
Clarinet: WAN-Aware Optimization for
Analytics Queries

Raajay Viswanathan, Ganesh Ananthanarayanan, Aditya Akella

1

Overview

2

• Web apps hosted on multiple DCs  Low latency access to end-user

Overview

2

• Web apps hosted on multiple DCs  Low latency access to end-user

Overview

2

• Web apps hosted on multiple DCs  Low latency access to end-user

Overview

2

• Web apps hosted on multiple DCs  Low latency access to end-user

Overview

2

• Web apps hosted on multiple DCs  Low latency access to end-user
• Need efficient methods to analyze data located in multiple data centers

Centralized Aggregation is Wasteful

3

Centralized Aggregation is Wasteful

3

Intra-data center
Analytics

Framework

SELECT * … FROM .. WHERE .. ;

Centralized Aggregation is Wasteful

3

Intra-data center
Analytics

Framework

SELECT * … FROM .. WHERE .. ;

• Available WAN bandwidth is limited  Aggregation latency overhead

0

50

100

150

200

250

300

350

400

450

500

1 11 21 31 41 51 61 71 81

B
an

d
w

id
th

 (
M

b
p

s)

Directional WAN links sorted by
bandwidth

Measured pairwise bandwidth
between EC2 regions

450 Mbps

20 Mbps

Centralized Aggregation is Wasteful

3

Intra-data center
Analytics

Framework

SELECT * … FROM .. WHERE .. ;

• Available WAN bandwidth is limited  Aggregation latency overhead

• WAN links are expensive  High data transfer cost

$$$$

$$$$

$$$

Geo-distributed Analytics

4

Geo-distributed Analytics

4

Analytics framework

One Logical Datacenter

Geo-distributed Analytics

4

Analytics framework

One Logical Datacenter

Distributed Storage Layer

Geo-distributed Analytics

4

Analytics framework

One Logical Datacenter

Distributed Storage Layer

Distributed Execution Layer

SELECT * … FROM .. WHERE .. ;

Query Optimizer

Multi-stage parallelizable jobs

Geo-distributed Analytics

4

Analytics framework

One Logical Datacenter

Distributed Storage Layer

Distributed Execution Layer

SELECT * … FROM .. WHERE .. ;

Query Optimizer

Multi-stage parallelizable jobs

Geo-distributed

Requires
WAN-aware
optimization

Geo-distributed Analytics

4

Analytics framework

One Logical Datacenter

Distributed Storage Layer

Distributed Execution Layer

SELECT * … FROM .. WHERE .. ;

Query Optimizer

Multi-stage parallelizable jobs

Geo-distributed

Requires
WAN-aware
optimization

Iridium [SIGCOMM 15]
GeoDe [NSDI 15]

Geo-distributed Analytics

4

Analytics framework

One Logical Datacenter

Distributed Storage Layer

Distributed Execution Layer

SELECT * … FROM .. WHERE .. ;

Query Optimizer

Multi-stage parallelizable jobs

Geo-distributed

Requires
WAN-aware
optimization

Clarinet

Geo-distributed Analytics

4

Analytics framework

One Logical Datacenter

Distributed Storage Layer

Distributed Execution Layer

SELECT * … FROM .. WHERE .. ;

Query Optimizer

Multi-stage parallelizable jobs

Geo-distributed

Requires
WAN-aware
optimization

Clarinet

2.7x reduction in
query runtime

WAN Aware Query Optimization

T2

DC2

T3

DC3

T1

DC1

5

T1, T2, T3: Tables storing click logs

WAN Aware Query Optimization

T2

DC2

T3

DC3

T1

DC1

80 Gbps 40 Gbps

100 Gbps

5

T1, T2, T3: Tables storing click logs

WAN Aware Query Optimization

T2

DC2

T3

DC3

T1

DC1

80 Gbps 40 Gbps

100 Gbps

5

QUERY

SELECT T1.user, T1.latency, T2.latency, T3.latency

FROM T1, T2, T3

WHERE T1.user == T2.user AND T1.user == T3.user

AND T1.device == T2.device == T3.device == “mobile”;

T1, T2, T3: Tables storing click logs

WAN Aware Query Optimization

T2

DC2

T3

DC3

T1

DC1

80 Gbps 40 Gbps

100 Gbps

5

⋈

T2 T3

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

QUERY

SELECT T1.user, T1.latency, T2.latency, T3.latency

FROM T1, T2, T3

WHERE T1.user == T2.user AND T1.user == T3.user

AND T1.device == T2.device == T3.device == “mobile”;

T1, T2, T3: Tables storing click logs

WAN Aware Query Optimization

T2

DC2

T3

DC3

T1

DC1

80 Gbps 40 Gbps

100 Gbps

5

⋈

T2 T3

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

⋈

T1

𝜎𝑀𝑜𝑏𝑖𝑙𝑒

QUERY

SELECT T1.user, T1.latency, T2.latency, T3.latency

FROM T1, T2, T3

WHERE T1.user == T2.user AND T1.user == T3.user

AND T1.device == T2.device == T3.device == “mobile”;

T1, T2, T3: Tables storing click logs

WAN Aware Query Optimization

T2

DC2

T3

DC3

T1

DC1

80 Gbps 40 Gbps

100 Gbps

5

10 GB 200 GB

200 GB 200 GB
⋈

T2 T3

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

⋈

T1

𝜎𝑀𝑜𝑏𝑖𝑙𝑒

QUERY

SELECT T1.user, T1.latency, T2.latency, T3.latency

FROM T1, T2, T3

WHERE T1.user == T2.user AND T1.user == T3.user

AND T1.device == T2.device == T3.device == “mobile”;

T1, T2, T3: Tables storing click logs

WAN Aware Query Optimization

T2

DC2

T3

DC3

T1

DC1

80 Gbps 40 Gbps

100 Gbps

5

10 GB 200 GB

200 GB 200 GB
⋈

T2 T3

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

⋈

T1

𝜎𝑀𝑜𝑏𝑖𝑙𝑒

Plan running time: 41 s

QUERY

SELECT T1.user, T1.latency, T2.latency, T3.latency

FROM T1, T2, T3

WHERE T1.user == T2.user AND T1.user == T3.user

AND T1.device == T2.device == T3.device == “mobile”;

T1, T2, T3: Tables storing click logs

WAN Aware Query Optimization

T2

DC2

T3

DC3

T1

DC1

80 Gbps 40 Gbps

100 Gbps

5

10 GB 200 GB

200 GB 200 GB
⋈

T2 T3

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

⋈

T1

𝜎𝑀𝑜𝑏𝑖𝑙𝑒

40 s1 s

Plan running time: 41 s

QUERY

SELECT T1.user, T1.latency, T2.latency, T3.latency

FROM T1, T2, T3

WHERE T1.user == T2.user AND T1.user == T3.user

AND T1.device == T2.device == T3.device == “mobile”;

T1, T2, T3: Tables storing click logs

WAN Aware Query Optimization

T2

DC2

T3

DC3

T1

DC1

80 Gbps 40 Gbps

100 Gbps

5

10 GB 200 GB

200 GB 200 GB
⋈

T2 T3

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

⋈

T1

𝜎𝑀𝑜𝑏𝑖𝑙𝑒

40 s1 s

Plan running time: 41 s

QUERY

SELECT T1.user, T1.latency, T2.latency, T3.latency

FROM T1, T2, T3

WHERE T1.user == T2.user AND T1.user == T3.user

AND T1.device == T2.device == T3.device == “mobile”;

T1, T2, T3: Tables storing click logs

WAN-only
bottleneck

WAN Aware Query Optimization

T2

DC2

T3

DC3

T1

DC1

80 Gbps 40 Gbps

100 Gbps

5

10 GB 200 GB

200 GB 200 GB
⋈

T2 T3

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

⋈

T1

𝜎𝑀𝑜𝑏𝑖𝑙𝑒

40 s1 s

Plan running time: 41 s

QUERY

SELECT T1.user, T1.latency, T2.latency, T3.latency

FROM T1, T2, T3

WHERE T1.user == T2.user AND T1.user == T3.user

AND T1.device == T2.device == T3.device == “mobile”;

T1, T2, T3: Tables storing click logs

⋈

⋈
12 GB

200 GB 200 GB

T2 T1

T3

200 GB

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 ⋈

⋈
16 GB

200 GB 200 GB

T1 T3

T2

200 GB

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

𝜎𝑀𝑜𝑏𝑖𝑙𝑒

Plan A Plan B Plan C

Plan running time: 20.96 s Plan running time: 17.6 s

WAN-only
bottleneck

WAN Aware Query Optimization

T2

DC2

T3

DC3

T1

DC1

80 Gbps 40 Gbps

100 Gbps

5

10 GB 200 GB

200 GB 200 GB
⋈

T2 T3

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

⋈

T1

𝜎𝑀𝑜𝑏𝑖𝑙𝑒

40 s1 s

Plan running time: 41 s

QUERY

SELECT T1.user, T1.latency, T2.latency, T3.latency

FROM T1, T2, T3

WHERE T1.user == T2.user AND T1.user == T3.user

AND T1.device == T2.device == T3.device == “mobile”;

T1, T2, T3: Tables storing click logs

⋈

⋈
12 GB

200 GB 200 GB

T2 T1

T3

200 GB

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 ⋈

⋈
16 GB

200 GB 200 GB

T1 T3

T2

200 GB

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

𝜎𝑀𝑜𝑏𝑖𝑙𝑒

Plan A Plan B Plan C

Plan running time: 20.96 s Plan running time: 17.6 s

Chosen by network
agnostic query
optimizer

WAN-only
bottleneck

WAN Aware Query Optimization

T2

DC2

T3

DC3

T1

DC1

80 Gbps 40 Gbps

100 Gbps

5

10 GB 200 GB

200 GB 200 GB
⋈

T2 T3

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

⋈

T1

𝜎𝑀𝑜𝑏𝑖𝑙𝑒

40 s1 s

Plan running time: 41 s

QUERY

SELECT T1.user, T1.latency, T2.latency, T3.latency

FROM T1, T2, T3

WHERE T1.user == T2.user AND T1.user == T3.user

AND T1.device == T2.device == T3.device == “mobile”;

T1, T2, T3: Tables storing click logs

⋈

⋈
12 GB

200 GB 200 GB

T2 T1

T3

200 GB

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 ⋈

⋈
16 GB

200 GB 200 GB

T1 T3

T2

200 GB

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

𝜎𝑀𝑜𝑏𝑖𝑙𝑒

Plan A Plan B Plan C

Plan running time: 20.96 s Plan running time: 17.6 s

Chosen by network
agnostic query
optimizer

WAN-only
bottleneck

WAN Aware Query Optimization

T2

DC2

T3

DC3

T1

DC1

80 Gbps 40 Gbps

100 Gbps

5

10 GB 200 GB

200 GB 200 GB
⋈

T2 T3

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

⋈

T1

𝜎𝑀𝑜𝑏𝑖𝑙𝑒

40 s1 s

Plan running time: 41 s

QUERY

SELECT T1.user, T1.latency, T2.latency, T3.latency

FROM T1, T2, T3

WHERE T1.user == T2.user AND T1.user == T3.user

AND T1.device == T2.device == T3.device == “mobile”;

T1, T2, T3: Tables storing click logs

⋈

⋈
12 GB

200 GB 200 GB

T2 T1

T3

200 GB

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 ⋈

⋈
16 GB

200 GB 200 GB

T1 T3

T2

200 GB

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

𝜎𝑀𝑜𝑏𝑖𝑙𝑒

Plan A Plan B Plan C

Plan running time: 20.96 s Plan running time: 17.6 s

Chosen by network
agnostic query
optimizer

WAN-only
bottleneck

WAN-aware query optimizer that uses network transfer
duration to choose query plans

Outline

1. Motivation

2. Challenges in choosing query plan based on WAN transfer durations

3. Solution
• Single query

• Multiple simultaneous queries

4. Experimental Evaluation

6

Other factors also affect query plan run time

7

80 Gbps

40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

Other factors also affect query plan run time

7

80 Gbps

40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

⋈
200 GB 200 GB

T1 T2

𝜎𝐶 𝜎𝐶

Other factors also affect query plan run time

7

80 Gbps

40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

⋈
200 GB 200 GB

T1 T2

𝜎𝐶 𝜎𝐶

T1 T2

MAP: SELECT MAP: SELECT

REDUCE: JOIN

200 GB200 GB

Map Reduce Job

Other factors also affect query plan run time

7

80 Gbps

40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

⋈
200 GB 200 GB

T1 T2

𝜎𝐶 𝜎𝐶
20 s

T1 T2

MAP: SELECT MAP: SELECT

REDUCE: JOIN

200 GB200 GB

Map Reduce Job

Tasks
placed in
single DC

Other factors also affect query plan run time

7

80 Gbps

40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

⋈
200 GB 200 GB

T1 T2

𝜎𝐶 𝜎𝐶

10 s

T1 T2

MAP: SELECT MAP: SELECT

REDUCE: JOIN

200 GB200 GB

Map Reduce Job

Tasks are placed
uniformly across
DC1 and DC2

Other factors also affect query plan run time

7

80 Gbps

40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

⋈
200 GB 200 GB

T1 T2

𝜎𝐶 𝜎𝐶

T1 T2

MAP: SELECT MAP: SELECT

REDUCE: JOIN

200 GB200 GB

Map Reduce Job

1. Plan A: 41 s
2. Plan B: 20.96
3. Plan C: 17.6 s

Tasks are placed
uniformly across
DC1 and DC2

While evaluating different query plans

Other factors also affect query plan run time

7

80 Gbps

40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

⋈
200 GB 200 GB

T1 T2

𝜎𝐶 𝜎𝐶

T1 T2

MAP: SELECT MAP: SELECT

REDUCE: JOIN

200 GB200 GB

Map Reduce Job

1. Plan A: 41 s
2. Plan B: 20.96
3. Plan C: 17.6 s

20.5 s
11.2 s

Tasks are placed
uniformly across
DC1 and DC2

While evaluating different query plans

Other factors also affect query plan run time

7

80 Gbps

40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

⋈
200 GB 200 GB

T1 T2

𝜎𝐶 𝜎𝐶

T1 T2

MAP: SELECT MAP: SELECT

REDUCE: JOIN

200 GB200 GB

Map Reduce Job

1. Plan A: 41 s
2. Plan B: 20.96
3. Plan C: 17.6 s

20.5 s
11.2 s

Tasks are placed
uniformly across
DC1 and DC2

While evaluating different query plans

Used by high
priority application

Other factors also affect query plan run time

7

80 Gbps

40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

⋈
200 GB 200 GB

T1 T2

𝜎𝐶 𝜎𝐶

T1 T2

MAP: SELECT MAP: SELECT

REDUCE: JOIN

200 GB200 GB

Map Reduce Job

1. Plan A: 41 s
2. Plan B: 20.96
3. Plan C: 17.6 s

20.5 s
11.2 s

Tasks are placed
uniformly across
DC1 and DC2

While evaluating different query plans

Used by high
priority application

Other factors also affect query plan run time

7

80 Gbps

40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

⋈
200 GB 200 GB

T1 T2

𝜎𝐶 𝜎𝐶

T1 T2

MAP: SELECT MAP: SELECT

REDUCE: JOIN

200 GB200 GB

Map Reduce Job

1. Plan A: 41 s
2. Plan B: 20.96
3. Plan C: 17.6 s

20.5 s
11.2 s

Tasks are placed
uniformly across
DC1 and DC2

While evaluating different query plans

Used by high
priority application

Choose query plan based on:
1. Best available task placements

Other factors also affect query plan run time

7

80 Gbps

40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

⋈
200 GB 200 GB

T1 T2

𝜎𝐶 𝜎𝐶

T1 T2

MAP: SELECT MAP: SELECT

REDUCE: JOIN

200 GB200 GB

Map Reduce Job

1. Plan A: 41 s
2. Plan B: 20.96
3. Plan C: 17.6 s

20.5 s
11.2 s

Tasks are placed
uniformly across
DC1 and DC2

While evaluating different query plans

Used by high
priority application

Choose query plan based on:
1. Best available task placements
2. Schedule of network transfers

Joint plan selection, placement and scheduling

8

Joint plan selection, placement and scheduling

Query Optimizer Multiple query plans (join orders) per
query

SELECT * FROM … WHERE.. ;

8

Joint plan selection, placement and scheduling

Query Optimizer Multiple query plans (join orders) per
query

SELECT * FROM … WHERE.. ;

8

Logical plan to physical plan Assign parallelism for each stage

Joint plan selection, placement and scheduling

Clarinet

Query Optimizer

Network aware task placement and
scheduling for each query plan

Multiple query plans (join orders) per
query

Choose plan with smallest run time for
execution

SELECT * FROM … WHERE.. ;

8

Logical plan to physical plan Assign parallelism for each stage

Joint plan selection, placement and scheduling

Clarinet

Query Optimizer

Network aware task placement and
scheduling for each query plan

Multiple query plans (join orders) per
query

Choose plan with smallest run time for
execution

SELECT * FROM … WHERE.. ;

8

Logical plan to physical plan Assign parallelism for each stageClarinet binds query to plan lower in the stack

Network aware placement and scheduling

9

T1 T3

T2
SELECT SELECT

SELECTJOIN

JOIN

Network aware placement and scheduling

• Task placement decided greedily one stage at a time
• Minimize per stage run time

9

T1 T3

T2
SELECT SELECT

SELECTJOIN

JOIN

Network aware placement and scheduling

• Task placement decided greedily one stage at a time
• Minimize per stage run time

• Scheduling of network transfers
• Determines start times of inter-DC network transfers

9

T1 T3

T2
SELECT SELECT

SELECTJOIN

JOIN

Network aware placement and scheduling

• Task placement decided greedily one stage at a time
• Minimize per stage run time

• Scheduling of network transfers
• Determines start times of inter-DC network transfers
• Formulate a Binary Integer Linear Program to solve

scheduling
• Factors transfer dependencies

9

T1 T3

T2
SELECT SELECT

SELECTJOIN

JOIN

10

How to extend the late-binding strategy to
multiple queries?

Queries affect each others’ run time

11

80 Gbps 40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

Queries affect each others’ run time

11

80 Gbps 40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

QUERY 1

SELECT …

device == “mobile”

…;

QUERY 2

SELECT …

genre == “pc”

…;

Queries affect each others’ run time

11

⋈

⋈
16 GB

200 GB 200 GB

T1 T3

T2

200 GB

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

𝜎𝐶

80 Gbps 40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

QUERY 1

SELECT …

device == “mobile”

…;

QUERY 2

SELECT …

genre == “pc”

…;

⋈

⋈
16 GB

200 GB 200 GB

T1 T3

T2

200 GB

𝜎𝑃𝐶 𝜎𝑃𝐶

𝜎𝑅

Same query plan (Plan C) for Query 1 and Query 2

Queries affect each others’ run time

11

⋈

⋈
16 GB

200 GB 200 GB

T1 T3

T2

200 GB

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

𝜎𝐶

80 Gbps 40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

QUERY 1

SELECT …

device == “mobile”

…;

QUERY 2

SELECT …

genre == “pc”

…;

⋈

⋈
16 GB

200 GB 200 GB

T1 T3

T2

200 GB

𝜎𝑃𝐶 𝜎𝑃𝐶

𝜎𝑅

Same query plan (Plan C) for Query 1 and Query 2

Contention increases query run time

Queries affect each others’ run time

11

80 Gbps 40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

QUERY 1

SELECT …

device == “mobile”

…;

QUERY 2

SELECT …

genre == “pc”

…;

⋈

⋈
16 GB

200 GB 200 GB

T1 T3

T2

200 GB

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

𝜎𝐶 ⋈

⋈
12 GB

200 GB 200 GB

T2 T1

T3

200 GB

𝜎𝑃𝐶 𝜎𝑃𝐶

𝜎𝐶

Different query plans for Query 1 (Plan C)
and Query 2 (Plan B)

Queries affect each others’ run time

11

80 Gbps 40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

QUERY 1

SELECT …

device == “mobile”

…;

QUERY 2

SELECT …

genre == “pc”

…;

⋈

⋈
16 GB

200 GB 200 GB

T1 T3

T2

200 GB

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

𝜎𝐶 ⋈

⋈
12 GB

200 GB 200 GB

T2 T1

T3

200 GB

𝜎𝑃𝐶 𝜎𝑃𝐶

𝜎𝐶

Different query plans for Query 1 (Plan C)
and Query 2 (Plan B)No contention of network links

Queries affect each others’ run time

11

80 Gbps 40 Gbps

100 Gbps

T2

DC2

T3

DC3

T1

DC1

QUERY 1

SELECT …

device == “mobile”

…;

QUERY 2

SELECT …

genre == “pc”

…;

⋈

⋈
16 GB

200 GB 200 GB

T1 T3

T2

200 GB

𝜎𝑀𝑜𝑏𝑖𝑙𝑒 𝜎𝑀𝑜𝑏𝑖𝑙𝑒

𝜎𝐶 ⋈

⋈
12 GB

200 GB 200 GB

T2 T1

T3

200 GB

𝜎𝑃𝐶 𝜎𝑃𝐶

𝜎𝐶

Different query plans for Query 1 (Plan C)
and Query 2 (Plan B)No contention of network links

Choosing execution plans jointly for multiple
queries improves performance

Iterative Shortest Job First

QO

QUERY A QUERY B

QO

QUERY C

QO
• Best combination minimize average

completion
• Computationally intractable

12

Iterative Shortest Job First

Clarinet

QO

QUERY A QUERY B

QO

QUERY C

QO
• Best combination minimize average

completion
• Computationally intractable

• Iterative Shortest Job First (SJF)
scheduling heuristic

1. Pick shortest physical query plan in each
iteration

12

Iterative Shortest Job First

Clarinet

QO

QUERY A QUERY B

QO

QUERY C

QO
• Best combination minimize average

completion
• Computationally intractable

• Iterative Shortest Job First (SJF)
scheduling heuristic

1. Pick shortest physical query plan in each
iteration

10 1218 5 8 20 30Iter 1:

12

Iterative Shortest Job First

Clarinet

QO

QUERY A QUERY B

QO

QUERY C

QO
• Best combination minimize average

completion
• Computationally intractable

• Iterative Shortest Job First (SJF)
scheduling heuristic

1. Pick shortest physical query plan in each
iteration

10 1218 5 8 20 30Iter 1:

12

Iterative Shortest Job First

Clarinet

QO

QUERY A QUERY B

QO

QUERY C

QO
• Best combination minimize average

completion
• Computationally intractable

• Iterative Shortest Job First (SJF)
scheduling heuristic

1. Pick shortest physical query plan in each
iteration

• Reserve bandwidth to guarantee
completion time

10 1218 5 8 20 30Iter 1:

0 t
12

B1Link 1

Link 2

5

Iterative Shortest Job First

Clarinet

QO

QUERY A
QUERY B

QO

QUERY C

QO
• Best combination minimize average

completion
• Computationally intractable

• Iterative Shortest Job First (SJF)
scheduling heuristic

1. Pick shortest physical query plan in each
iteration

• Reserve bandwidth to guarantee
completion time

0 t
12

B1Link 1

Link 2

5

Iterative Shortest Job First

Clarinet

QO

QUERY A
QUERY B

QO

QUERY C

QO
• Best combination minimize average

completion
• Computationally intractable

• Iterative Shortest Job First (SJF)
scheduling heuristic

1. Pick shortest physical query plan in each
iteration

• Reserve bandwidth to guarantee
completion time

15 1718 25 30Iter 2:

0 t
12

B1Link 1

Link 2

5

Iterative Shortest Job First

Clarinet

QO

QUERY A
QUERY B

QO

QUERY C

QO
• Best combination minimize average

completion
• Computationally intractable

• Iterative Shortest Job First (SJF)
scheduling heuristic

1. Pick shortest physical query plan in each
iteration

• Reserve bandwidth to guarantee
completion time

15 1718 25 30Iter 2:

0 t
12

B1Link 1

Link 2

5

Iterative Shortest Job First

Clarinet

QO

QUERY A
QUERY B

QO

QUERY C

QO
• Best combination minimize average

completion
• Computationally intractable

• Iterative Shortest Job First (SJF)
scheduling heuristic

1. Pick shortest physical query plan in each
iteration

• Reserve bandwidth to guarantee
completion time

15 1718 25 30Iter 2:

A1

A2

0 t
12

B1Link 1

Link 2

5 157

Avoid fragmentation and improve completion time

13

Avoid fragmentation and improve completion time

• SJF & reservation leads to bandwidth fragmentation

13

Avoid fragmentation and improve completion time

• SJF & reservation leads to bandwidth fragmentation

13

A1

A2

0 t

B1Link 1

Link 2

1210

Scheduled in SJF order

22

Avoid fragmentation and improve completion time

• SJF & reservation leads to bandwidth fragmentation

13

A1

A2

0 t

B1Link 1

Link 2

1210

Scheduled in SJF order

22

Dominant transfers execute
sequentially

Avoid fragmentation and improve completion time

• SJF & reservation leads to bandwidth fragmentation

13

Extended idling

A1

A2

0 t

B1Link 1

Link 2

1210

Scheduled in SJF order

22

Dominant transfers execute
sequentially

Avoid fragmentation and improve completion time

• SJF & reservation leads to bandwidth fragmentation

13

Alternate schedule with same query plans

0 t

B1A1

A2

122

Extended idling

A1

A2

0 t

B1Link 1

Link 2

1210

Scheduled in SJF order

22

Dominant transfers execute
sequentially

Avoid fragmentation and improve completion time

• SJF & reservation leads to bandwidth fragmentation

13

Alternate schedule with same query plans

0 t

B1A1

A2

122

Extended idling

A1

A2

0 t

B1Link 1

Link 2

1210

Scheduled in SJF order

22

Dominant transfers execute
sequentiallyRe-arranging transfers resulting in deviation from

SJF schedule can help

k-Shortest Jobs First Heuristic

14

Link 1

Link 2

Link n
Offline schedule

t

k-Shortest Jobs First Heuristic

14

Link 1

Link 2

• Identify transfers of k-shortest yet incomplete jobs

Link n
Offline schedule

t

k-Shortest Jobs First Heuristic

14

Link 1

Link 2

• Identify transfers of k-shortest yet incomplete jobs
• Relax transfer schedule  Start as soon as link is free and task is available

Link n
Offline schedule

t

k-Shortest Jobs First Heuristic

14

Link 1

Link 2

• Identify transfers of k-shortest yet incomplete jobs
• Relax transfer schedule  Start as soon as link is free and task is available
• Best ’k’ Prior observations (or) through offline simulations

Link n
Offline schedule

t

Clarinet Implementation

15

QUERY 1 QUERY 2 QUERY 3

QO QO QO Existing Query Optimizers

Batch of queries

Clarinet Implementation

15

QUERY 1 QUERY 2 QUERY 3

QO QO QO Existing Query Optimizers
• Modified Hive to generate multiple

plans

Batch of queries

Clarinet Implementation

15

QUERY 1 QUERY 2 QUERY 3

QO QO QO Existing Query Optimizers
• Modified Hive to generate multiple

plans
• QOs control set of generated plans
• Existing optimizations are applied

• Push down Select
• Partition pruning

Batch of queries

Clarinet Implementation

15

QUERY 1 QUERY 2 QUERY 3

QO QO QO Existing Query Optimizers
• Modified Hive to generate multiple

plans
• QOs control set of generated plans
• Existing optimizations are applied

• Push down Select
• Partition pruning

Batch of queries

Enforces Clarinet’s schedule

Clarinet

Execution framework

Clarinet Implementation

15

QUERY 1 QUERY 2 QUERY 3

QO QO QO Existing Query Optimizers
• Modified Hive to generate multiple

plans
• QOs control set of generated plans
• Existing optimizations are applied

• Push down Select
• Partition pruning

Batch of queries

Enforces Clarinet’s schedule
• Modified Tez’s DAGScheduler

Clarinet

Execution framework

Clarinet Implementation

15

QUERY 1 QUERY 2 QUERY 3

QO QO QO Existing Query Optimizers
• Modified Hive to generate multiple

plans
• QOs control set of generated plans
• Existing optimizations are applied

• Push down Select
• Partition pruning

Batch of queries
Online query arrivals

Enforces Clarinet’s schedule
• Modified Tez’s DAGScheduler
• Fairness guarantees

Clarinet

Execution framework

16

Evaluation

Compare Clarinet with following GDA approaches:

16

Evaluation

1. Hive
2. Hive + Iridium
3. Hive + Reducers in single DC

Compare Clarinet with following GDA approaches:

16

Evaluation

1. Hive
2. Hive + Iridium
3. Hive + Reducers in single DC

: WAN agnostic task placement + scheduling

Compare Clarinet with following GDA approaches:

16

Evaluation

1. Hive
2. Hive + Iridium
3. Hive + Reducers in single DC

: WAN agnostic task placement + scheduling
: WAN aware task placement across DCs

Compare Clarinet with following GDA approaches:

16

Evaluation

1. Hive
2. Hive + Iridium
3. Hive + Reducers in single DC

: WAN agnostic task placement + scheduling
: WAN aware task placement across DCs
: Distributed filtering + central aggregation

Compare Clarinet with following GDA approaches:

16

Evaluation

1. Hive
2. Hive + Iridium
3. Hive + Reducers in single DC

: WAN agnostic task placement + scheduling
: WAN aware task placement across DCs
: Distributed filtering + central aggregation

Compare Clarinet with following GDA approaches:

• Geo-Distributed Analytics stack across 10 EC2 regions

16

Evaluation

1. Hive
2. Hive + Iridium
3. Hive + Reducers in single DC

: WAN agnostic task placement + scheduling
: WAN aware task placement across DCs
: Distributed filtering + central aggregation

Compare Clarinet with following GDA approaches:

• Geo-Distributed Analytics stack across 10 EC2 regions

• Workload:
• 30 batches of 12 randomly chosen TPC-DS queries

Evaluation: Reduction in average completion time

17

GDA Approach
Vs. Hive

Average Gains

Clarinet 2.7x

Hive + Iridium 1.5x

Hive + Reducers in
single DC

0.6x

Evaluation: Reduction in average completion time

17

GDA Approach
Vs. Hive

Average Gains

Clarinet 2.7x

Hive + Iridium 1.5x

Hive + Reducers in
single DC

0.6x

Clarinet chooses a different plan
for 75% of queries

Evaluation: Reduction in average completion time

17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41 46 51 56

C
D

F

Link ID sorted by bandwidth

WAN
bandwidth
distribution

Hive bytes
distribution

Clarinet bytes
distribution

Data from a single batch 12 queries

GDA Approach
Vs. Hive

Average Gains

Clarinet 2.7x

Hive + Iridium 1.5x

Hive + Reducers in
single DC

0.6x

Clarinet chooses a different plan
for 75% of queries

Evaluation: Reduction in average completion time

17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41 46 51 56

C
D

F

Link ID sorted by bandwidth

WAN
bandwidth
distribution

Hive bytes
distribution

Clarinet bytes
distribution

Data from a single batch 12 queries

GDA Approach
Vs. Hive

Average Gains

Clarinet 2.7x

Hive + Iridium 1.5x

Hive + Reducers in
single DC

0.6x

Clarinet chooses a different plan
for 75% of queries

Evaluation: Reduction in average completion time

17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41 46 51 56

C
D

F

Link ID sorted by bandwidth

WAN
bandwidth
distribution

Hive bytes
distribution

Clarinet bytes
distribution

Data from a single batch 12 queries

GDA Approach
Vs. Hive

Average Gains

Clarinet 2.7x

Hive + Iridium 1.5x

Hive + Reducers in
single DC

0.6x

Clarinet chooses a different plan
for 75% of queries

18

Evaluation: Optimization overhead

18

Evaluation: Optimization overhead

1. Generate multiple query plans

2. Iterative multi-query plan selection

18

Evaluation: Optimization overhead

1. Generate multiple query plans
• Up to 64 plans in less than 5 s

2. Iterative multi-query plan selection

18

Evaluation: Optimization overhead

1. Generate multiple query plans
• Up to 64 plans in less than 5 s

2. Iterative multi-query plan selection
• Max. 15 s for batches with 12 queries

18

Evaluation: Optimization overhead

1. Generate multiple query plans
• Up to 64 plans in less than 5 s

2. Iterative multi-query plan selection
• Max. 15 s for batches with 12 queries

Insignificant w.r.t. query running times (order of 10’s of minutes)

Summary

• WAN-awareness in QO +
cross-layer optimization

19

Distributed Storage Layer

Distributed Execution Layer

Query Optimizer Clarinet

Summary

• WAN-awareness in QO +
cross-layer optimization

• Presented a scalable way to
implement multi-query
optimization with minimal
overhead

19

Distributed Storage Layer

Distributed Execution Layer

Query Optimizer Clarinet

Summary

• WAN-awareness in QO +
cross-layer optimization

• Presented a scalable way to
implement multi-query
optimization with minimal
overhead

19

Distributed Storage Layer

Distributed Execution Layer

Query Optimizer Clarinet

2.7x
Reduction in
average
completion
time

