 1 and Yj .e[i][l + 1] = 1 and Yj .e[l][l+ 1] = 0) then flg ← 0;17

if (Yj .e[l+ 1][i] = 1 and Yj .e[i][l] = 1 and Yj .e[l+ 1][l] = 0) then flg ← 0;18

if (Yj .e[l][l+ 1] = 1 and Yj .e[l + 1][i] = 1 and Yj .e[l][i] = 0) then flg ← 0;19

if (Yj .e[l+ 1][l] = 1 and Yj .e[l][i] = 1 and Yj .e[l+ 1][i] = 0) then flg ← 0;20

if flg = 1 then Add Yj to P ;21

return P ;22
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Algorithm 5). Next Y1 and Y2 are constructed by adding an edge from the last-but-one node to the

last node, and vice-versa (lines 10-11, Algorithm 5). After Y0, Y1 and Y2 are constructed, the task is

to verify if each of them is transitively closed (lines 12-20, Algorithm 5). As mentioned earlier, this

can be done efficiently, since we only need to check for transitive closure of edges involving the last

and last-but-one node, along with any one other node. Every Yj that passes the transitivity closure

check is a potential candidates and it is added to the set, P , that is returned by the algorithm (lines

21-22, Algorithm 5).

2.6 Selection of Interesting Partial Orders

The frequent episode mining method would ultimately output all frequent episodes of upto some

size, say, l. However, as we see in this section, frequency alone may not be a sufficient indicator of

interestingness in case of episodes with general partial orders.

Consider an l-node episode, α = (Xα, Rα). (That is |Xα| = l). If α is frequent then all episodes

α′ = (Xα′

, Rα′

) with Xα′

= Xα and Rα′ ⊂ Rα) would also be frequent l-node episodes because

every occurrence of α would constitute an occurrence of α′. Note that any such α′ is a subepisode

of α and hence, obviously, frequency of α′ is at least as much as that of α. But the point to note is

that when we consider episodes with general partial orders, an episode of size l can have subepisodes

which are also of size l. Such a situation does not arise if the mining process is restricted to either

serial or parallel episodes only. For example there is no 4-node serial episode that is a subepisode of

A → B → C → D. However, when considering general partial orders, given a α = (Xα, Rα) there

can be, in general, exponentially many episodes α′ = (Xα′

, Rα′

) with Xα′

= Xα and Rα′ ⊂ Rα).

For example, if an N -node serial episode is frequent, then there are atleast 2N partial orders which

are also reported frequent. Essentially, drop a subset of event types of Xα out of the chain and place

them in parallel with the remaining portion of the chain. This pulling out can be done in 2N ways.

For example, in the serial episode A→ B → C → D → E, Suppose we pull out the events B and D

from the chain. Then what we get is the episode ((A→ C → E)(BD)). Thus, there is an inherent

combinatorial explosion in frequent episodes of a given size when we are considering general partial

orders and, hence, frequency alone may not be a sufficient indicator of ‘interestingness’.

2.6.1 Specificity-based filtering

One way to tackle this is to use a notion similar to that of maximal frequent patterns that has been

used in other datamining contexts such as item sets or sequential patterns.

Definition 5 An ℓ-node episode α′ = (Xα′

, Rα′

) is said to be less specific than ℓ-node episode
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α = (Xα, Rα) if Xα′

= Xα and Rα′ ⊂ Rα). Given a set of ℓ-node episodes, an episode is a most

specific episode if it is not less specific than any other episode in the set. (Note that, in general,

there can be many most specific episodes in a given set of episodes).

Now, after the mining process, we can output only the most specific episodes. We call this

the specificity-based filter. This prunes out many partial orders (episodes) which are presumed

uninteresting because a more specific partial order (episode) is frequent. Also, given this reduced

set of frequent episodes, we can generate all the episodes which are less specific and hence the full

set of all frequent episodes.

2.6.2 Filtering based on bidirectional evidence

The specificity-based filter is not wholly satisfactory though it reduces the number of frequent

episodes (of a given size) that are output. Suppose the data actually contains the partial order

(episode) (AB)→ C. Suppose there are 200 occurrences of this episode of which 110 are occurrences

of A→ B → C while 90 are those of B → A→ C. Depending on the frequency threshold, suppose

one or both of these serial episodes are also frequent. Then the specificity filter would output the

serial episode(s) and suppress (AB) → C. The parallel episode (ABC), being less specific, would

also be frequent (and would also be supressed by the specificity filter). Suppose that in most of

the occurrences of (ABC) (counted by the algorithm) C followed A and B. Now the fact that we

have seen A following B roughly as often as A preceeding B and that we have rarely seen C not

following both A and B should mean that the partial order (AB)→ C is a better representation of

the dependencies in data as compared to the serial episode or the parallel episode. The specificity

filter would select the serial episode as the interesting one while ranking based on frequency alone

would give higher weightage to the parallel episode (because it would most probably have a few

more occurrences). Thus, in addition to frequency, it would be nice to evaluate interestingness of

partial orders based on whether there is evidence in the data for not constraining some of the event

types. We now develop a heuristic measure for such notion of interestingness. For this we need the

notion of serial extensions of a partial order.

A serial extension of a partially ordered set (Xα, Rα) is a totally ordered set (Xα, R′) such that

Rα ⊆ R′. A totally ordered set (Xα, R′) is said to be compatible with α = (Xα, Rα) if it is a serial

extension of α.

We can say that a specific partial order pattern is interesting (or has enough evidence in data)

if each of its serial extensions contribute substantially to its frequency. Actually, we do not need

all serial extensions to contribute. It is enough if the partial order pattern is the most specific one

with which all the contributing serial extensions are compatible with. For example, consider the
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episode, ((A → B)(C D)). Suppose (A → B → C → D) and (D → C → A → B) are the only

serial extensions which contribute to its frequency. One can verify that (A→ B)(C D)) is the most

specific partial order whose set of serial extensions(five of them) contains the two participating serial

extensions. However, while counting the frequency of a partial order, it is computationally difficult

to keep track of the relative contributions of each of its (relevant) serial extensions. (Note that when

a partial order is a candidate episode for counting it is not necessary that each (or even any) of its

serial extensions are candidates).

A simpler way to capture interestingness of a partial order episode is to demand that in the

occurrences of the episode (as counted by the algorithm) any two event types, i, j ∈ Xα, such that

i and j are not related under Rα should occur in either order ‘sufficiently often’.

Given an episode α let Gα = {(i, j) : i, j ∈ Xα, i 6= j, (i, j), (j, i) /∈ Rα}. Let fα denote the

total number of occurrences (i.e., frequency) of α and let fα
ij denote the number of these occurrences

where i precedes j. Let pα
ij = fα

ij/f
α.

It is easy to see that if all (relevant) serial extensions of α contribute non-zero amounts towards

frequency of α then we would have fα
ij , p

α
ij > 0 for all (i, j) ∈ Gα and conversely. By relevant we

mean that α is the most specific partial order with which all its participating serial extensions are

compatible with. To rate the interestingness of the partial order episode α we define a measure that

tries to capture the relative magnitudes of pα
ij and pα

ji. Let

Hα
ij = −pα

ijlog(p
α
ij) − (1− pα

ij)log(1− pα
ij) (2.6)

Since, in each occurrence either i preceeds j or j preceeds i, we have pα
ij = 1− pα

ji and hence Hij is

symmetric in i, j.

The bidirectional evidence of an episode α denoted by H(α) is defined as follows.

H(α) = min
(i,j)∈Gα

Hα
ij (2.7)

We use H(α) as an additional interestingness measure for α. Essentially, if H(α) is above some

threshold, then there is sufficient evidence that all pairs of event types in α that are not constrained

by the partial order Rα appear in either order sufficiently often. Now, we say that an episode α is

interesting if (i). the frequency is above a threshold, and (ii). H(α) is above a threshold. We can

use H(α) as post-processing filter on the output generated at the largest size of frequent episodes.

We call this the post-processing filter based on bidirectional evidence.

It is also possible to use a threshold on H(α) at each size (or level) in our a priori style level-wise

counting procedure. This can substantially contribute towards the efficiency of mining for general
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partial orders. However, unlike in the case of frequency threshold, it is not quite clear whether H(α)

also posseses the so called anti-monotonicity property. The main difficulty is that H(α) is tied to a

specific set of occurrences counted by the algorithm. However, if an episode α has a bidirectional

evidence H(α) = e, in a given set of occurences, then one can see that any subepisode of α (obtained

by the restriction of Rα onto a subset of Xα) also has a bidirectional evidence of atleast e in the

same set of occurences. We show through empirical studies in the next section that a threshold on

H(α) is quite effective.

We end this section by explaining how H(α) can be computed during our frequency counting

process. For each episode, we maintain an l × l matrix α.H whose (i, j)th element would contain

fα
ij by the end of counting. α.H matrix is initialized to 0 just before counting. For each automata

that is initialized, we initialize a separate l × l matrix of zeros stored with the automaton. which

is different from the α.H matrix. Whenever an automata makes state transitions on an event-type

j, for all i such that event-type i is already seen, we increment the (i, j) entry in this matrix. The

matrix associated with an automaton that reaches its final state, is added to α.H . Thus, at the end

of the counting α.H gives the fα
ij information.

2.7 Simulation Results

This section discusses the results obtained upon testing our algorithms on synthetic data containing

embedded partial orders. We demonstrate the effectiveness of the algorithms in mining frequent

episodes with general partial orders. The utility of the two new measures of interestingness intro-

duced in Section 2.6 is analyzed.

2.7.1 Synthetic Data Generation

Synthetic data is generated by embedding occurrences of partial orders (episodes) in varying levels

of noise. Input to the data generator is a set of episodes,A, that we want to embed in the data.

The data generator embeds an occurrence of a partial order in the data stream by picking one of

its serial extensions (uniformly at random) and by embedding it in the data interspersed with some

noise. There are two noise parameters in the data generation model, ρ and η, which are referred to

as between-pattern noise probability and within-pattern noise probability respectively. A counter

keeps track of the current time, t. We start with t = 1. With probability ρ, the generator embeds a

‘noise-event’ in the data stream and with probability (1− ρ), it embeds a ‘pattern-event’ from one

of the partial orders in A. A noise-event is generated by picking an event-type uniformly from the

alphabet. To embed a pattern-event, the generator first randomly picks one of the patterns, say α,
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out of A and then randomly picks one of its serial extensions (out of M(α)). The pattern-event

embedded in the data is simply the first event-type in the chosen serial extension. Every time an

event is generated, the time-counter is incremented by 1. At the next time instant, the generator

again needs to make a choice of whether to next embed a noise-event or a pattern-event. If currently

the generator has partially embedded some serial extension in the data stream, then this choice (of

whether to next embed a noise-event or a pattern-event) is made with probability η (which is the

within-parameter noise probability), otherwise, the choice is made with probability ρ (like we did at

t = 1). Noise-events, as always, are generated by picking event-types randomly from the alphabet.

Embedding a pattern-event depends on whether or not, currently, we have partially embedded a

serial extension; if we have, then the next pattern-event is simply the next event-type from the

corresponding serial extension; otherwise, we start a fresh occurrence of a partial order (which, as

before, is done by randomly picking a partial order and one of its serial extensions, and then by

embedding the first event-type of the selected serial extension).

2.7.2 Effectiveness of Partial Order Mining

To show the effectiveness of our algorithm in mining for frequent episodes, synthetic data is generated

by embedding the two different sized patterns α = (A → (BCD) → E) and β = (F → ((G →
(IJ)) (L→ K))) in the event stream. Tables 2.1-2.2 present the results obtained (using Algorithm 2

and Algorithm 3 respectively) when data is generated with η = 0.5 and ρ, is varied in the range

[0.2, 0.9]. A fixed value of η implies that the spread of serial extension embedding is roughly the

same. Higher values if ρ results in higher amount of inter-embedding noise. For Algorithm 3, the

value of TX is set to 12. The tables show, for various values of ρ, the ranks and relative frequencies,

frel, for α and β. Rank is the position of the required episode in the frequency sorted list of episodes

of same size and frel is the ratio of frequency of episode to that of the episode with highest frequency.

We use the the rank and frel of the embedded patterns as measures to show the effectiveness of the

algorithms. These measures do not depend upon the frequency threshold of mining. Since there

exists no statistical method to directly determine the frequency threshold (fth), we set the value at

reasonable levels. We ensure that most of the times the pattern embedded shows up in the result.

The ranks of α and β in tables 2.1 and 2.2 are quite deceiving. We expect the embedded partial

orders to be ranked high in the frequent episode list. The reason for the poor ranks is as follows. We

point out that every occurrence of α in the data stream, is also an occurrence of all partial orders

less-specific than α. All these partial orders have frequencies at least as much as α. The parallel

episode (ABCDE) is always the most frequent amongst them.

In spite of the poor ranks, high frel values show that the frequencies of the embedded patterns
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Table 2.1: Effectiveness of partial order mining: Performance of Algorithm 2 for fixed η and varying

ρ. (Patterns: α = (A→ (BCD)→ E) and β = (F → ((G→ (IJ)) (L→ K))), n = 10000 , η = 0.5,

fth = 150)

Pattern α Pattern β

ρ Rank frel Rank frel

0.2 352 0.920 128 0.955

0.6 361 0.904 143 0.944

0.8 730 0.814 183 0.889

0.85 612 0.823 190 0.879

0.9 3178 0.748 2072 0.790

Table 2.2: Effectiveness of partial order mining: Performance of Algorithm 3 for fixed η and varying

ρ. (Patterns: α = (A→ (BCD)→ E) and β = (F → ((G→ (IJ)) (L→ K))), n = 10000 , η = .5,

fth = 150, TX = 12)

Pattern α Pattern β

ρ Rank frel Rank frel

0.2 189 0.941 176 0.907

0.6 102 0.929 175 0.910

0.8 112 0.907 176 0.891

0.85 221 0.872 176 0.898

0.9 97 0.925 179 0.886

Table 2.3: Effectiveness of partial order mining: Performance of Algorithm 2 for fixed ρ and varying

η. (Patterns: α = (A→ (BCD)→ E) and β = (F → ((G→ (IJ)) (L→ K))), n = 10000 , ρ = .8,

fth = 150, TX = 12)

Pattern α Pattern β

η Rank frel Rank frel

0.2 139 0.944 138 0.940

0.3 186 0.915 124 0.926

0.5 730 0.8144 183 0.889

0.6 1796 0.777 236 0.870
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Table 2.4: Effectiveness of partial order mining: Performance of Algorithm 3 for fixed ρ and varying

η. (Patterns: α = (A→ (BCD)→ E) and β = (F → ((G→ (IJ)) (L→ K))), n = 10000 , ρ = .8,

fth = 150, TX = 12)

Pattern α Pattern β

η Rank frel Rank frel

0.2 51 0.991 21 0.99

0.3 91 0.993 105 0.995

0.5 112 0.907 176 0.891

0.6 112 0.876 256 0.870

(α and β) are always close to the frequencies of the most-frequent episodes (in the corresponding

lists of 5-node and 6-node frequent episodes). For example, in case of ρ = 0.2, frequency of α was

402, while the highest frequency, that of the parallel episode, (ABCDE), was marginally higher at

427. We see that for ρ varying from 0.2 to 0.9 the frel values for α and β remain fairly constant.

At higher noise levels (ρ = 0.9) performance of Algorithm 2 is worse than Algorithm 3. This

is because, when counting without expiry-time constraints, many spurious patterns and their cyclic

permutations are also found frequent. These get eliminated when suitable expiry-time constraints

are imposed. Similar results were obtained when ρ was fixed and η varied (cf. Tables 2.3-2.4).

Though at very high η (say 0.9) the embedded pattern was not mined because span of most of the

embeddings exceeded TX .

2.7.3 Effect of Frequency Threshold

We demonstrate the effectiveness of the algorithm by comparing the frequent partial orders discov-

ered when the event sequence is just noise with those when some patterns were embedded. When

ρ = 1, we see that no patterns are embedded and the entire sequence is just noise. In such a case we

expect any partial order (of say 3-nodes) to be as frequent as any other partial order of 3-nodes. If

the frequency threshold is increased starting from a low value, initially most of the episodes would be

frequent and, after a critical threshold there wont be many frequent patterns reported. But if some

patterns are embedded in the data, the 3-node sub-episodes of these patterns will have frequencies

higher than the ’random’ patterns and hence number of frequent episodes will not reduce drastically

with increase in threshold.

Figure 2.5 plots the number of 3-node frequent partial orders versus the frequency threshold for

data with no pattern (random data) and data streams with α and β embedded at different levels
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Figure 2.5: Plot of Number of frequent episodes versus Frequency Threshold for data with patterns

at different noise levels and entirely noise data.
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of noise. All the data streams generated were of length 10,000. We can see that in the case of

random data there are no 3-node partial orders with frequency greater than 100. Also, in the case

of data with patterns embedded, at lower frequency thresholds, many random events were no longer

frequent because the amount of noise in the data became small. That is why the graphs for data

with patterns start lower on the Y-axis. The effect of noise parameters is also evident from the plots.

At high noise levels the frequency of the sub episodes of embedded patterns are low. Thus at higher

frequency thresholds we see that the curve for data with high noise stays well below the curves for

low noise data.

2.7.4 Utility of Post Processing

Despite improvement in the ranks and frel of α and β by the incorporation of episode expiry-times

(cf. Tables 2.1-2.2), the set of frequent episodes still contains several episodes whose ranks and frel

are better than those for α and β. On inspecting the list of frequent episodes, we found that almost

all higher frequency patterns reported are less-specific episodes with respect to α or β. We applied

the specifity filter (described in Sec. 2.6.1) on the set of frequent episodes. In all cases, both the

embedded patterns, α and β, appear among the top 3 frequent episodes. The results for α and β

are presented in Table 2.5 and Table 2.6 respectively. Similar results were obtained when we fixed
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Table 2.5: Effectiveness of Specificity Filtering: Comparison of frequency rank and frel for α before

and after specificity filtering. Mining using Algorithm 3 for fixed η and varying ρ. (Patterns:

α = (A → (BCD) → E) and β = (F → ((G → (IJ)) (L → K))),n = 10000 , η = .5, fth = 150,

TX = 12)

ρ Rank frel

Before After Before After

0.2 189 1 0.9414 1

0.6 102 1 0.929 1

0.8 112 1 0.907 1

0.85 221 2 0.872 0.964

0.9 97 1 0.9248 1

Table 2.6: Effectiveness of Specificity Filtering: Comparison of frequency rank and frel for β before

and after specificity filtering. Mining using Algorithm 3 for fixed η and varying ρ. (Patterns:

α = (A → (BCD) → E) and β = (F → ((G → (IJ)) (L → K))),n = 10000 , η = .5, fth = 150,

TX = 12)

ρ Rank frel

Before After Before After

0.2 176 2 0.90 0.993

0.6 175 2 0.91 0.99

0.8 176 2 0.891 0.984

0.85 176 1 0.898 1

0.9 179 3 0.886 0.993

η and varied ρ over a range (cf. Tables 2.7-2.8). In an another experiment, instead of the specificity

filter, we used bidirectional-evidence (cf. Sec. 2.6.2) to filter the output set of frequent episodes

discovered. The results are tabulated in Tables 2.9-2.10 for two different bidirectional-evidence

thresholds, Hth = 0.4 and Hth = 0.9. For both thresholds, we see improvement in the ranks and frel

of α with respect to Table 2.2. However, for β, the pattern is not found when filtering at Hth = 0.9.

This is because of the inherent tree-like structure of β where L is just one level below the root, while

I is two levels below (and consequently there are more serial extensions of β where L precedes I

than there are the other way).
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Table 2.7: Effectiveness of Specificity Filtering: Comparison of frequency rank and frel for α before

and after specificity filtering. Mining using Algorithm 3 for fixed ρ and varying η. (Patterns:

α = (A → (BCD) → E) and β = (F → ((G → (IJ)) (L → K))),n = 10000 , ρ = .8, fth = 150,

TX = 12)

η Rank frel

Before After Before After

0.2 51 1 0.991 1

0.3 91 1 0.993 1

0.5 112 1 0.907 1

0.6 112 1 0.876 1

Table 2.8: Effectiveness of Specificity Filtering: Comparison of frequency rank and frel for β before

and after specificity filtering. Mining using Algorithm 3 for fixed ρ and varying η. (Patterns:

α = (A → (BCD) → E) and β = (F → ((G → (IJ)) (L → K))),n = 10000 , ρ = .8, fth = 150,

TX = 12)

η Rank frel

Before After Before After

0.2 21 1 0.99 1

0.3 105 1 0.995 1

0.5 176 1 0.891 1

0.6 256 10 0.870 0.987

Table 2.9: Effectiveness of Bi-directional evidence based filtering: Improvement in frequency rank

and frel for α after pruning episodes with bi-directional evidence less than Hth. Mining using

Algprithm 3 for fixed η and varying ρ. (Patterns: α = (A → (BCD) → E) and β = (F → ((G →
(IJ)) (L→ K))),n = 10000 , η = .5, fth = 200, TX = 12)

ρ Rank frel

Hth = .4 Hth = .9 Hth = .4 Hth = .9

0.2 11 1 0.94 1

0.6 12 1 0.93 1

0.8 22 1 0.92 1

0.85 38 1 0.87 1

0.9 13 1 0.92 1
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Table 2.10: Effectiveness of Bi-directional evidence based filtering: Improvement in frequency rank

and frel for β after pruning episodes with bi-directional evidence less than Hth. Mining using

Algorithm 3 for fixed η and varying ρ. (Patterns: α = (A → (BCD) → E) and β = (F → ((G →
(IJ)) (L→ K))),n = 10000 , η = .5, fth = 200, TX = 12)

ρ Rank frel

Hth = .4 Hth = .9 Hth = .4 Hth = .9

0.2 13 - 0.91 -

0.6 7 - 0.91 -

0.8 4 - 0.93 -

0.85 4 - 0.92 -

0.9 14 - 0.87 -

Table 2.11: Running times for mining 5,8,10 sized episodes at different values of Hth. (Patterns :

α, γ, δ, n = 10000, TX = 15, fth = 420, ρ = 0.8 )

Mean Running time

Hth → 0 0.5 0.8

5-nodes 7 s 4 s 2 s

8-nodes >2 hrs 63 s 14 s

10-nodes >3 hrs 226 s 56 s

2.7.5 Level-wise filtering using bidirectional evidence

We now study the effectiveness of level-wise filtering based on bidirectional evidence. From the

discussion in Sec. 2.6.2 we know that the number of less specific partial orders reported as frequent

grows exponentially with the size of the embedded partial order(s). As a result of this, the number of

candidates at higher levels and consequently the total run-times become very high. In order to curb

the exponential growth in the number of candidates, after each level of counting (in Algorithm 3), we

prune the candidates that have the entropy measure (HX) less than a user-defined entropy threshold

(Hth). We generated three different event streams, by embedding episodes of different sizes (a 5-

node episode, α, an 8-node episode, γ = (A → (BCD) → (EFG) → H) and a 10-node episode,

δ = (A→ (BCDE)→ (FGH)→ (IJ))). For all three data streams, we used the same ρ, but η was

separately adjusted to ensure roughly the same span of occurrences for all three embedded patterns.

Table 2.11 shows the run-times comparison with level-wise filtering based on a threshold, Hth,

on the bidirectional evidence. The values shown here are the run times obtained through an efficient
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Table 2.12: Number of candidates and frequent episodes at each level of mining for various values

of Hth. (Pattern: γ, n = 10000, TX = 15, fth = 420, ρ = 0.8, η = 0.41 )

#candidates (#frequent)

Hth → 0 0.5 0.8

Level 3 1064 (693) 1064 (512) 1064 (286)

Level 4 5288 (3474) 1744 (830) 330 (205)

Level 5 14556 (-) 671 (429) 85 (83)

Level 6 45418 (-) 162 (122) 34 (34)

Level 7 - (-) 25 (25) 9 (9)

Level 8 - (-) 2 (2) 1 (1)

implememtaion of the algorithms. The various runs were executed on the same machine. The

column with Hth = 0 corresponds to no level-wise filtering using bidirectional evidence. The table

clearly demonstrates the effectiveness of level-wise filtering in reducing the run-times.

Table 2.12 reports the number of candidates and number of frequent episodes at each level of

counting and candidate generation. The data stream contains only one 8-node pattern embedded.

With bi-directional filtering was not applied level-wise the algorithm, we were not able to mine

beyond the 5-Node level because the number of candidates at the 6-node level was very high. The

table shows the computational advantage (in terms of reducing the number of candidates) that

level-wise bidirectional filtering can deliver.

2.8 Application of frequent episode discovery techniques to

analyze multi-neuronal spike train data

Multi-Neuronal spike train data contains the recording of the activities of several neurons in a tissue.

To understand and model the interactions of neurons in a network, neuro-biologists conduct experi-

ments in which they record the activity of several neurons from a region in the brain, simultaneously,

in response to external stimuli. These experiments are done both in-vivo (on live test subjects) and

in-vitro (on cell cultures).

In-vitro experiments are conducted on networks of neurons cultured on, e.g., a petri-dish. A

sophisticated tool called the Micro Electrode Array (MEA) is used for obtaining activities of groups

of neurons. The neuron cells are cultured on top of a grid of micro-electrodes. Each electrode in the

grid is capable of recording activity of one or more neurons around it. A typical MEA setup consists
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of 8×8 grid of 64 electrodes. These electrodes, besides recording cell activity, can also inject electric

charge/external stimulus into the neurons.

A single electrode will have more than one neuron in its vicinity. Hence, these electrodes pick

up voltage potentials generated by several neurons around them. From these voltage traces, the

spike events or action potentials must be identified, the number of neurons being recorded must

be determined, and each spike must be assigned to the neuron that produced it. This process is

known as Spike Sorting, is an important step in multi-neuron spike data analysis. The accuracy

of the spike sorting algorithm affects the accuracy of all subsequent analysis. There exists many

spike sorting algorithms [9] each best suited to a particular experimental setup. These algorithms

when applied to the same dataset can yield different results, illustrating the complexities of the

spike-sorting problem. At present there is no consensus as to which are best.

The multi-neuron data, thus, consists of several labeled spikes occurring at different times. This

data needs to be analyzed to unearth different types of interactions between neurons like finding

which neurons affect which others, which group of neurons fire together or in sequence, etc. Such

analysis can unearth the underlying connectivity patterns of micro circuits formed in ensembles of

neurons. This will finally lead to much deeper understanding of functioning of the nervous system

at the network level.

Some of the special areas of interest for such experiments have been the pre-motor and primary

motor cortex which initiate and co-ordinates muscle activity; hippocampus or pre-frontal cortex

responsible for cognitive tasks, long term memory etc.; and retinal ganglion cells to understand

vision encoding.

2.8.1 Episodes in Multi-Neuronal Data

In this section we motivate the utility of frequent episode discovery framework for analyzing multi-

neuronal data. The data obtained from MEA recordings can be seen as a single event stream where

each event is a spike with a neuron label (assuming spike sorting is already done) and its time of

occurrence. That is, each spike in a spike train is associated with the label of the neuron generating

it and spikes from multiple spike trains can be merged into one long sequence. This is exactly the

kind of data the frequent episode discovery requires.

The neurons in the cultures are connected through synapses to form circuits. The connections

are such that a neuron firing can induce the firing of connected neurons. Along with such causal

firings there would be random firings of neurons in the culture. Thus the information regarding the

circuits in the cultures is embedded in the noise due to random firings. Frequent episodes, which

are patterns that ocurr frequently in the data could very likely correspond to these circuits in the
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culture. The knowledge of the circuits present in the culture would lead to better understanding of

more complex processes in the brain.

The neurons firing in a sequence are called synfire chains. Serial episodes are well suited to

discover such synfire chains. The firing of a neuron causes the firing of a connected neuron with

some delay. The knowledge of the timing order of this delay can be incorporated as an inter-event

interval constraint to find only those episodes which could correspond to these synfire chains [10].

The other kind of activity present is the synchronous or co-spiking activity where in a group of

neurons fire simultaneously with in a short interval of time. The parallel episodes with expiry time

constraint is suitable to discover such synchronous activity [10].

Graph patterns like, (A → (BC) → (DE) → F ), can also be mined using serial and parallel

episode mining algorithm together [10]. First the parallel episode algorithm is used to mine for

frequent parallel episodes with very small expiry time. In the case of this example pattern, the

algorithm will return (B C) and (D E) are frequent. Then, at points of occurrence of the parallel

episodes a new symbol is inserted to indicate an occurrence. Then, using the serial episode mining

algorithm the patterns can be discovered. However this method is quite cumbersome to use. It

is inefficient in terms of memory usage since we need to remember the time of occurrence of all

the parallel episodes Also it does not employ a single algorithm to directly obtain frequent graph

patterns.

2.8.2 Mining Graphs From Multi-Neuronal Data

In this section we illustrate the utility of partial order mining for directly obtaining graph-like pat-

terns from multi-neuronal spike train data. We use data generated using a neuronal-spike simulator

[10]. (The working details of the simulator is discussed in Appendix A .) In this simulator, the spik-

ing of each neuron is modeled as an inhomogeneous Poisson process whose rate changes with time

due to the inputs (spikes) received from other neurons. The simulator keeps random connections of

small strength among all neurons and we can embed patterns by adding specific connections with

large strength. The strength of a connection of, say, A → B, is specified in terms of conditional

probability of B firing after a specific delay in response to a spike from A. We refer to such strength

parameter as Es. We generate spike train data from a network of 26 neurons using this simulator

and show that our algorithms are effective in unearthing the connectivity pattern. Since, the effect

of one neuron on another is felt only after a time delay, an expiry time constraint for an episode is

very natural.

We embed a 6-node pattern ψ = (A→ (BC) → (DE)→ F ) at different values of Es and see if

our partial order mining algorithm is able to infer the connectivity pattern.
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Table 2.13: Performance of the algorithm for different values of Estrong.(Pattern embedded:ψ,T =

20s,λ0 = 20Hz,h = 3ms,TX = 10ms)

Estrong Hth = 0 Hth = .7

rank f/fmax Run time rank f/fmax Run time

.9 2386 .90 3m 08s 4 .93 10s

.6 2426 .82 5m 54s 2 .97 1m 19s

.4 2463 .74 13m 7s 3 .86 6m 40s

.3 2467 .65 31m 25s 1 1 20m 59s

Table 2.14: Running times of the n-automata algorithm for different expiry time thresholds. (Pattern

embedded:φ,∆T = 1ms, fth = 120,synaptic delay = 3,Es = 0.9,Hth = .9.)

TX Running Time Pattern found

25ms 31 min 13 s Yes

20ms 13 min 54 s Yes

15ms 9 min 7 s Yes

10ms 2 min 54 s Yes

9ms 2 min 17 s No

Table 2.13 shows the results obtained for different levels of strength of connectivity, Es. Results

are shown for both with and without level-wise filtering using bidirectional evidence (Columns

Hth = 0.7 and Hth = 0 respectively). The table shows that even at low connection strengths our

partial order mining algorithm is able discover the underlying connectivity correctly. Moreover,

level-wise filtering based on bidirectional evidence delivers significant computational advantage.

In our second experiment we embed a large 11-node pattern φ = (A → (BCDE) → (FG) →
(HIJK), with each synaptic delay as 3ms. We analyze the effect of expiry-time, TX , on the run-

times of the algorithm (cf. Table 2.14). It was observed that as long as the TX is greater than the

span of occurrence, the algorithm is able to discover the pattern. We also noted that the run-times of

the algorithm decreases as the expiry time becomes tight. It decreased from 31min at TX = 25ms

to 3min at TX = 10ms. This is because for high TX more (random) patterns become frequent

resulting in an increase in number of candidates.
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2.9 Conclusions

In this chapter we presented algorithms for mining general partial orders from a single long stream

of events. We showed how occurrences of partial orders in such data can be tracked using suitably

defined finite state automata. As many as ℓ such automata may be required for each partial order

whose occurrences are being tracked. Our algorithm also allows incorporation of time constraints

on the span of occurrences (expiry-time constraints). We argue that frequency alone is not sufficient

to measure interestingness of partial orders in data streams. To address this issue. we present two

methods for filtering the output from frequent episode discovery. One is the so-called specificity

filter which is based on a maximality notion for partial orders. The other filter we propose is based

on what we call bidirectional evidence which attempts to capture uncertainty in the order between

pairs of event-types in an episode. We validated our algorithms through extensive simulations.
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Chapter 3

Statistical Significance of Frequent

Episodes

3.1 Introduction

Detection of temporal firing patterns among groups of neurons is an important task as these patterns

are potentially indicative of functional cell assemblies or microcircuits present in the underlying

neural tissue. Several computational methods have been developed to discover repeating occurrences

of such temporal patterns from multi neuronal spike train data [9, 11, 10]. These methods generally

use correlation based techniques to obtain the frequency of occurrences of the patterns and are

computationally not efficient. Some of the techniques only aim at finding patterns that occur at

least once or twice in the data. In using the obtained patterns to infer connectivity information an

important issue is that of statistical significance. Given that a pattern occurs some number of times,

the question is how confident are we that the pattern is due to correlated firing of the set of neurons

and is not a chance occurrence.

There have been many approaches for assessing the significance of detected firing patterns [15, 11]

To assess significance, one generally employs a Null hypothesis that the different spike trains are

generated by independent processes. In many cases one also assumes (possibly inhomogeneous)

Bernoulli or Poisson processes. Then one can calculate the probability of observing the given number

of repetitions of the pattern (or of any other statistic derived from such counts) under the null

hypothesis of independent processes and hence calculate a minimum number of repetitions needed

to conclude that a pattern is significant in the sense of being able to reject the null hypothesis.

There are also some empirical approaches, which may be called the jitter methods, suggested
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for assessing significance Here one creates many surrogate data streams from the experimentally

observed data by perturbing (or jittering) the individual spikes while keeping certain statistics same.

Then, by calculating the empirical distribution of pattern counts on the sample of surrogate data,

one assesses the significance of the observed patterns. The main strength of these jitter methods is

that they offer a lot of flexibility in the assumed model for the spike process of any neuron because

the perturbations can be designed to preserve the required characteristics,for e.g., any assumed

distribution for inter-spike intervals. Such jitter methods have been used for significance analyses

by many researchers [11, 16, 17] In these jitter methods also, the implicit null hypothesis assumes

independence because the spike trains of different neurons are jittered independently.

Chapter 2 presented frequent episode mining techniques that can be used to unearth graph-like

patterns from spike train data. [10] introduced serial and parallel episode mining algorithms used

to detect specific firing patterns like, sequential and synchronous firing patterns. These algorithms

do not count the frequencies of all possible patterns. They employ the a level wise candidate

generation and counting technique to curtail the combinatorial explosion in the number of patterns

to be counted. At each level only patterns whose frequencies are above a user-defined threshold

are reported as frequent. Such frequent patterns are then used to generate potentially frequent

candidates for the next level. These algorithms have been discussed in detail in the previous chapters.

However, these algorithms do not employ any statistical methods to automatically determine the

frequency threshold of mining. Such efficient counting techniques together with proper methods for

assessing the statistical significance of the observed counts will be very useful in analysing multi-

neuronal spike train data. While there are no general techniques for assessing statistical significance

for graph patterns, in this Chapter we discuss such techniques for serial and parallel episodes.

Recently, statistical techniques have been developed to assess the significance of sequential pat-

terns with fixed inter-event delays [18]. The method is based on the serial episode mining algorithm

described in [10]. It employs a compound Null hypothesis, that allows for weak dependencies among

spike trains so that one can mine only for “strong” connections among neurons. The technique has

been used effectively to automatically determine the frequency threshold for serial episode mining

algorithm. In this chapter we extend this technique to assess the significance of parallel episodes.

Sec 3.2 discusses the statistical method used to determine the significance of sequential pattern.

It also presents some simulation results to verify the effectiveness of the methods. Sec 3.3 extends

the statistical technique to assess significance of parallel episodes. Sec 3.4 presents simulation results

comparing the performance of parallel episode mining algorithms with a popular existing method,

NeuroXidence.
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3.2 Significance of Sequential Patterns

In this section we discuss how statistical significance of sequential pattern can be assessed. The

material here follows [18]

3.2.1 Sequential Patterns

A pattern of ordered firing sequence is called a sequential pattern or a precise firing sequence. Sym-

bolically, a sequential pattern is represented as A
T1→ B

T2→ C. The example pattern here, represents

an ordered firing sequence of A followed by B followed by C with a delay of T1 units between A

& B and a delay of T2 time units between B and C. The values T1 and T2 represent the synaptic

delays between A & B and B & C. Such sequential patterns may occur frequently in the spike train

data if there are strong excitatory connections between the neurons. For example, if the firing of A

influences the firing of B and the firing of B in turn influences firing of C, the sequential pattern

A
T1→ B

T2→ C will be found to be frequent in the spike train data.

The frequency of a sequential pattern depends on the strength of the connections between the

constituting neurons. Two neurons are said to be strongly connected if the spiking or not-spiking

of one neuron strongly affects the other. In this thesis, we are concerned with only excitatory

interactions among neurons. If two neurons are connected by an excitatory synapse then the spiking

of one increases the chances of spiking of the other neuron after a particular time known as the

synaptic delay of the connection. The strength of a connection between two neurons A and B with

a synaptic delay of T time units can be represented [18] as the conditional probability,es(A,B, T ),

of B firing at time t + T given that A has fired at time t. The conditional probability enables us

to “quantify” the strength of the interactions among neurons. For the analysis here it is assumed

that the conditional probability is the same for all t and hence we use the notation es(A,B, T ) to

denote it. The advantage of using such a conditional probability is that now we can specify the

Null hypothesis to include many weak interactions. We say that any model of interacting neurons

is in our composite null hypothesis if es(x, y, T ) ≤ e0 ∀ x,y all delays T of interest, where e0 is a

user chosen parameter. Thee0 here represents a level of interaction strength (in terms of conditional

probability) below which we will agree to say that the interaction is ’weak’. Since e0 is chosen by the

user, our null hypothesis goes beyond the current method of analysis that assumes independence.

Another important advantage of using such a probability measure is that we do not have to make any

assumptions regarding the model of the spike train generation process. The strength of connection

between two neurons is no longer dependent upon the parameters of any particular model.
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The statistical method discussed in this section uses the threshold e0 specified in the null hy-

pothesis to determine the frequency threshold of the mining algorithm, so that, only patterns with

strong interaction are reported as significant.

3.2.2 Serial Episode Mining

Serial episodes with inter-event time constraint are well suited to represent sequential patterns. The

inter-event time constraint allows us to represent the synaptic delays between neurons. Suppose, let

us say that, neuron A is connected to neuron B which, in turn, is connected to neuron C, through

strong synaptic connections with respective delays T1 and T2. Then, in the spike train data obtained,

we should be counting only those occurrences of the episode A → B → C, where the inter-event

times satisfy the delay constraint. This would be counting occurrences of the sequential pattern,

A
T1→ B

T2→ C.

An efficient algorithm for discovering all frequent serial episodes with inter-event time constraints

is proposed in [10]. The algorithm employs a level wise procedure. A serial episode A→ B → C is

counted at level 3 if and only if the patterns A → B and B → C are found to be frequent at the

2 node level. (We do not demand that A → C also be frequent.) This is justified because, if the

sequential pattern A
T1→ B

T2→ C is frequent then its sub-patterns A
T1→ B and B

T2→ C must also be

frequent. The algorithm uses efficient techniques to calculate the frequencies of a set of candidate

episodes through only one pass of the data. The exact details of the working of the algorithm are

available in [10].

We can give an intuitive description of the algorithm as follows [18]. Suppose, we are operating

at a time resolution of ∆T . (That is, the times of events or spikes are recorded to a resolution of

∆T ). Then we discretize the time axis into intervals of length ∆T . For each episode whose frequency

we want to find we do the following. Suppose the episode is the one mentioned above. We start

with time instant 1. We check to see whether there is an occurrence of the episode starting from the

current instant. For this, we need an A at that time instant and then we need a B and a C within

appropriate time windows. If there are such B and C, then we take the earliest of the B and C to

satisfy the time constraints, increment the frequency counter for the episode and start looking for

the occurrence again starting with the next time instant (after C). On the other hand, if we can

not find such an occurrence (either because A does not occur at the current time instant or because

there are no B or C at appropriate times following A), then we move by one time instant and start

the search again. Such a counting process gives the total number of non-overlapped occurrences (cf

2.2.1) of a serial episode with inter-event time constraints.

By modeling the above described process,we can obtain a bound on the probability that the
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frequency of an episode is above a given value, under null hypothesis.

3.2.3 Modeling the Counting of Non-overlapped Occurrences

We explain the method with reference to a 2-node episode A → B. Let p = ρAes(A,B, T ), where

ρA is the unconditional probability of A firing at an instant (ie., in an interval if length ∆T ). Then

p is the probability of the episode occurring starting at a given instant. Consider a sequence of iid

random variables {Xi, i = 1, 2, . . .} with distribution given by

P [Xi = T ] = p

P [Xi = 1] = 1− p (3.1)

Let N be a random variable defined by

N = min {n :

n
∑

i=1

Xi ≥ L} (3.2)

where L is a fixed constant denoting the length of data in units of ∆T .

Let the random variable Z denote the number of Xi’s out of the first N which have value T .

Define the random variable M by

M = Z if
N

∑

i=1

Xi = L

M = Z − 1 if

N
∑

i=1

Xi > L (3.3)

All the random variables N ,Z and M depend on the parameters L,T ,p. The random variable

M(L, T, p) actually represents the number of non-overlapped occurrences of the episode A
T→ B.

As described earlier., if at the first instant there is an occurrence of an episode (which happens

with probability p) starting at that instant then, we a move T time units along the time axis and

look for another occurrence. This is captured by assigning a value of T to X1. If there is no

occurrence of an episode at the first instant (which happens with probability (1− p))then X1 takes

a value of 1. Thus, in a way, the variables X ′
is also indicate the occurrence of episodes at some time

instants. VariousX ′
is are independent of one another because, when we are counting non-overlapped

occurrences, the occurrence of an episode at a given time instant is independent of the number of

occurrences before that time instant.

The counting process is well captured by accumulating X ′
is till the end of data is reached.
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Random variable N (ref Eqn. 3.2), denotes the number of such X ′
is that are accumulated since L

represents the length of the data. It denotes the number of time instants at which we look for an

occurrence of the episode before the event stream is exhausted. Random variable Z denotes the

number of X ′
is out of the first N that take value T , i.e. the number of time instants at which we

decided to move T time units along the data. The number of non-overlapped occurrences reported by

the algorithm is either Z or Z−1 depending on whether the last occurrence was allowed to complete

or not. Now it is clear from equation 3.3 that M is the number of non-overlapped occurrence

counted.

The described model of counting can be extended to episodes of arbitrary length also. For

example, if the episode is A
T1→ B

T2→ C, then T = T1 + T2 and p = ρAes(A,B, T1)es(B,C, T2). In

general, the value of T is obtained as sum of synaptic delays in the patterns and p is obtained from

the product of pairwise conditional probabilities.

3.2.4 Significance Test

The Null hypothesis used in the significance test described in [18] is more complex than independence.

The Null hypothesis includes all models of interacting neurons for which we have es(x, y, T ) < e0

for all pairs of neurons x,y and for a set of specific delays T , where e0 is fixed used chosen number

in the interval (0,1).

All models of inter-dependent neurons where the probability of A causing B to fire (after a

delay) is less that e0, would be in the Null hypothesis. The actual mechanism by which spikes

from A affect the firing by B is immaterial. Whatever may be this mechanism of interaction, if

the resulting conditional probability is less than e0, then that model of interacting neurons would

be in the null hypothesis. The model also includes independence among neurons. If two neurons

A and B are independent, then the probability of B firing, a certain delay after A′s firing, is the

unconditional probability(ρB) of B firing at any given time instant. If the average firing rate of B

is 5 Hz and the time resolution ∆T = 1 ms, then, ρB = .005. Thus if e0 = 0.5, the null hypothesis

includes only independence among neurons. If e0 = .05, it means that only connections that have

conditional probability 10 times that of independence can be called as “strong”.

If it is possible to reject such a Null hypothesis then it is reasonable to say that the episodes

discovered will indicate “strong” interactions among appropriate neurons. A method to bound the

probability, that under the null hypothesis, the frequency (number of non-overlapped occurrences)

of serial episode with inter event time constraints is more than a given threshold, is required. For

this purpose the mean and the variance of the random variable(M) representing the number of

non-overlapped occurrences is calculated.
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Mean and Variance of M(L, T, p)

Let F (L, T, p) = E M(L, T, p) where E denotes expectation. Fixing an episode fixes the value of p

and T . The recurrence relation for F can be obtained as follows.

E M(L, T, p) = E [ E [M(L, T, p) | X1] ]

= E [M(L, T, p) | X1 = 1](1− p) + E[M(L, T, p) | X1 6= 1]p

= (1− p)E [M(L− 1, T, p)] + p(1 + E[M(L− T, T, p)])

(3.4)

In words what this means is: if the first Xi is 1 (which happens with probability 1− p), then the

expected number of occurrences is same as those in data of length L− 1; on the other hand, if first

Xi is not 1 (which happens with probability p) then the expected number of occurrences are 1 plus

the expected number of occurrences in data of length L− T .

Hence the recurrence relation is:

F (L, T, p) = (1 − p)F (L− 1, T, p) + p(1 + F (L− T, L, p)) (3.5)

The boundary conditions for this recurrence are:

F (x, y, p) = 0, if x < y and ∀p. (3.6)

Using the same idea as in the case of the mean, a recurrence relation for the second moment of

M can also be obtained. Knowing E [M ] and E [M2] , the variance of the number of non-overlapped

occurrences can be obtained. Let G(L, T, p) = E[M2(L, T, p)]. Then,
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E [M2(L, T, p)] = E
[

E [M2(L, T, p) | X1]
]

= E [M2(L, T, p) | X1 = 1](1− p)

+ E[M2(L, T, p) | X1 6= 1]p

= (1− p)E [M2(L− 1, T, p)] + pE(1 + M(L− T, T, p))2

= (1− p)E [M2(L− 1, T, p)] +

pE(1 + M2(L− T, T, p) + 2M(L− T, T, p))

(3.7)

Simplifying,

G(L, T, p) = (1− p)G(L − 1, T, p) + p(1 + G(L− T, T, p) + 2F (L− T, T, p)) (3.8)

Solving the above recurrence give the value of G(L, T, p). Let, V (L, T, p) be the variance of

M(L, T, p). Then,

V (L, T, p) = G(L, T, p) − (F (L, T, p))2 (3.9)

For any k > 0, the number of non-overlapped occurrences can be bound using the Chebyshev

inequality as follows

Pr
[

|M(L.T, p)− F (L, T, p)| > k
√

V (L, T, p)
]

≤ 1

k2
(3.10)

Determining the frequency threshold for serial episodes

Let us consider an n-node episode. Let ρ be the random firing rate of the first neuron of the episode

and e0 the upper limit on the conditional probability for any pair of neurons. Let the allowed type-I

error be ǫ. Let k be the smallest integer such that k2 ≥ 1
ǫ
. Then from Equation 3.10,

Pr
[

M(L.T, p) > F (L, T, p) + k
√

V (L, T, p)
]

≤ 1

k2
≤ ǫ (3.11)

The Null hypothesis is that the conditional probabiliy for any pair of neurons is less than e0.

The random variable M(L, T, p) is such that the probability of taking higher values increases with

monotonically with p. Thus with p = ρe
(n−1)
0 , the probability of M(L, T, p) being greater than any

value is an upper bound on the probability of the episode frequency being greater than that value

under any of the models in the null hypothesis.
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Let mth = F (L, T, p)+k
√

V (L, T, p). From equation 3.11 it is clear that, if the episode frequency

exceeds mth we can reject the null hypothesis with a confidence of 1− ǫ.
For every episode, mth is calculated. The episode is then reported as significant only if its

frequency exceeds mth. This way only patterns that do not belong to the null hypothesis are

reported (ie., only “strong “ connections are reported) The values of F (L, T, p) and M(L, T, p) are

calculated using equations 3.5, 3.8 and 3.9.

3.2.5 Simulation Results

In this sub-section we discuss the results of experiments designed to prove the effectiveness of the

significance tests for sequential patterns. For the experiments, we use spike train data generated from

a neuronal spike simulator. Strong connections between neurons can be embedded by specifying the

conditional probability,es(A,B, T ), between pairs of neurons. The working of the simulator given in

detail in Appendix A.

For the results reported here we used a network of 100 neurons with the nominal firing rate being

5 Hz. Each neuron is connected to 25 randomly selected neurons with the connection strengths

ranging over [0.0025, 0.01]. With 5 Hz firing rate and 1ms time resolution, the effective conditional

probability when two neurons are independent is about 0.005. Thus the random connections have

conditional probabilities that vary by a factor of two on either side as compared to the independent

case. We then incorporated some strong connections among some neurons. We have chosen the

connection strengths of episodes to span the range 0.05 to 0.2. We have used three different delays:

5ms, 50ms and 120ms. Using the simulator with non-homogeneous Poisson model, we generated

spike trains for 600 sec of time duration and obtained the counts of non-overlapped occurrences of

episodes of all sizes using the algorithm for mining serial episode with inter-event delay [10]. The

list of delays given to the algorithm are the intervals: [4, 6], [49, 51] and [119, 121]. We had also

generated another data set of 300 sec using the Gamma distribution (with time-varying parameters)

as the inter-spike interval distribution. For this data set, we embedded only 3-node episodes all with

delay of 5ms. On this data set also we obtained counts of all episodes using the datamining method

with the same set of delay intervals. In all results presented below, all statistics are calculated using

500 repetitions of this simulation. Typically, on a data sequence for 600 Sec duration, the mining

algorithms (run on a dual-core Pentium machine) takes about 25 minutes. Fig. 3.1 shows that the

theoretical model for calculating the mean and variance of of the non-overlapped count (given by

F and V determined through eqns. (3.5) and (3.9) ) are good. The figure shows plot of the mean

(F ) and mean plus three times standard deviation (F + 3
√
V ) for different values of the connection

strength in terms of conditional probabilities (denoted as e0 in the figure), for the different episode
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sizes. Also shown are the actual counts obtained for episodes of that size with different e0 values.

We have shown plots for data generated with non-homogenous Poisson model (for 3-node episodes)

as well as for data generated with non-homogeneous Gamma distribution for inter-spike intervals

(3-node episodes). (For data generated with the Poisson model, we have shown the counts only for

episodes with inter-event delay as 5 ms.) The actual counts obtained are a little more than what

is predicted by our analysis because of two reasons. Firstly, in the data generation we assumed a

fixed delay but the algorithm counts occurrences for delay in a small interval around the true value.

Secondly, during data generation, the weights of connections are determined so that the conditional

probability will be the specified value when there is no other input into the neuron; however, since all

neurons also receive random output from others the the effective conditional probability and hence

the count for the pattern would be a little higher. As is easily seen from the figure, the theoretically

calculated mean and standard deviations are good and the method works equally well even when the

data generation uses a Gamma distribution for inter-spike intervals. (Note that the analysis does

not assume any model for the spike process). Notice that most of the observed counts are below the

F +k
√
V threshold for k = 3 even though this corresponds to a Type-I error of just over 10%. Thus

our statistical test with k = 3 or k = 4 should be quite effective. Similar results were obtained for

4-node and 5-node pattern.

Using the formulation of the significance test we can infer a connection strength in terms of

conditional probability based on the observed count. For this, given the count of a sequential

pattern or episode, we ask what is the value of the strength or conditional probability at which this

count is the threshold as per our significance test. This is illustrated in Fig. 3.2. For any episode

if the inferred strength is q then we can assert (with the appropriate confidence) that it is highly

unlikely for this episode to have this count if connection strength between every pair of neurons is

less than q.

In Fig. 3.2 we show how good the mechanism is for inferring the strength of connection. Here we

plot the actual value of the strength of connection in terms of the conditional probability as used

in the simulation against the inferred value of this strength from the theory based on the actual

observed value of count. For each value of the conditional probability, we have 500 replications

and the ranges of inferred values are shown as a vertical line. The result in this figure shows the

effectiveness of the approach in determining significance of sequential patterns based on counting

the non-overlapped occurrences.
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Figure 3.1: The analytically calculated values for the mean (i.e., F ) and the mean plus 3 σ (i.e.,

F + 3
√
V ), as a function of the connection strength in terms of conditional probabilities. (a) show

plots for 3-node patterns with delay of 5ms when Poisson model is used in data generation. (b)

shows the the plots when we used Gamma distribution for the inter-spike interval. For each value

of the conditional probability, the actual counts as obtained by the algorithm are also shown. These

are obtained through 500 replications. For these experimental counts, the mean value as well as the

±3σ range (where σ is the data standard deviation) are also indicated. As can be seen, F + 3
√
V

line captures most of the count distribution even though this threshold corresponds to type-I error

of about 10%.
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Figure 3.2: Plot of actual value of conditional probability used in the simulation versus the estimated

value from the test of significance. Results are shown for episodes of size 3 for the cases of (a).

Poisson and (b). Gamma models for data generation. (For each value we do 500 replications and

the inferred value are represented as a point cloud. The mean of the inferred values and the line of

best fit (dotted line) of the means are also plotted. Also a 45o line is shown. Our method is quite

effective in inferring the connection strength from the observed counts irrespective of the model of

data generation.)

3.3 Significance of parallel episodes

Apart from the sequential patterns discussed above, the other kind of pattern that has been widely

addressed in the literature is the synchronous firing pattern [11]. It corresponds to the synchronous

firing of a group of neurons within a short duration of time. A synchronous pattern is represented

by the set neurons that fire (in any order) to constitute its occurrence. For example, (ABCDE)T

represents the synchronous firing of neurons A,B,C,D and E within a time T of one another.

Synchronous firing patterns are captured by parallel episodes with expiry times as explained in

Sec. 2.8.1. Efficient algorithms have been developed to unearth such firing patterns from spike train

data [11, 19, 10]. The algorithm proposed in [10], discovers frequent parallel episodes with expiry

time constraints to represent the frequently occurring synchronous patterns. The algorithm looks for

non-overlapped occurrences of parallel episodes in the event stream. Like sequential pattern mining

algorithm, it also employs apriori based techniques to count only certain patterns.

The algorithm counts the non-overlapped occurrence of an episode (say, (ABCD)T as follows.

While going down the data stream it remembers the latest time of occurrence of all its constituent

events. Once all the events are seen at least once, it checks if the span of the latest occurrences

of all the events is less than T . If the expiry time constraint is satisfied, then frequency counter is
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incremented and all the events are marked as not seen. The algorithm then proceeds further to look

for more occurrences. It is easy to see that such a method counts only non-overlapped occurrences

of the parallel episodes.

The model, described in Section 3.2.3, can be extended to assess the significance of parallel

episodes given the number of non-overlapped occurrences. However, unlike the sequential patterns,

the span of the occurrence of the parallel episode under expiry time constraint is not fixed. The

span can vary anywhere between 1 time unit to T time units. Thus the random variable Xi (ref

Equation 3.1) which represents the number of time units to advance along the data stream can

take multiple values. We modify the counting procedure such that it becomes compatible with the

stochastic model in Section 3.2.3.

A synchronous pattern is said to occur at a given time instant, if there is a spike from atleast

one of the constituent neurons at that time instant and there are spikes from all the other neurons

within a time T . For example, an episode (ABCD) is said to occur at time t, if there is a spike of A

or B or C or D at t and at least a spike from each of the rest in the interval [t,t+ T ]. We note that

the occurrence of the episode need not span the entire interval. The counting procedure described

above is modified as follows. Whenever the algorithm finds a valid occurrence of an episode starting

at time t we increment the frequency counter by one and ignore the further events till time t + T .

We then start looking for other occurrence of the parallel episode starting from t + T + 1. Thus,

similar to the counting of serial episodes, we need to move either T time instants or one time instants

depending on whether the parallel episode has occurred or not. Using the same arguments as in the

previous section, we can see that the random variables X ′
is clearly captures the modified counting

procedure The random variable M (ref Equation 3.3) represents the number of occurrences of the

parallel episode using above method. (We note that, after the modification we are not counting the

maximum number of non-overlapped occurrences. Some occurrences of the data might be missed

because we are ignoring some of the events in the data stream.)

The recursive methods (ref 3.2.4) to obtain the mean and variance of M also holds for the above

proposed count. However the null hypothesis used to determine the significance of serial patterns is

invalid. The notion of ’strength’ between the two constituent neurons of a synchronous firing pattern

is not well defined. Two neurons (say A and B) belonging a synchronous pattern may occur in any

order in the occurrence. Synchronous firings of neurons may not be interactions that are related

to the synaptic connections between them. Measure such as pairwise conditional probability that

characterize the sequential firings so well cannot be clearly defined here.

Thus, the null hypothesis we employ is that of independence between spike trains. The hypothesis

is that the spike trains of different neurons are generated by independent processes. The statistical
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theory discussed in the previous section can also be used here. Although here, the parameter p,

represents the probability of occurrence of a parallel episode at a given time instant. Under the null

hypothesis of independence it represents the probability of a random occurrence of an episode.

Let us consider episodes of size n. Let ρ be the unconditional probability that a neuron fires at

any given time instant. (Assuming same random firing rate for all neurons) Then at a given time t

the probability of occurrence of a random n-node parallel episode with expiry time T is given by.

p = ρn(∆T )n

n−1
∑

i=0

(T − 1)n−1−iT i (3.12)

Using this value of p, we can calculate values of F (L, T, p) and V (L, T, p) from equations 3.5, 3.8

and 3.9. For a given type-I error ǫ, the frequency threshold can then be obtained as F (L, T, p) +

k
√

V (L, T, p), where k is the smallest integer such that k2 ≥ 1
ǫ
.

We use this frequency threshold for mining significant parallel episodes (synchronous firing pat-

terns).

Effectiveness of Significance test

Here, we verify the effectiveness of the significance analysis discussed above. For the results reported

here we generate spike train data from 100 neurons using the simulator given in Appendix A. No

patterns are embedded in the data. Thus, the neurons fire independently of one another. We

generate 500 repetitions of 20 seconds data for random firing frequencies of 5 and 10 Hertz. Then

for an arbitrary 2-node and 3-node episode we find the frequencies in all the realizations using the

modified parallel episode algorithm. Figure 3.3 shows the histogram plots of the frequencies for

different expiry times and background firing rates. From the plots it is clear that for low values of

expiry time (T = 5) the statistical model is able to capture the process very well. For 2-node and

3-node episodes, the calculated value of mean (F ) lies at the centre of the distribution. However, for

large values of T (= 10), the model over-estimates F . This is because, unlike in the case of assessing

significance of sequential patterns, the variables X ′
is here are not independent of one another. For

example, consider the model for counting the occurrence of (ABC)T . For some time instant t and

some j,let Xj be the random variable that checks for the occurrence of the episode at t. Suppose we

assume Xj = 1. This implies that at least one of the neurons among A,B or c has not fired in the

interval [t, t+T ]. Now Xj+1 will be a random variable that checks for the occurrence the episode in

[t+ 1, t+ T + 1]. For t > 1, the intervals checked by Xj and xj+1 overlap. Hence, Xj and xj+1 are

not independent. However, when Xj = T , Xj+1 is independent of Xj . This is because the intervals

of interest do not overlap in this case.
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Thus the model does not exactly capture the counting process. Although, for small values of ex-

piry time and normal firing frequencies like 5 or 10 Hertz the calculated value is a fair representation

of the observed counts. For further experiments, we use the above discussed method of assessing

statistical significance to determine the frequency of mining for synchronous patterns.

3.4 Simulation Results

In this section we compare the effectiveness of our parallel episode mining algorithm with NeuroXi-

dence [11].

3.4.1 NeuroXidence

NeuroXidence is a popular tool used to detect an excess or a lack of synchronous firing in spike train

data. This is done by counting the number of occurrences of synchronous firing patterns satisfying

a given expiry time. Unlike our non-overlapped counts, NeuroXidence counts all occurrences of a

pattern. For example, for the pattern (ABC), any set of spikes of A,B and C that satisfy the time

constraint is considered as an occurrence. NeuroXidence counts the frequency of all patterns that

occur at least once in the data. The counting process is essentially a correlation based technique.

Let the time axis be resolved into bins of size ∆T . The effect of a spike of a neuron in a given time

bin is extended over τc neighboring bins , where τc is the expiry time of an episode (in units of ∆T .

Thus if 3 neurons (say A,B,C) fire within τc bins of one another, then after extending the effect of

the spike, there must be at least one time bin where the effect of the firing of all the three neurons

is felt. The counting algorithm looks for such time bins to calculate the number of occurrences of

an episode. However, employing such a procedure requires that two spikes of a given neuron should

not occur within τc of one another. If such spikes occur then appropriate pre-processing is done to

modify the data so that the counts of the episodes are retained and also that no two spikes of a

neuron lie within τc of one another.

NeuroXidence employs a non-parametric method to assess the significance of the observed counts.

The Null hypothesis is that the patterns occur by chance. The estimate of the chance frequency

under null hypothesis is obtained by generating surrogate data. Surrogate data is created by jittering

the spikes of the neurons independently of one another in timescales of the order of τc. This way the

temporal cross structure in the data is destroyed while retaining the auto-structure of the spike trains.

For every trial of the data obtained, around 25 surrogates are created. The patterns frequencies are

found out in the surrogate data set. From the values so obtained, we get an empirical distribution

of the chance frequencies. Using that the significance of the observed frequency counts are obtained.
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NeuroXidence is found to be very effective in finding synchronous firing patterns [11].

3.4.2 Parallel Episode Mining Vs NeuroXidence

For the results provided in this section we use spike train data generated by using the Poisson

simulator. No strong connections are embedded into the simulator. The neurons fire independently

of one another. We include correlated firing in the data by means of external stimulation. At every

time instant we decided with a low probability (0.0005) whether to embed a synchronous firing.

Different sized patterns (upto 7 nodes) with various expiry times are embedded in the data.

Effectiveness of both the methods are assessed with respect to the running times and false

positive rates. The methods are tested for varying parameters like random firing rate, different

expiry times, different number of neurons. The running times and false positives rate reported

for the parallel episode algorithm are average values obtained from 100 realizations of the data.

In case of NeuroXidence, the values are averaged over 20 iterations. The results are reported in

Tables 3.1-3.7..

NeuroXidence requires input data from various trials. For our experiments we split a single long

data into 20 portions and give it as an input. For better statistical analysis, the number of surrogates

is set at 25.

Both the methods were found to be very effective in mining the embedded patterns. All the

patterns that are embedded in that data were discovered by the both the methods. However,

the parallel episode mining algorithm has huge computational advantage over NeuroXidence (refer

Table 3.1) Such difference in times are because the NeuroXidence calculates the frequencies of all

possible patterns in the data. But the parallel episode mining algorithms uses an efficient level

wise procedure to count candidates generated out of frequent sub-episodes. Also, the statistical test

required for NeuroXidence requires it to find the frequencies of pattern in the surrogate data. If the

number of surrogates is 25, then effectively NeuroXidence has to calculate the frequencies in data

that is 25 times longer than the input data. This is the reason for the marked difference in running

times of the algorithms.

In determining the false positive rates, we use a type-I error of 10%. This is because for lower

type-I error the parallel episode algorithm reports only the embedded patterns as significant.

The change in expiry time of mining does not affect the running times of tha episodes mining

algorithms(see Table 3.5). As we have already seen (c.f. Section 3.3) with increasing expiry time

the estimate of the mean, and hence the threshold, is on the higher side. This the reason for the

decrease in the reported false positive rates even though the frequency of random patterns may

increase because of greater expiry times. The running time of NeuroXidence increases drastically
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with expiry times(see Table 3.2). Pre-processing stage becomes more complex to ensure that no

two spikes of a neuron near one another. This is essentially done by increasing the data length.

That is the reason the running times increase. Similar effects can also be seen because of increase

in background firing rates(see Table 3.4). The number of false positives increase because more and

more patterns start occurring more than once.

The increase in number of neurons has a huge effect on the running times of NeuroXidence(see

Table 3.3). Infact for a network with 40 neurons the running time is as high as 20 minutes for only

50 sec data at 5 Hz. This is because of the exponential increase in the number of patterns to be

counted.

Length of data Average Running Times (in seconds) False Positives (in %)

(in seconds) Parallel Episode Mining NeuroXidence Parallel Episode Mining NeuroXidence

50 0.2 51 15% 31%

100 0.375 134 21% 47%

200 0.8 270 48% 79%

Table 3.1: Comparison of NeuroXidence and Parallel Episode Mining Algorithm : Running Times

and False Positive Rates comparison for varying data lengths. (Parameters: Background Frequency

= 5 Hz, T = 5, Number of Neurons = 20.)

Expiry Time (T ) Average Running Times (in seconds) False Positives (in %)

(in units of ∆T ) Type-I error = 10% Type-I error = 10% Type-I error = 5%

3 21 23% 12%

5 51 31% 17%

8 122 51% 29%

10 189 54% 29%

Table 3.2: NeuroXidence : Variation of Average Running Times and False Positives Rates for mining

with different expiry times (Parameters: Background Frequency = 5 Hz, Data length = 50 seconds,

Number of Neurons = 20.)

From Tables 3.5-3.7, it is clear that change in random firing frequency, expiry times, etc., does

not affect the running times very much. The algorithm will be able to scale up for longer data with

many interacting neurons.
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Number of Neurons Average Running Times (in seconds) False Positives (in %)

Type-I error = 10% Type-I error = 10% Type-I error = 5%

20 51 31% 17%

30 233 49% 25%

40 1193 59% 35%

Table 3.3: NeuroXidence : Variation of Average Running Times and False Positives Rates for data

with different number of neurons (Parameters: Background Frequency = 5 Hz, Data length = 50

seconds, T = 5.)

Random frequency Average Running Times (in seconds) False Positives

(in Hz) Type-I error = 10% Type-I error = 10% Type-I error = 5%

5 51 31% 17%

10 309 49% 26%

Table 3.4: NeuroXidence : Variation of Average Running Times and False Positives Rates for

different firing rates of neurons (Parameters: T = 5, Data length = 50 seconds, Number of Neurons

= 20.)

3.5 Conclusions

In this chapter, we extended the significance test for sequential patterns to suit parallel episodes.

Though the statistical model is does not fit the counting process perfectly , we showed experimentally

its effectiveness in mining synchronous patterns. The statistical methods discussed in this chapter

assumed characteristics like a known model of spike generation and pairwise interaction among

neurons. However, the main advantage of temporal datamining methods in unearthing patterns from

spike train data is the computational efficiency over the more conventional methods. Experimental

results discussed in this chapter proved the same. Combined with the proper statistical techniques

the frequent episode discovery will be very useful in analyzing multi-neuronal data.

‘
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Expiry Time T Average Running Time False Positives

(in units of ∆T ) (in seconds)

3 0.38 29%

5 0.38 22%

8 0.37 15%

10 0.37 14%

Table 3.5: Parallel Episode Mining Algorithm : Variation of Average Running Times and False

Positives Rates for mining with different expiry times (Parameters: Background Frequency = 5 Hz,

Data length = 100 seconds, Number of Neurons = 20.)

Number of Neurons Average Running Time False Positives

(in seconds)

20 0.38 22%

30 0.44 27%

40 0.54 40%

Table 3.6: Parallel Episode Mining Algorithm : Variation of Average Running Times and False

Positives Rates for data with different number of neurons (Parameters: Background Frequency = 5

Hz, Data length = 100 seconds, T = 5.)

Random Frequency Average Running Time False Positives

(in Hz) (in seconds)

5 0.38 22%

10 0.5 22%

Table 3.7: Parallel Episode Mining Algorithm : Variation of Average Running Times and False

Positives Rates for data with different number of neurons (Parameters: Data length = 100 seconds,

T = 5, Number of Neurons = 20)
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Figure 3.3: Distribution of the observed frequencies of Parallel Episodes. Plots are are shown for

2-node and 3-node episodes for different values of random frequency(frand) and expiry times (T ).

(a) & (c) show plots for a 2-node episode with frand. = 10 Hz and T = 5 & 10ms. (b) shows the

distribution for frand = 5 Hz and T = 5 ms, (d) for a 3-node episode with frand. = 10 Hz and

T = 5 ms. The analytically calculated values of mean (F ) and threshold (mth = F + 3 ∗
√
V ) are

also shown. For small expiry times (T = 5), the calculated value matches the observed counts.
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Chapter 4

Conclusions

In this project, we looke at frequent episode discovery framework in the context of temporal datamin-

ing. Efficient algorithms for discovering parallel and serial episodes were already available. We devel-

oped algorithms for discovering episodes with general partial orders from event streams. We thought

that the graphical structure of partial orders can be used to represent the connectivity structures of

neurons in a tissue. These partial orders should occur frequently in the spike train data. We used

the frequent episode discovery algorithm to directly unearth the connectivity structure.

The frequent episode discovery techniques are computationally very efficient in discovering pat-

terns from event streams. Thus if we have proper statistical techniques to determine the significance

of episodes they can be very useful in analysing spike train data. We developed techniques to deter-

mine the significance of parallel episodes. We also proved the efficiency of datamining techniques in

analysing spike train data by comparing it with an efficient existing tool, NeuroXidence.

Methods to determine the statistical significance of frequent graph patterns do not exist. If avail-

able, the technique will be very useful to directly unearth significant connections among neurons.

Also, in this work we consider only pairwise interactions among neurons. Recent work reports exis-

tence of possible higher order interations among neurons. Application of frequent episode discovery

techniques to unearth significant higher order interactions is still not explored.
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Appendix A

Spike Train Data Generator

We use a simulator for generating the spike data from a network of interconnected neurons. For

most of our simulations we model the spiking of each neuron as an inhomogeneous Poisson process

where the instantaneous rates are time-varying because they depend on the input spikes received by

the neuron through its synapses. We first describe this model. At the end of this section, we explain

how we can modify the simulator to generate spike trians where inter-spike interval has Gamma

distribution (with time-varying parameters).

Let N denote the number of neurons in the network and let Zi(t) denote the spiking process of

the ith neuron. Each Zi is taken to be an inhomogeneous Poisson process whose rate is constant on

each interval [n∆T, (n+ 1)∆T ), n = 0, 1, · · · , L where L represents the total time duration in units

of ∆T . We normally take ∆T = 1ms. Let λi(k) denote the rate of Zi(t) for t ∈ [(k − 1)∆T, k∆T ).

Let Yik, k = 1, 2, · · ·T , i = 1, 2, · · · , N , be binary random variables defined as: Yik = 1 if there

is a spike event of Zi in the interval [(k − 1)∆T, k∆T ); and Yik = 0 otherwise.

If we are given λi(k) for all i, k then we can simulate the Zi processes as follows. For each k,

k = 1, 2, · · · , we do the following: For i = 1, 2, · · · , N , we generate random variables, ξi, exponentially

distributed with parameter λi(k); then, for each i, if ξi < ∆T then we put a spike for neuron i at

time (k − 1)∆T + ξi else we put no spike for i in the interval [(k − 1)∆T, k∆T )

The set of neurons are interconnected through synapses and the connection from i to j is char-

acterized by a weight parameter wij and a delay parameter τij . We take it that the delay τij is

specified in units of ∆T . The firing rates, λi(k), of neurons are influenced by the inputs received

from other neurons. Let Yik, k = 1, 2, · · ·T , i = 1, 2, · · · , N , be binary random variables defined as:

Yik = 1 if there is a spike event of Zi in the interval [(k− 1)∆T, k∆T ); and Yik = 0 The firing rates
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at kth time-step are computed as

λi(k) =
λm

1 + exp(−θi −
∑N

j=1 wjiYj(k−τji))
. (A.1)

Here θi is a parameter that fixes the nominal firing rate for the neuron i. (This is the firing rate

when the neuron receives no input). The constant λm denotes the maximum possible firing rate

attainable and its value is fixed so that the probability of atleast one spike in an interval of length

∆T is 0.99 and this value is the solution of the equation

1− exp(−λm∆T ) = 0.99 (A.2)

To get a specific network, the user specifies, for all i, the nominal firing rate, λi
0, of neuron i and the

strengths and delays of all interconnections. Given the value of λi
0, the value of θi is fixed as

θi = −ln
(

λm

λi
0

− 1

)

(A.3)

The strengths of interconnections (or synapses) are specified in terms of conditional probabilities.

Let pij denote the strength of connection from i to j and it is taken to be the conditional probability

that there is atleast one spike from j in an interval [(k− 1)∆T, k∆T ] given that there is atleast one

spike from i in the interval [(k− τij − 1)∆T, (k− τij)∆T ] and that all other input to j is zero. Here

τij is the delay associated with this connection. Given pij . we can calculate wij as

wij = −θj − ln
(

λm

λ′
− 1

)

(A.4)

where λ′ is the solution of the equation

1− exp(−λ′∆T ) = pij (A.5)

To use the simulator, we specify the nominal firing rate of each neuron and the strengths (in terms

of conditional probability as explained above) and delays, τij (in units of ∆T ) for all connections.

Then we can determine the parameters θi and wij . Then for each k, we obtain λi(k) for all i and

this is used to simulate the Zi processes as explained earlier. We normally specify a network which

has many random interconnections (i.e., with the strengths being set randomly) and some specific

connections to constitute the patterns or microcircuits by giving high strength for these connections.

We note here that the nominal firing rate as well as the effective conditional probabilities in our

system would have some small random variations. As explained above, we fix θj so that on zero
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input the neuron would have the nominal firing rate. However, all neurons would have synapses

with randomly selected other neurons and the strengths of these synapses are also random. Hence,

even in the absence of any strong connections, the firing rates of different neurons keep fluctuating

around the nominal rate that is specified. Since we choose random connections in such a way that

in an expected sense the input into a neuron is zero, the average rate of spiking should be close

to the nominal rate specified. We also note that the way we calculate the effective weight for a

given conditional probability is also approximate and we chose it for simplicity. If we specify a

conditional probability for the connection from A to B, then, as given by (A.4)–(A.5), the weight of

the connection is fixed so that the probability of B firing at least once in the next ∆T interval given

that A has fired in an appropriate interval earlier is equal to this conditional probability when all

other input into B is zero. But since B would be getting small random input from other neurons also,

the effective conditional probability would also be fluctuating around the nominal value specified.

We have also used this simulator for generating spike trains where inter-spike intervals are (non-

homogeneous) Gamma distributed instead of being exponential as in case of Poisson. (Our notation

is: Gamma distribution with parameters α and β has density given by f(x) = x(α−1)βα exp(−βx)/Γ(α)).

The changes needed in the simulator are as follows. We simulate the Zi(k) by generating ξi as be-

fore; but now the ξi has Gamma distribution with α = 2 and β = λik. Thus now, the spiking

processes of neurons are such that inter-spike intervals are Gamma distributed with a time-varying

rate parameter. The λik are updated, as before, using eq. (A.1). But now λm is a solution of

1− exp(−λm∆T )(1 + λm∆T ) = 0.99 (A.6)

The θi are determined as before using the above λm. The weights wij are computed using eq. (A.4)

as before; however the λ′ in this equation is determined as the solution of

1− exp(−λ′∆T )(1 + λ′∆T ) = pij (A.7)

With these changes, we can still specify the connection strengths as conditional probabilities (pij)

and with the weights determined as above we will have spike trains with the required embedded

connection strengths. A minor difference is that the earlier equations, namely, eqs. (A.2) and

(A.5) have simple closed-form solutions. Now we solve eqs. (A.6) and (A.7) using Newton-Raphson

method.
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