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* Web apps hosted on multiple DCs = Low latency access to end-user
 Need efficient methods to analyze data located in multiple data centers
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Centralized Aggregation is Wasteful
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* Available WAN bandwidth is limited = Aggregation latency overhead

* WAN links are expensive > High data transfer cost
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Geo-distributed Analytics
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Outline

2. Challenges in choosing query plan based on WAN transfer durations

3. Solution
e Single query
* Multiple simultaneous queries

4. Experimental Evaluation
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Tasks are placed
uniformly across
DC,; and DC,

40 Gbps 200 GB/ \200 GB
\ 200 GB 200 GB
80 Gbps Oc C MAP: SELECT MAP: SELECT

Choose query plan based on:
1. Best available task placements

REDUCE: JOIN

2. Schedule of network transfers

1. PlanA: 445 2055

2.| Plan B:l 2696 11.25
3. PlanC: 17.6s




Joint plan selection, placement and scheduling



Joint plan selection, placement and scheduling

SELECT * FROM .. WHERE.. ;

Multiple query plans (join orders) per
' ! ! query



Joint plan selection, placement and scheduling

SELECT * FROM .. WHERE.. ;

Multiple query plans (join orders) per
query

Assign parallelism for each stage




Joint plan selection, placement and scheduling

SELECT * FROM .. WHERE.. ;

Multiple query plans (join orders) per
! ! query

Assign parallelism for each stage

Network aware task placement and
scheduling for each query plan

000 Choose plan with smallest run time for
0G0 @ execution



Joint plan selection, placement and scheduling

SELECT * FROM .. WHERE.. ;

Query Optimizer Multiple query plans (join orders) per
!

query

Clarinet binds query to plan lower in the stack

Network aware task placement and
scheduling for each query plan

Choose plan with smallest run time for
execution
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* Task placement decided greedily one stage at a time
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Network aware placement and scheduling

JOIN

* Task placement decided greedily one stage at a time

Minimize per stage run time

JOIN SELECT

e Scheduling of network transfers m m
Determines start times of inter-DC network transfers
Formulate a Binary Integer Linear Program to solve SELECT )
scheduling m m
Factors transfer dependencies
T1 T3
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Queries affect each others’ run time
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Queries affect each others’ run time

No contention of network links
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Queries affect each others’ run time
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Iterative Shortest Job First

Ilter 2: 15

QUERY A T QUERY C « Best combination = minimize average
* [terative Shortest Job First (SJF)
scheduling heuristic

completion
18 17 25 30
1. Pick shortest physical query plan in each

 Computationally intractable
gio & iteration

Link 1 * Reserve bandwidth to guarantee

Link 2 completion time
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Avoid fragmentation and improve completion time

e SJF & reservation leads to bandwidth fragmentation

Scheduled in SJF order Alternate schedule with same query plans

Dominant transfers execute
1 sequentially
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______________________ [ .
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Avoid fragmentation and improve completion time

e SJF & reservation leads to bandwidth fragmentation

Scheduled in SJF order Alternate schedule with same query plans

Re-arranging transfers resulting in deviation from
L SJF schedule can help

LirTk
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k-Shortest Jobs First Heuristic

Offline schedule

Link n |

ik [TT 0 i [
link 1 [ [ O o ||

1

 |dentify transfers of k-shortest yet incomplete jobs
e Relax transfer schedule = Start as soon as link is free and task is available

* Best 'k’ < Prior observations (or) through offline simulations
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QUERY 1 QUERY 2 QUERY 3 Batch of queries

| | |
m m m Existing Query Optimizers

* Modified Hive to generate multiple

!““l'““ l plans
: 1@’ ‘{b 1{2’ S .X. f;‘ oo QOs control set of generated plans

————————— 1 * Existing optimizations are applied
* Push down Select

Clarinet e Partition pruning

: Enforces Clarinet’s schedule
Execution framework
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Existing Query Optimizers
m m m * Modified Hive to generate multiple

!““l'““ l plans
: éb ‘{b 1{6 S .X. f;‘ oo QOs control set of generated plans

————————— 1 * Existing optimizations are applied
* Push down Select

+partition pruning
o LA [
1 |

: ) Enforces Clarinet’s schedule
Execution framewor * Modified Tez’s DAGScheduler
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Clarinet Implementation

QUERY 1 QUERY 2 QUERY 3

1 | !
= e o

Wi P i .&1.3. & o

Execution framework

Batch of queries
Online query arrivals

Existing Query Optimizers
* Modified Hive to generate multiple
plans
QOs control set of generated plans
* Existing optimizations are applied

* Push down Select

* Partition pruning

Enforces Clarinet’s schedule
e Modified Tez’'s DAGScheduler
* Fairness guarantees
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Evaluation

Compare Clarinet with following GDA approaches:

1. Hive : WAN agnostic task placement + scheduling
2. Hive + Iridium : WAN aware task placement across DCs
3. Hive + Reducers in single DC : Distributed filtering + central aggregation

* Geo-Distributed Analytics stack across 10 EC2 regions

 Workload:
* 30 batches of 12 randomly chosen TPC-DS queries
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Evaluation: Optimization overhead

1. Generate multiple query plans
e Upto64plansinlessthan5s

2. lterative multi-query plan selection
e Max. 15 s for batches with 12 queries

Insignificant w.r.t. query running times (order of 10’s of minutes)
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summary

 WAN-awareness in QO +

cross-layer optimization - Clarinet
2.7x
Reduction in
* Presented a scalable way to dverage
: . completion
implement multi-query time

optimization with minimal
overhead
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