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Abstract Frequent episode discovery is a popular framework for temporal pattern
discovery in event streams. An episode is a partially ordered set of nodes with each
node associated with an event type. Currently algorithms exist for episode discovery
only when the associated partial order is total order (serial episode) or trivial (paral-
lel episode). In this paper, we propose efficient algorithms for discovering frequent
episodes with unrestricted partial orders when the associated event-types are unique.
These algorithms can be easily specialized to discover only serial or parallel episodes.
Also, the algorithms are flexible enough to be specialized for mining in the space of
certain interesting subclasses of partial orders. We point out that frequency alone is
not a sufficient measure of interestingness in the context of partial order mining. We
propose a new interestingness measure for episodes with unrestricted partial orders
which, when used along with frequency, results in an efficient scheme of data mining.
Simulations are presented to demonstrate the effectiveness of our algorithms.
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1 Introduction

Frequent episode discovery (Mannila et al. 1997) is a popular framework for dis-
covering temporal patterns in symbolic time series data, with applications in several
domains like manufacturing (Laxman 2006; Unnikrishnan et al. 2009), telecommu-
nication (Mannila et al. 1997; Hitonen et al. 1996), WWW (Laxman et al. 2008),
biology (Bouqata et al. 2006; Patnaik et al. 2008), finance (Nag and Fu 2003), intru-
sion detection (Luo and Bridges 2000; Wang et al. 2008), text mining (Iwanuma et al.
2004) etc. The data in this framework is a single long time-ordered stream of events
and each temporal pattern (called an episode) is essentially a small, partially ordered
collection of nodes, with each node associated with a symbol (called event-type). The
partial order in the episode constrains the time-order in which events should appear in
the data, in order for the events to constitute an occurrence of the episode. The task is
to unearth all episodes whose frequency in the data exceeds a user-defined threshold.

Currently, there are algorithms in the literature for discovering frequent episodes
if we restrict our attention to only serial episodes (where the partial order is a total
order) or only parallel episodes (where the partial order is trivial) (Mannila et al.
1997; Casas-Garriga 2003; Laxman et al. 2005; Laxman 2006; Patnaik et al. 2008).
However, no algorithms are available for the case of episodes with unrestricted partial
orders. In this paper we present a new data mining method to discover episodes with
unrestricted partial orders from event streams. We begin with a brief overview of the
frequent episodes framework (Mannila et al. 1997). Then, in the rest of this section
we explain the contributions of this paper in the context of current episodes literature.

1.1 Episodes in event streams

In the frequent episode framework (Mannila et al. 1997), the data, referred to as an
event sequence, is denoted by D = ((E1, t1), (E2, 1), ... (Ey, ty)), where n is the
number of events in the data stream. In each tuple (E;, t;), E; denotes the event-type
and ¢; the time of occurrence of the event. The E;, take values from a finite set, £. The
sequence is ordered so that, ; < ;4 fori =1,2,....

The event-types denote some information regarding nature of each event and they
are application-specific. For example, event stream could represent a sequence of
user actions in a browsing session (Laxman et al. 2008) and then event-types denote
some relevant information about type of buttons clicked by the user. Another exam-
ple could be an event stream of fault alarms in an assembly line in a manufacturing
plant (Unnikrishnan et al. 2009) and the event-types represent some codes that char-
acterize each such fault-reporting event. The objective is to analyze such sequential
data streams to unearth interesting temporal patterns that are useful in the context of
applications. In the above two applications, we may be interested in temporal patterns
that may enable us to predict user behavior in a browsing session or to diagnose the
root-cause for some fault alarm that is currently seen.
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Injective episodes with general partial orders 69

The temporal patterns that we may wish to represent and discover are called epi-
sodes which we formally define below after explaining some relevant mathematical
notations. Given any set V, a relation R over V (which is a subset of V x V) is said to
be a strict partial order if it is irreflexive (i.e., for all v € V, (v, v) ¢ R), asymmetric
(i.e., (v1, v2) € R implies that (v2, v1) ¢ R, for all distinct vy, v € V) and transitive
(i.e., Yv, v2,v3 € V, (v1, v12) € R and (v3, v3) € R implies that (v, v3) € R). We
note that when R is a strict partial order, there can be vy, vy such that neither (vy, v2)
nor (v, v1) belong to R. If R is a strict partial order, and, in addition, it is true that
given any pair of distinct elements vy, vy € V, either (v, v2) € R or (v2,v1) € R,
then, we say R is a total order. In the rest of the paper we use the term partial order to
denote a strict partial order. (In the standard mathematical terminology, the difference
is that a partial order is a relation that is asymmetric, transitive and reflexive. Thus, on
a set of sets, the relation ‘subset of” is a partial order while ‘strict subset of” is a strict
partial order.) We write v Rv; to denote (vy, v2) € R. We also note that if R is empty
(i.e., a null set) then R is (vacuously) a partial order.

Definition 1 (Mannila et al. 1997) An N-node episode «, is a tuple, (Vy, < 8«),
where V,, = {v1, v2, ..., vy} is a collection of nodes, <, is a (strict) partial order on
Vy and gy : V, — & is a map that associates each node with an event-type from £.

In other words, an episode is a multiset with a partial order on it. When <, is a
total order, « is referred to as a serial episode and when <, is empty, « is referred
to as a parallel episode. In general, since <, is defined to be a partial order, epi-
sodes can be neither serial nor parallel. An example of a three-node episode could be
o = (Vy, <a, &), Where v <4 v2 and v] <4 v3, and g4 (V1) = B, go(v2) = A,
g« (v3) = C. Asasimple graphical notation, we represent this episode as (B — (A C))
because it captures the essence of the temporal pattern represented by this episode,
namely, B is followed by A and C in any order. Similarly, a parallel episode with
event-types A and B is denoted as (A B). Figure 1 shows some examples of episodes.

Definition 2 (Mannila et al. 1997) Given a data stream, ((Eq, t1), ..., (E,, t;)) and
an episode o = (Vy, <q, &«), an occurrence of « in the data stream is a map h:
Vo — {1, ..., n} such that g4 (v) = Ej)VYv € Vg, and Vv, w € V, v <o w, implies
Thv) < th(w)-

We can represent an occurrence of the episode by the events which constitute the
occurrence. Figure 2 gives a data stream indicating some occurrences of (B — (A C)),
with each occurrence marked with the same color. In this event sequence, the set of
events ((B, 3), (A, 3), (C, 8)), for instance, does not represent an occurrence as A
doesn’t occur strictly after B.

/A E——C
B
A—B— A A B C \C FL<D
(@) (A= B — A) (b) (ABC) (©) (B—(AC)) d) (EF)— (CD))

Fig. 1 Example episodes: a a serial episode, b a parallel episode, ¢, d general episodes
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@D @D (7.9 @D & .5, @D @D B CA @D

Fig. 2 Occurrences of (B — (A C))

C E——C E—C E——C
E—C E F g—
T>p F4D F>>‘D F——D
(a) (b) (c) (d) (e) ®)

Fig. 3 Example subepisodes of ((E F) — (C D)) (Fig. 1d)

(D D (7:2), (5,5, D (6.5, (€,5), (4.5, BID D @I

Fig. 4 Maximal set of non-overlapped occurrences of (B — (A C))

Definition 3 (Mannila et al. 1997) Episode B = (Vg, <g, gg) is said to be a subepi-
sode of & = (Vy, <q, 8o) (denoted B < «) if there existsa 1 — 1 map fgo: Vg — Vy
such that (i) gg(v) = guo(f8a(v))Yv € Vg, and (ii) Vv, w € Vg withv <g w, we have
fﬂa(v) <a fﬁa(w) in V.

Thus, (B — A), (B — C) and (AC) are two-node subepisodes of (B — (AC))
while (BAC) is a three-node subepisode of it. Figure 3 illustrates a number of subep-
isodes of ((E F) — (C D)). The importance of the notion of subepisode is that if
B < «a, then every occurrence of « contains an occurrence of 8 (Mannila et al. 1997).
We say B is a strict subepisode of o if § < @ and o # 8.

Given an event sequence, the data mining task is to discover all frequent episodes,
i.e., episodes whose frequencies exceed a given threshold. Frequency is some measure
of how often an episode occurs. The frequency of episodes can be defined in many
ways (Mannila et al. 1997; Laxman et al. 2005; Iwanuma et al. 2004). In this paper,
we consider the non-overlapped frequency (Laxman et al. 2005).

Definition 4 (Laxman et al. 2005) Consider a data stream (event sequence), D, and an
N-node episode, «. Two occurrences /1 and &, of « are said to be non-overlapped in D
if either max; ) < min.,' thz(vj) Or max; fp, (v;) < minj thl(vj)~ A set of occurrences
is said to be non-overlapped if every pair of occurrences in the set is non-overlapped.
A set H, of non-overlapped occurrences of « in D is maximal if |H| > |H'|, where
H' is any other set of non-overlapped occurrences of o in . The non-overlapped
frequency of « in D (denoted as f;,) is defined as the cardinality of a maximal set of
non-overlapped occurrences of « in D.

Two occurrences are non-overlapped if no event of one occurrence appears in
between events of the other. The notion of a maximal set of non-overlapped occur-
rences is needed since there can be many sets of non-overlapped occurrences of an
episode with different cardinality. Figure 4 shows a maximal set of non-overlapped
occurrences of (B — (A C)) in the data sequence of Fig. 2. Thus the frequency of
(B — (A Q) is 2. Another maximal set of non-overlapped occurrences for example
would be {{(B, 3), (C, 5), (A,5)), ((B, 6), (C, 8), (A, 9))} in the same data stream. In
the rest of the paper, whenever we refer to frequency of an episode, (unless otherwise
mentioned) we mean non-overlapped frequency.
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1.2 Discovering episodes with unrestricted partial orders

The temporal data mining framework of frequent episodes is introduced in Mannila
et al. (1997) where an episode is defined as a collection of event-types along with a
partial order over them (cf. Definition 1). However, in Mannila et al. (1997) as well as in
all subsequent work in this area, the algorithms proposed for frequent episode discov-
ery are capable of handling only serial or parallel episodes.! In Mannila et al. (1997),
two notions of frequency of episodes, namely, windows-based frequency and minimal
occurrences based frequency were proposed and algorithms to mine for serial or par-
allel episodes were presented under these two frequencies. Further refinements for the
windows-based frequency were proposed in Casas-Garriga (2003) and Iwanuma et al.
(2004). The notion of nonoverlapped occurrences based frequency was introduced in
Laxman et al. (2005) where an algorithm for discovering frequent serial episodes was
also presented. A very efficient algorithm for discovering serial episodes under the
nonoverlapped occurrences based frequency was proposed in Laxman et al. (2007a).
There has also been work on assessing the statistical significance of the discovered
patterns (Laxman et al. 2005; Tatti 2009; Sastry and Unnikrishnan 2010). While all the
algorithms are for mining serial/parallel episodes only, there are other generalizations
of the episodes framework that have been addressed. For example, a generalization
where different events have different time durations and the episode structure allows
for specifying patterns that also depend on time durations of events, is presented in
Laxman et al. (2007b). However, that paper also deals with only serial episodes of this
generalized kind. Thus, though the framework of frequent episodes in event streams
is more than 10 years old now, the problem of discovering frequent episodes with
unrestricted partial orders is still largely an open problem. This is the problem that is
addressed in this paper.

Frequent episodes essentially capture sets of event-types that repeat often in a spec-
ified order in the data and hence are generally useful as patterns that capture some
dependencies or causative influences which are important in the process generating the
data. For example, when the data is the sequence of user actions in a browsing session
(Laxman et al. 2008), frequent episodes can be useful for deriving rules for predicting
a future action (e.g., changing the search engine) of the user. In the application of
analyzing fault alarms in a manufacturing plant (Laxman 2006; Unnikrishnan et al.
2009), a frequent episode ending in an event-type, say, A, can be useful for analyzing
the root causes for the fault type A.

In this context, restricting our attention to only serial or only parallel episodes may
severely restrict our ability to represent and discover all the useful dependencies in the
data. For example, if we discover only serial episodes in the application of analyzing
fault report logs in a manufacturing process (Laxman 2006), then we can only discover

I However, much after the initial submission of this manuscript there has appeared a recent paper (Tatti and
Cule 2010) which also addresses the problem of mining general partial order episodes from a single long
event stream. It mines based on the windows based frequency as opposed to the non-overlapped frequency
we use here (unlike the windows based frequency, this is an occurrences based measure). It mines based
on frequency alone as an interestingness measure as opposed to our approach here where we consider
both frequency and bidirectional evidence (a measure we introduce in this paper for general partial order
episodes).
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dependencies in the form a single chain of events each causing the other. However,
many useful dependencies can be in the form of graphs where, for example, two faults
A and B, occurring in any order (but within some time) may cause a fault C. Similarly,
the needed dependency structure for predicting a user action in a browsing session
may be a graph. To be able to discover such dependencies also, we need methods that
can mine for episodes with unrestricted partial orders.

As another example, consider the problem of analyzing multi-neuronal spike train
data (Brown et al. 2004). Here, the data consists of a series of spikes (or action poten-
tials) recorded simultaneously from a number of potentially interacting neurons in a
neural tissue. Such data would be a mixture of spontaneous stochastic spiking activity
of the individual neurons (or that of neurons weakly interacting with each other) as
well as some coordinated spiking by groups of neurons that have strong interactions
among them. Unearthing the patterns of strong interactions will help in inferring func-
tional connectivities in the neural tissue and this is a problem of current interest in
computational neuroscience (Diekman et al. 2009). Frequent episode methods based
on discovery of serial or parallel episodes has been explored in this application (Patnaik
et al. 2008). However, most microcircuits or functional connectivity patterns would
be in the form of graphs and hence one needs methods that can discover episodes with
general partial orders. In this paper, we present some simulation results to illustrate
the effectiveness of our algorithms for analyzing multi-neuronal spike train data.

While developing a priori-based methods for mining unrestricted partial orders,
there are three important issues to be considered. First is that of a counting algo-
rithm that can track and count occurrences of episodes with general partial orders.
In this paper we present an algorithm for counting nonoverlapped occurrences of
episodes with unrestricted partial orders that can be viewed as an extension of the
algorithm for serial episodes as in Laxman et al. (2005). The second issue is that of
an efficient scheme for candidate generation. When considering serial/parallel epi-
sodes, given two n-node episodes, generating (n + 1)-node episodes is relatively
simple because there is only one place in the partial order graph where a new event-
type can be attached. This is not true for general partial order graphs. In this paper,
we present a novel algorithm for candidate generation for which it is proved that
all episodes that would be frequent would be generated and that no episode would
be generated twice. (In our method, we assume that the event-types in an episode
are all distinct. We call such episodes injective episodes which are precisely defined
in Sect. 2.) An interesting feature of our candidate generation algorithm is that we
can easily specialize the method to focus the search on many interesting subclasses
of partial orders including only serial episodes or only parallel episodes. The third
issue that becomes important while mining for unrestricted partial orders (irrespec-
tive of the discovery method) is that frequency alone is insufficient as an indicator
of the interestingness of an episode. We argue here that we need another measure, in
addition to frequency, to properly assess the support for a general partial order epi-
sode in the data stream. Towards this end, in this paper we propose a novel notion
of ‘interestingness’ for episodes with unrestricted partial orders which we call bidi-
rectional evidence. We show that this bidirectional evidence, when used along with
frequency, results in an efficient method for discovering episodes with unrestricted
partial orders.
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The main contribution of the paper is a new method for discovering interesting epi-
sodes with unrestricted partial orders from event streams. To validate our method, we
present simulation results on synthetically generated data streams. The main reason
for using synthetic data is that, we would then know the ground truth. By generating
data streams where we embed specific partial orders, we demonstrate the effectiveness
of our method in unearthing the hidden dependencies in the form of unrestricted partial
orders, present in the data. We show that the algorithm scales well with data length
and number of embedded patterns in the data. We also briefly discuss one application
area, namely, analyzing multi-neuronal spike train data which is described earlier.

The rest of this paper is organized as follows. In Sect. 2, we define injective epi-
sodes. The candidate generation step is described in Sect. 3. Section 4 describes our
new interestingness measure. Finite state automata (FSA) for tracking occurrences
of injective episodes and algorithms using these automata for counting frequencies
of episodes with unrestricted partial orders are described in Sect. 5. At the end of
that section, we describe how the bidirectional evidence can be computed along with
frequency counting and substantiate that in most reasonable scenarios, an additional
threshold based on bidirectional evidence at each level filters the uninteresting epi-
sodes while retaining the interesting ones. We present simulation results in Sect. 6. We
discuss the related work in the sequential patterns literature and conclude in Sect. 7.

2 Injective episodes

In this paper, we consider a sub-class of episodes called injective episodes. An episode,
o = (Vy, <4, 8&«) 18 said to be injective if g, is an injective map, that is, the labels
or the associated event-types in the episode are unique. For example, (B — (AC)) is
an injective episode, while (B — (AC) — B) is not. Thus, an injective episode, is
simply a subset of event-types (out of the alphabet, £) with a partial order defined over
it. This subset, which we will denote by X¢, is same as the range of g,. The partial
order that <, induces over X“ is denoted by R“. From now on, unless otherwise
stated, when we say episode we mean an injective episode.

Although (X%, R¥) is a simpler notation, sometimes, e.g., when referring to epi-
sode occurrences, (Vy, <4, 8¢) notation comes in handy. However, there can be mul-
tiple (Vy, <« o) representations for the same underlying pattern under Definition 1.
Consider, for example, 2 three-node episodes, oy = (V|, <q,, 8;) (Fig. 5a) and
ar = (Va, <a,, 8a,) (Fig. 5b), defined as: (i) Vi = {v1, v2, v3} with v <4, v2,
V] <q; V3 and go, (V1) = B, 8o, (v2) = A, g4, (v3) = C, and (ii)) V2 = {vy, v2, v3}
with vy <g, V1, V2 <g, V3 and gqu, (V1) = A, g, (v2) = B and g, (v3) = C. Both o
and «; represent the same pattern namely (B — (A C), and they are indistinguishable

Fig. 5 Two distinct A A
representations of the same @ @
pattern (B — (AC)) B @ B @
@9 ¢ g
(a) [e %] (b) [e P}

@ Springer



74

A. Achar et al.

Table 1 Some example episodes

Vo = {v1,v2,v3}. Vo = {v1,v2,v3,v4}. Vo = {v1,v2,v3,v4,05}.
ga(v1):A,ga(’U2):B, goz(’Ul):Cagoz(’UQ):Dy ga(vl):Gyga(vz):H,ga('Uii):
ga(v3) = C. ga(v1) = E,ga(v2) = F. I, ga(va) = J, ga(vs) = K.
<a= {(v2,v1), <a= {(v3,v1), (v3,v2) <a= {(v1,v4), (v1,v5), (v2,v1)
(v3,v1)(v3, v2)}. (v4, 1), (va,v2)}. (v2,v3), (v2,v4), (v2,5)}
(C—-B—A) ((EF)— (CD)) (H—- (G- (JK))I))
[A][B]C] [CIDJE]F] [GIHJT[]J[K]
00011
000 8 8 8 8 10111
100 1100 00000
110 1100 00000
00000
A+——B+——C C@F G@K

First row gives the (Vy, <q, o) notation. Second row gives the graphical notation. Third row gives the
array of event-types, «.g, which is the X set ordered as per the lexicographic ordering on £. Fourth row
shows the corresponding adjacency matrix, a.e. This is a representation of the relation R*. Last row shows
the partially ordered set (X%, R%) graphically with event-types placed in order as in «.g

based on their occurrences, no matter what the given data sequence is (there is no such
ambiguity in the (X%, R%) representation). To obtain a unique (V,, <4, g4) represen-
tation for o, we assume a lexicographic order over the alphabet, £, and ensure that
(ga(v1), ..., g« (vN)) is ordered as per this ordering. Note that this lexicographic order
on & is not related in anyway to the actual partial order, <. Referring to the earlier
example involving o and «p, we will use a to denote the pattern (B — (AC)).2

Each ¢-node episode in our algorithms is represented by an £-element array of
event-types, a.g, and an ¢ x ¢ matrix, «.e, containing the adjacency matrix of the
partial order. For an episode o = (V,,, <q, 8a), @-gli] = go(v;i) and a.e[i][j] = 1 iff
v; <q vj.Since we work with representations where (g4 (v1), . .., g« (vn)) is ordered
as per this lexicographic ordering on &, the array «.g would contain the elements of
X% sorted as per this lexicographic ordering. We refer to «.g[1] as the first node of
o, a.g[£] as the last node of & and so on. Note that this notion of ith node of an episode
has no relationship whatsoever with the associated partial order R*.

If « and B are injective episodes, and if 8 < « (cf. Definition 3), then the associated
partial order sets are related as follows: Xg € X, and Rg € R,. Some examples of
injective episodes, illustrating different notations, is given in Table 1.

2 In all our examples, the event-types are alphabets with the usual lexicographic ordering.
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The data mining task is to extract all episodes whose frequency (i.e., the number
of non-overlapped occurrences) exceeds a user-defined threshold. Like most current
algorithms for frequent serial/parallel episode discovery (Mannila et al. 1997; Laxman
et al. 2005), we use an A priori-style level-wise procedure for mining. Each level has
two steps: candidate generation and frequency counting.

In our method of discovering frequent episodes with unrestricted partial orders,
the reason for restricting our attention to injective episodes is mainly to ensure an
unambiguous representation for all patterns of interest. Such an unambiguous repre-
sentation is needed for the efficient candidate generation method proposed here. We
explain this in greater detail in Remark 2 towards the end of Sect. 3.

3 Candidate generation

In this section, we describe the candidate generation algorithm for injective epi-
sodes with unrestricted partial orders. Under the frequency measure (based on
non-overlapped occurrences) we know that no episode can be more frequent than any
of its subepisodes. The candidate generation method uses this property to construct the
set, Co+1, of (£ 4+ 1)-node candidate episodes given Fy, the set of frequent episodes of
size .

3.1 Steps in candidate generation

Each (£ + 1)-node candidate in Cy is generated by combining two suitable £-node
frequent episodes (out of F7). The method of constructing Cyp+; has three main steps:

1. Picking suitable pairs of episodes from F.
Combining each such pair to generate up to three episodes of size £ + 1 which
we call potential candidates.

3. Finally constructing Cy| by retaining only those potential candidates for which
each of their £-node subepisodes are in F.

We explain each of these steps below.

3.1.1 Pairs of episodes that can be combined

For any episode a, let X* = {x{, ..., x;} denote the ¢ distinct event-types in «,
indexed in lexicographic order. Two episodes o1 and oy can be combined if the fol-
lowing hold:

Loox=xi=1,...,0—=1),x" #x,°.
Ry Wy = R"‘ZI(XQZ\{X:Z;}); that is, the restriction of R*! to the first (£ — 1)

nodes of «; is identical to the restriction of R*2 to the first (£ — 1) nodes of a5.
This means, (x;, x;) € R*" ifand only if (x;, x;) € R* fori, j =1,...,(£—1).

To ensure that the same pair of episodes are not picked up two times, we follow the
convention that oy and ap are such that xg‘ < xgz under the lexicographic ordering.
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@ g
AK\C\, (D)
/—\ ’
A/B\\C/D
potential candidates g/)
+ AAAAAAAAAAANANANANS A——B C 1)
Vo, V1,Y2. ¥\;\
S\ .
A/Q/E )
A@Q (2)
E

Fig. 6 An example where all combinations are potential candidates

As an example, consider the episodes (C — A — B) and ((AB) — D) which sat-
isfy the first condition in the above para. These would not be combined since different
subepisodes, namely (A — B) and (AB), are obtained on dropping their last nodes
(which are C and D respectively). On the other hand, episodes (B - A — D — C)
and (B - A — E — (), whose last nodes are D and E respectively, would be
combined since the same subepisode, namely (B — A — C) is obtained by drop-
ping their last nodes. These two episodes are shown in the left part of Fig. 6 where
the episodes are listed so that the event-types are in lexicographic ordering and all the
edges of the partial order are shown (the rest of the figure is explained after we explain
our second step).

3.1.2 Finding potential candidates

Given o and a», satisfying the two conditions mentioned earlier, we first construct
three possible episodes of size (£ + 1), (ny, Ryi), i=0,1,2,as:

x% = x* 1 uxe, RY=RUUR® 40
XV =x1ux®, RN =RV U{(x, 1)) )
XY= xux®, R =R U{( 1)} 3)

For each of j = 0, 1, 2, if RYi is a valid partial order over ny, then the (£ + 1)-
node (injective) episode, (X Yi, RYi) is considered as a potential candidate. To verify
the same, we need to check antisymmetry and transitivity of each RYj. One can
show that each RY always satisfies antisymmetry because o and «p share the same
(£ — 1) subepisode on dropping their last nodes. Since (R*!' U R*?) C RYi and since
(X%, R*") and (X*2, R“?) are known to be transitively closed, we need to perform the
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A B—Nce—p

/’\ E

potential candidates /
1)

’ S
E

potential candidates
+ ANNANNNNANNNNNNNNA

Yo, V1

)

Fig. 8 An example where only )y and ) are potential candidates
transitivity check only for all size-3 subsets of X2/ that are of the form ()t X X
1 <i < (£ — 1)}. Hence, the transitivity check is O(£).

The above method of combining suitable pairs of episodes to generate potential
candidates is illustrated in Fig. 6. In this example it so turns out that all the three com-
binations are valid partial orders and hence are potential candidates. These are shown
on the right side of the figure. However, not all pairs of episodes can be combined
in this manner to obtain three potential candidates. Figures 7 and 8 show examples
where only one or two potential candidates are obtained.

We can intuitively think of )y as parallel episode building block and Y; and )% as
serial episode building blocks. For example, consider the case where we use only the
Yo combination at all levels. At level 1, all episodes are such that the partial order is
null. Hence, if we use only the ) option then at level 2 also all partial orders generated
would be empty. Thus, the resulting partial orders continue to be empty at all levels
and we would be generating only parallel episodes if we use only the )y combination
at all levels. Similarly, if we use only the valid Y and ) options at each level, then
all the potential candidates would be only serial episodes. For example, the serial epi-
sodes (A — B) and (C — A) can be combined only as a }» combination yielding
(C — A — B).lItis easy to see that their )); combination is not a valid partial order.
However, using all three combinations at each level, allows us to generate all relevant
partial orders as proved later on in this section.

3.1.3 Forming the final candidate episodes

The final step of candidate generation is to decide which of the potential candidates are
actual candidates and hence can be placed in C;4 1. For this, we need to check whether
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all the £-node subepisodes of a potential (¢ + 1)-node candidate are frequent, that is,
they are in F,. The number of such sub-episodes can in general be large. For example,
consider a three-node episode (X* = {A, B, C}, R* = {(A, B), (A, C)}). Under our
graphical notation, this is the episode (A — (B C)). Its two-node sub-episodes are
the serial episodes (A — B) and (A — C), and parallel episodes (A B), (A C) and
(B C). Soin general, an (¢ + 1)-node injective episode has more than (£ 4+ 1) number
of £-node subepisodes. Let us consider those £-node sub-episodes of (X%, R%) which
are obtained by restricting R* to an £-element subset of X*. We can have (¢ + 1)
such subepisodes. In this example, (A — B), (A — C) and (B C) are the 3 two-node
subepisodes of o obtained by restricting R* to all the possible 2-element subsets of
X“. Note that the remaining two-node subepisodes of (A — (B C)), namely (A B)
and (A C), are subepisodes of one or the other of these 3 two-node subepisodes. We
call subepisodes of o obtained like this by restricting R* to a strict subset of X¢ as
maximal subepisodes of «. It is easy to see that if the maximal ¢-node subepisodes
of a potential (¢ + 1)-node candidate are frequent, then all its £-node subepisodes
would also be frequent. Hence, while deciding which potential candidates are actual
candidates, it is enough to check if all the £-node maximal subepisodes are frequent.

Remark 1 The candidate generation scheme described above is such that an ¢-node
episode is generated as a final candidate if and only if all its (¢ — 1)-node subepisodes
are frequent. In the context of general partial order episodes, it is worth noting that
an £-node episode can have subepisodes of the same size. Hence, it might also be
better (from an efficiency point of view) to exploit this part of the subepisode struc-
ture as well, while generating an £-node candidate episode. However, there are two
issues with this approach, one of which would be clear after one understands bidirec-
tional evidence, a new measure of interestingness for general partial order episodes
introduced in this paper. Hence, we discuss this issue and explain the reasons for the
strategy of candidate generation that we chose, in Sect. 7.

3.2 Implementation of the candidate generation algorithm

For a given frequent episode o1, we now describe how one can efficiently search
for all other combinable frequent episodes of the same size. Let Fy[i] denote the ith
episode in the collection, F;, of ¢-node frequent episodes. At level 1 (i.e., £ = 1),
we ensure that Fj is ordered according to the lexicographic ordering on the set of
event-types £. Suppose F| consists of the frequent episodes A, C and E, then we
have Fi[1] = A, F1[2] = C and F1[3] = E. All the 3 one-node episodes share the
same subepisode, namely, ¢, on dropping their last event. As per the candidate gen-
eration algorithm, any 2 one-node episodes are combined to form a parallel episode
and two serial episodes. For example A and C are combined to form (AC), (A — C)
and (C — A). Accordingly here, episode A is combined with C and E to form 6
candidates in Cp. Similarly, C is combined with E to add three more candidates to

3 We define maximal subepisodes as follows. Let o = (X%, R¥) be an ¢-node episode. Let B = (XP, RP)
where XP is a k-element subset of X% and R” is the restriction of R¥ to Xﬂ, k < €. Then, B is called a
k-node maximal subepisode of «.
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C». Note that the first six candidates share the same one-node subepisode, namely,
A on dropping their last event. Also, the next three candidates share the same one-
node subepisode, C, on dropping their last event. The candidate generation procedure
adopted at each level here, is such that the episodes which share the same subepisode
on dropping their last events appear consecutively in the generated list of candidates,
at each level. We refer to such a set of episodes as a block. In addition, we maintain
the episodes in each block so that they are ordered lexicographically with respect to
the array of event-types. Since, the block information aids us to efficiently decide the
kind of episodes to combine, at each level right from level one, we store the block
information. At level 1, all nodes belong to a single block. For a given a1 € Fy,
the set of all valid episodes, o3, (satisfying the conditions explained before) with
which o can be combined, are all those episodes placed below o (except the ones
which share the same set of event types with «1) in the same block. All candidate
episodes obtained by combining a given o with all permissible episodes below it in
the same block of Fy, will give rise to a block of episodes in Cy4 1, each of them
having «; as their common £-node sub-episode on dropping their last nodes. Hence,
the block information of Cy1 can be naturally obtained during its construction itself.
Even though the episodes within each block are sorted in lexicographic order of their
respective arrays of event-types, we point out that the full F, doesn’t obey the lex-
icographic ordering based on the arrays of event-types. For example, the episodes
((AB) — ()) and (A — (BC()) both have the same array of event-types, but would
appear in different blocks because different subepisodes are obtained by dropping
their last nodes. Thus, for example, an episode like ((AB) — D) appears in the same
block as ((AB) — C), while (A — (BC)), since it belongs to a different block, may
appear later in Fy.

The pseudocode for the candidate generation procedure, GenerateCandi-
dates (), is listed in Algorithm 1. The input to Algorithm 1 is a collection,
Fu, of £-node frequent episodes (where, Fy¢[i] is used to denote the ith epi-
sode in the collection). The episodes in F, are organized in blocks, and epi-
sodes within each block appear in lexicographic order with respect to the array
of event-types. We use an array Fy.blockstart to store the block information of
every episode. Fy.blockstart[i] will hold a value k such that Fy[k] is the first
element of the block to which F¢[i] belongs to. The output of the algorithm
is the collection, C41, of candidate episodes of size (¢ + 1). Initially, Cpy is
empty and, if ¢ = 1, all (one-node) episodes are assigned to the same block
(lines 1-3, Algorithm 1). The main loop is over the episodes in F; (starting on
line 4, Algorithm 1). The algorithm tries to combine each episode, F,[i], with
episodes in the same block as Fy[i] that come after it (line 6, Algorithm 1).
In the notation used earlier to describe the procedure, we can think of Fy[i]
as a1 and Fy[j] as an. If Fy¢[i] and Fy[j] have identical event-types, we do
not combine them (line 7, Algorithm 1). The GetPotentialCandidates ()
function takes JF¢[i] and F¢[j] as input and returns the set, P, of potential can-
didates corresponding to them (called in line 8, Algorithm 1). This function first
generates the three candidates by combining F;[i] and F¢[j] as described in Egs.
1-3. For each of the three possibilities, it then does a transitive closure check to
ascertain their validity as partial orders. As explained before, one only needs to do a
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Algorithm 1: Generate candidates (F;)

Input: Sorted array, Fy, of frequent episodes of size £

Output: Sorted array, Cy 1, of candidates of size (I + 1)
1 Initialize Cy4| < ¢ and k < 0;
2 if £ =1 then
3 for h < 1to |Fy| do Fylhl.blockstart < 1;
4 fori < 1to |Fy| do
5 currentblockstart < k + 1;
6 for (j < i+ 1; Fyljl.blockstart = Fylil.blockstart; j < j+1)do
7 if Fyli1.gl¢] # Fylj1.gl¢] then
8
9

P < GetPotentialCandidates (Fylil, F¢[j]);
foreach @ € P do

10 flg < TRUE;

11 for (r < 1;r <land flg =TRUE; r < r + 1) do

12 forx < ltor —1do

13 Set B.g[x] = a.gl[x];

14 for z < 1tor — 1do B.e[x][z] < a.e[x][z];

15 for z < rto £ do B.e[x][z] < a.e[x][z + 1];

16 for x < rto ¢ do

17 B.glx] < a.glx +1];

18 for z < 1tor — 1do B.e[x][z] < a.e[x + 1][z];
19 for z < rto € do B.e[x][z] < a.e[x + 1][z + 1];
20 if B ¢ Fy then flg < FALSE ;

21 if flg = TRUE then

22 k<—k+1;

23 Add o toCpyy;

24 Cy41lkl.blockstart < currentblockstart;

25 return Cpy

transitivity check on size-3 subsets of the form {x;", x?z, Xl <io< (-1}
separately on the three possible combinations of )y, )| and y2.4 For each potential
candidate, « € P, we construct its £-node (maximal) subepisodes (denoted as § in the
pseudocode) by dropping one node at a time from « (lines 12—19, Algorithm 1). Note
that there is no need to check the case of dropping the last and last-but-one nodes of «,
since they would result in the subepisodes F;[i] and F[ j], which are already known
to be frequent. If all ¢-node maximal subepisodes of o were found to be frequent,
then « is added to C¢41, and its block information suitably updated (lines 20-24,
Algorithm 1).

To sum up, the candidate generation goes as follows. For each episode o € Fy,
we look for episodes with which it can be combined by looking below « and within
the same block as «. For every suitable pair, we do the ), )1, J> combinations and
by checking which are valid partial orders, decide which are potential candidates. For
each potential candidate we check to see if all its £-node maximal subepisodes are in
F¢ and thus decide whether it will go into Cyy .

4 Actually we can save time in the transitivity check further. As explained in Achar et al. (2009), we need to
generate only the )|y combination and perform some special checks on its nodes to decide the valid partial
orders to be generated in P.
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3.3 Correctness of candidate generation

In this section, we show that: (i) a given partial order episode is generated only once in
the algorithm, and (ii) every frequent episode is generated by our candidate generation
algorithm.

Theorem 1 The candidate generation algorithm doesn’t generate any duplicate dis-
crete structures.

Proof 1t is easy to see from Eqgs. 1-3 that two partial orders generated from a given
pair («1, ap) of £-node episodes are all different. Hence we need to consider whether
the same candidate is generated from two different pairs of episodes.

Suppose exactly same candidate is generated from different pairs (o1, o2) and
(oz’l, o/z). For simplicity, consider the case when both these candidates come up as ‘)y
combination’. That is, the two generated episodes, (Xyo, Ryo) = (X“U X%, R*1 U
R%2) and (X0, RY0) = (X1 U X%, R% U R) are the same episode. Since the
candidates are same, ()X20 = X’ and (i))RY = R. Recall from the condi-
tions for forming candidates that X*' UX%2 = {x", ... x}", x;}, where the elements
are indexed as per the lexicographic ordering on £. An analogous thing holds for
XY, Since XY0 and X" are same, their ith elements must also match. This means

o . A ’ .
xit=x"fori =1,...¢andx,? = x,?. Thus X% = X*1. Also from the conditions
/

of generating candidates we have x*' = x/” and x;' = x; > fori = 1,...(¢—1). This
together with X% = X1 and X2 = x?z, gives X = X Thus X0 = XM —
X% = X% and X*2 = X%, Since the pairs (a1, a2) and (v}, or}) are to be distinct, we
need to have either (R%2 # R"‘é) or (R*! #£ R* ). Without loss of generality assume,
(R¥! # R%1). Since X% = X1, again without loss of generality assume there is an
edge (x, y) in R*! (and hence is in R%) that is absent in R%1. Since R = RN,
we must have the edge (x, y) in R*2. By the conditions for combining episodes, the
restriction of R*1 to the first (£ — 1) nodes of X“1 is identical to the restriction of R*2
to the first (¢ — 1) nodes of X?2. Hence, R’Y can be viewed as the disjoint union of
R% and E 2 where E2 is the set of all edges in R% involving x;xz. Now, the edge (x, y)
cannot belong to £ 2 as neither x nor y can be xlaz. (This is because (x, y) € R¥ and

/
hence, x,y € X% = X"‘i; but X?Z is not in X% .) Therefore this edge (x, y) cannot
appear in R0, Thus we must have R*! = R%2 and R* = R%. This means, the pairs
(a1, a2) and (o], ) that we started with, cannot be distinct.

Using similar arguments, we can show that no ), combination can be equal to any
Y, combination of two distinct pairs of episodes. This completes the proof that every
candidate partial order is uniquely generated. Thus we can see that our algorithm does
not generate any candidate twice. O

Theorem 2 Every frequent episode would belong to the set of candidates generated.

Proof We prove this by induction on the size of the episode. At level one, the set
of candidates contain all the one node episodes and hence contains all the frequent
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one node episodes. Now suppose at level £, all frequent episodes of size ¢ are indeed
generated as candidates. If an (£ + 1)-node episode ¢ = (X, R) is frequent, then all its
subepisodes are frequent. The maximal £-node subepisodes (X\{x¢11}, R|x\{x¢,1})
and (X\{x¢}, R|x\{x,}) in particular, are also frequent and hence generated at level £
(as per the induction hypothesis). The important point to note is that the (¢ — 1)-node
subepisodes obtained by dropping the last event-types of these two episodes are the
same. Hence, the candidate generation method would combine these two frequent epi-
sodes. The crucial idea behind the candidate generation algorithm is that (X, R) can
only be either a )y, Y1 or Vs combination of its two maximal subepisodes obtained
by dropping the last and last but-one event-types. Since (X, R) is also a valid partial
order, it would either be a )y, )1 or ), combination of these two frequent subepi-
sodes, satisfying anti-symmetry and transitivity. Hence (X, R) would be a potential
candidate. Further, since all its £-node maximal subepisodes are frequent, they would
all be generated at level ¢ by induction hypothesis. Hence (X, R) would be finally
output in the set of candidates generated by our method. O

3.4 Candidate generation with structural constraints

The candidate generation scheme is very flexible. As explained earlier, we can easily
specialize it so that we generate only parallel episodes (by using only the )y com-
bination at all levels) or only serial episodes (by using only the potential )| and )»
combinations at all levels).

We can also specialize the algorithm for some other general classes of partial order
episodes. For example, consider a class of partial order episodes in which, for every
episode in the class, all its maximal subepisodes also lie in the same class. We refer
to such a class as satisfying a maximal subepisode property. Mining partial orders
restricted to a class satisfying this property is a natural choice given our candidate
generation method. The method generates an (¢ 4+ 1)-node episode as a candidate if
and only if all £-node maximal subepisodes are found to be frequent. Hence, to gener-
ate candidates restricted to any such class, we simply perform an additional check and
retain only those candidates that belong to the class. Such a procedure is guaranteed to
extract all frequent partial order episodes belonging to any such class. The classes of
serial episodes and parallel episodes are the simplest classes satisfying such a property.
(Note that for generating serial or parallel episodes, one need not perform this check;
instead a more efficient approach can be adopted, as described earlier.)

We discuss a few interesting classes of partial orders satisfying the maximal subep-
isode property. The first of them is the set of all partial orders, where length (i.e., no. of
edges) of any maximal path of each partial order (denoted as L,,) is bounded above by
a user-defined threshold, denoted as L;j,. Consider the episode « = (A — (F(B —
(C D) — E))). It has three maximal paths namely A - B - C — E, A —
B — D — E and A — F and the length of its largest maximal path (L,,) is 3. For
L, = 0, we get the set of all parallel episodes because any N-node parallel episode
has N-maximal paths each of length 0, and every non-parallel episode has at least one
maximal path of length 1. In general, for L,;, = k, the corresponding class of partial
orders contains all parallel episodes, serial episodes of size less than or equal to (k+ 1)
and many more partial orders all of whose maximal paths have length less than (k+1).
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Fig. 9 Illustration of how structural constraints specified by thresholds L;;, and Ny, eliminate potential
candidates (episodes displayed in the transitively reduced form)

It is easy to see that for any partial order belonging to such a class, all its subepisodes
too belong to the same class. As k is increased, this class expands into the space of all
partial orders from the parallel episode end. Another class of partial orders of interest
could be one, where the number of maximal paths in each partial order (denoted as
N,,) is bounded above by a threshold, denoted by N;j,. For any partial order belonging
to this class, all its maximal subepisodes are guaranteed to belong to the same class.
When N, = 1, the class obtained is exactly equal to the set of serial episodes. For
example, consider a serial episode (A — B — C). All its maximal sub-episodes are
serial episodes. However, its non-maximal subepisodes like (A B) do not belong to
the set of serial episodes. We could also work on a class of partial orders characterized
by the thresholds L;, and Ny, simultaneously, as such a class would also satisfy the
maximal subepisode property. Using such structural constraints can make the episode
discovery process more focused and efficient depending on the application. Please note
that the L,, and N,, values are tagged to a specific partial order, where as, L;, and Ny,
are the respective thresholds on these quantities used while discovering episodes.

As and when a potential candidate is generated, we calculate and check whether its
L, or N, value satisfy the corresponds thresholds. We can use dynamic programming
to calculate length of longest maximal path or number of maximal paths on the transi-
tively reduced graph of each generated candidate partial order. As an example of how
these thresholds L;, and Ny, can prune the generated potential candidates, consider
the case of Fig. 9. If we work with L;; = 1, then the ); and )’ combinations would
be dropped. On the other hand if we work with N;; = 3, then the )y combination
would be pruned.

Remark 2 The candidate generation algorithm presented here makes use of the unam-
biguous representation of an injective episode in terms of our (X%, R%) notation. If we
allow repeated event-types in the episode then X* has to be a multi-set. This can, in
principle, be handled. However, now even the (X%, R%) notation becomes ambiguous.
Recall that the (V,, <, g«) notation for an episode is ambiguous and we overcame this
by choosing a representation such that (g4 (v1), ... g« (vy)) is ordered as per the lexi-
cographic ordering on £ (this corresponds to our (X%, R*) notation). When we include
all possible partial orders even this lexicographic ordering cannot make the (X%, R%)
notation unambiguous. For example, consider the pattern ((A — B)(C — B)). This
is a parallel combination of two serial episodes. An occurrence of this is constituted
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by four events, two of which are of type B and the other two being of types A and
C, such that A occurs before one of the B’s and C occurs before the other B with no
restriction on the relative times of occurrence of A and C. We can represent this as
either of the two episodes B and B> given by g1 = (V, <1, g) and B2 = (V, <2, 8)
with V' = {v1, v, v3, v4}, g(v1) = A, g(v2) = g(v3) = B, g(va) = C and <y, <2
represented by the two adjacency matrices given below.

0100 0010
10000 10000
== 1looo00 | =2 |o0000
0010 0100
Since (g(vy), ..., g(v4)) are ordered as per the lexicographic ordering in both S

and B, and since the two adjacency matrices are different, these two episodes would
be treated as different by our candidate generation algorithm. However, in any event
stream data, these two episodes would have exactly the same set of occurrences. This
means we can no longer guarantee that our candidate generation method will not gen-
erate duplicate episodes. This is the reason we restricted ourselves to injective episodes
(see Achar (2010) for a more detailed discussion of the need for assuming injective
episodes and for some ways of partially relaxing this assumption).

4 Selection of interesting partial order episodes

The frequent episode mining method would ultimately output all frequent episodes of
up to some size. However, as we see in this section, frequency alone is not a sufficient
indicator of interestingness (or support in the data) in case of episodes with general
partial orders.

Suppose we have a data stream that actually contains many occurrences of the
partial order episode ((AB) — C). If the dependencies in the data stream are well
captured by this partial order, then it is quite reasonable to suppose that, in occurrences
of ((A B) — (), A follows B roughly as often as it precedes B because this partial
order does not constrain the order of occurrences of A and B. On mining from such a
stream with reasonable thresholds, in addition to ((AB) — C), we would also have all
its three-node subepisodes, namely, ((A — C)B), ((B — C)A) and the parallel epi-
sode (A B C), reported frequent (because frequency of subepisodes is at least as much
as that of the episode). Since ((AB) — C) well-captures the dependencies in the data,
we can suppose that it is mostly the occurrences of ((AB) — C) which contribute
to the frequency of these subepisodes. Now the fact that we have seen A following B
roughly as often as A preceding B and that we have rarely seen C not following both A
and B should mean that the partial order ((AB) — C) is a better representation of the
dependencies in data as compared to episodes such as (A — C)B), ((B — C)A) and
(A B C) in spite of all these being frequent. Hence, frequency alone is not a sufficient
indicator of ‘interestingness’ for unrestricted partial order episodes.

An important point to note here is that when we consider episodes with unrestricted
partial orders, an episode of size £ can have subepisodes which are also of size £ (as in
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the above example). Itis easy to see that such subepisodes of size £ are its non-maximal
subepisodes. As the size ¢ of the episode increases, in general, the number of such
non-maximal subepisodes of size £ can increase exponentially with ¢. For example,
the four-node episode (A — B — C — D) has four-node non-maximal subepisodes
like (A(B - C — D)), (B(A - C — D)),(C(A—- B — D)),(D(A - B —
C)),(AB(C —- D)),(AB) - C —- D,(ABC) - D, A — (BC) — D etc. Such
a situation does not arise if the mining process is restricted to either serial or parallel
episodes only. For example, there is no four-node serial episode that is a subepisode of
(A —- B — C — D) and there is no four-node parallel episode that is a subepisode
of (A BC D).

4.1 Bidirectional evidence

We can state the intuition gained from the above example in general terms as follows.
Given a set of event-types, choosing a partial order over them involves two choices:
which pairs of event-types to constrain regarding their relative order of occurrence and
which pairs of event-types to leave unconstrained. By definition, an occurrence of an
episode captures the partial order information only of pairs of event-types which are
constrained. Since any frequency measure counts some subset of the set of all occur-
rences, we can say that frequency is an indicator of the evidence in data in support of
a partial order, only in so far as the pairs of events constrained by the partial order are
concerned. It says nothing on whether there is also support in the data for leaving the
other pairs of event-types unconstrained. Thus, we could say that for a partial order epi-
sode (X%, R*) to be interesting in addition to being frequent, we should also demand
that in the set of occurrences of the episode, any two event-types, i, j € X%, such that
i and j are not related under R*, should occur in either order ‘sufficiently often’.
Referring to our previous example, let ¢ = (AB) — C) andlet 8 = (A —
C)B). As explained earlier, in our data stream both would be frequent and since g is a
subepisode of « it may have slightly higher frequency. In both these episodes the pair
of event-types A and B are left unconstrained. In S the pair of event-types B and C are
also left unconstrained. In the set of occurrences of 3, if we see that most of the time B
precedes C (as would be the case with our example data) then this should indicate that
B is uninteresting (in the sense that it does not properly capture the dependencies in
the data) even though it is frequent. Note that we are not saying « should be preferred
over 3 because both are three-node and 8 is a subepisode of «. We are saying that there
is evidence in the data to support not constraining A and B but there is no evidence in
the data for not constraining B and C, and hence, o should be interesting, but not .
When we mine in the space of only serial episodes or only parallel episodes, the
above issue does not arise. In these cases, in any episode all pairs of event-types are
treated the same way: in serial episodes every pair of event-types is constrained as
regards their order in any occurrence of the episode while in parallel episodes every
pair of event-types is left unconstrained. However, when we want to mine for episodes
with general partial orders, an episode structure represents a choice as to which pair
of event-types to constrain and which to leave unconstrained and hence there is need
for looking for support in the data for both. As explained above, frequency captures
the support for the decision of constraining some pairs of event-types. In this section
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we introduce another measure of interestingness, called bidirectional evidence, that
tries to quantify the support in the data for a partial order episode as regards the pairs
of event-types left unconstrained by the partial order.

Givenanepisode w let G = {(i, j) : i, j € X%, i # j, (i, j), (j,i) € R*}. Let f¢
denote the number of occurrences (i.e., frequency) of o counted by our algorithm and
let fl‘j denote the number of these occurrences where i precedes ;. Let p;’j = fl‘j /f%.
Notethatp‘]?‘i =1 —p;?‘j, Vi, jeg*

Based on our earlier discussion, it is clear that we want p?} to be close to p;‘i for
all i, j € G*. There are many functions, symmetric in (i, j), to obtain such a figure
of merit (e.g., p;’;(l - P?}))- In this paper we chose the entropy of distribution given
by ( p?‘/., 1 — pf‘/) for this purpose. This is because entropy is a standard measure to
quantify the deviation of a distribution from the uniform distribution. Let

Hfj = —pj;log(piy) — (1 — piy) log(1 — py) ©)
The bidirectional evidence of an episode o, denoted by H («), is defined as follows.

H(x) = min HY 5
(o) o, i (5)

If G is empty (which will be the case for serial episodes) then, by convention, we
take H(x) = 1.

Essentially, if H («) is above some threshold, then there is sufficient evidence that
all pairs of event-types in « that are not constrained by the partial order R* appear in
either order sufficiently often.

We use H(«) as an additional interestingness measure for «. We say that an epi-
sode « is interesting if (i) the frequency is above a threshold, and (ii) H («) is above
a threshold. In Sect. 6, we show through extensive simulation that the bidirectional
evidence is very useful in making process of discovering general partial order episodes
effective and efficient.

5 Counting algorithm

In this section, we present an algorithm for frequency counting. We first explain the
construction of FSA to track occurrences of a general partial order episode followed
by how to use such automata to compute the frequency. We also indicate how one can
calculate bidirectional evidence of an episode while computing its frequency.

5.1 Finite state automaton for tracking occurrences

All the current algorithms for tracking serial episodes use (implicitly or explicitly)
FSA. To track occurrences of serial episode (A — B), we should, while scanning
data, first look for a A and after seeing it start looking for a B and so on. FSA are well
suited for this purpose. In a similar manner FSA can be used for recognizing occur-
rences of episodes with unrestricted partial orders also. Such an automaton would start
waiting for a given event-type E € X* immediately after having seen all its parents
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in R*. This strategy of computation can be formalized using an FSA described below
for a general injective episode .

Definition 5 FSA A, used to track occurrences of « in the data stream is defined
as follows. Each state, i, in Ay, is represented by a pair of subsets of X%, namely
(QF, WY). Qf contains all event-types accepted by the time FSA came to state i and
W contains the event-types that can be accepted by FSA in state i. The initial state,
namely, state 0, is associated with the subsets pair, (QF, W), where Qf = ¢ and
Wy is the collection of least elements in X* with respect to R*. Let i be the current
state of A, and let the next event in the data be of type, E € £. A, remains in state i
if E.e (X*\W/).If E € WY, then A, accepts E and transits into state j, with:

QY = Q¥ U(E) ©
WY = (E' € (X*\ Q%) : ma(E') € Q%) )

where 7, (E) is the subset of elements in X* that are less than E (with respect to R%).
When Q‘j’? = X%, (and Wj‘ = ¢), j is the final state of A,.

For example, consider episode « = ((AB) — C). Here, X* = {A, B, C} and
RY = {(A, C), (B, C)}. The FSA used to track occurrences of this episode is shown
in Fig. 10. Initially, the automaton has not accepted any events and is waiting for either
of Aand B, i.e., Qf = ¢ and W = {A, B}. If we see a B first, the automaton transits
to state 2 with QF = {B}, W5 = {A}; on the other hand, if we first encounter an A,
then it would transit into state 1, where Qf = {A}, W{' = {B}. Once both A and B
appear in the data, the automaton will transit, either from state I or state 2, into state
3, where QF = {A, B}, Wy = {C}. Finally, if the automaton now encounters a C
in the data stream, it will transit to the final state, state 4, and thus recognizes a full
occurrence of the episode, ((AB) — C).

It may be noted that not all possible tuples of (Q, W), where Q C Xy, W C Xg,
constitute valid states of the automaton. For example, in Fig. 10, there can be no valid

E\{B}

start

Fig. 10 Automaton for tracking occurrences of the episode ((A B) — C)
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state corresponding to Q = {A, C} since C could not have been accepted without B
being accepted before it (see Achar et al. (2009) for more discussion). We note here
that, in view of (7) and (6), one of Q‘}‘, Wj‘ will determine the other and hence one of
them can completely specify the state. However, we use this redundant representation
for the states of the automata for convenience.

5.2 Counting non-overlapped occurrences

We now explain how the frequency counting step computes, through one pass over
the data, frequencies (non-overlapped sense) of all candidate episodes of size £ and
returns the set of frequent £-node episodes. The algorithm that we present here will
also take care of what is known as the expiry time constraint. Under this, we count
only those occurrences whose time span (which is the largest difference between the
times of occurrence of any two events constituting the occurrence) is less than a user
specified threshold Tx. In many applications, such a constraint is useful because epi-
sode occurrences constituted by widely separated events may not really indicate any
underlying dependencies. Also, such a constraint can make mining more efficient by
reducing the number of interesting patterns at each level.

The overall structure of the algorithm is as follows. We first initialize, for each
candidate episode, the corresponding automaton in its start state. Then we traverse the
data stream and for each event in the data stream, look at all the automata that can
make a state transition on this event-type and effect the state transitions. In addition,
whenever an automaton moves out of its start state (that is, when it accepts its first
event-type), we initialize another automaton for that episode in the start state and this
automaton also makes transitions as and when relevant event-types appear in the data
stream. Whenever, because of state transition by an automaton, two automata of an
episode come to the same state we retain the automaton that moved out of its start
state most recently (and retire the older automaton). This strategy helps us to track
the innermost occurrence in a set of overlapped occurrences and is useful because we
want to find maximum number of occurrences that satisfy the expiry time constraint.
When an automaton reaches its final state, we check whether the occurrence tracked
by it satisfies the expiry time constraint. If so, we increment the frequency by one
and retire all automata of this episode except for one in the start state, so that we can
start tracking the next non-overlapped occurrence. If the occurrence tracked by the
automaton that reached the final state does not satisfy the expiry time constraint, we
retire only the automaton that reached the final state (and do not increment frequency),
so that, through the other existing automata of this episode, we can keep looking for
occurrences that satisfy the expiry time constraint.

We first illustrate the algorithm with an example data stream and then indicate the
idea of its proof of correctness. For both these purposes, we need the concept of an
earliest transiting (ET) occurrence of a general partial order episode (Achar 2010). For
ease of illustration, we now stick to data streams with one event per time tick. While
defining ET occurrences, we denote an occurrence & by the times of occurrence of
the events constituting the occurrence, with the times arranged in an increasing order,
that is, h = [tf’, ...tél], where tl.h < tihH,i = 1...( — 1). We denote by Elh the
event-type of the event at tih (within the occurrence £).
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Definition 6 Anoccurrence i of a general injective episode « in a data stream D is said
to be an ET occurrence if (i) E{' is a least element of X and (ii) fori = 2,3, ...¢, tih
is the time of the first occurrence of the event-type Elh after the occurrence of all
event-types of wy (E l.h) in the portion of the occurrence 4 seen so far.

Consider the data stream in Fig. 11 (for now ignore the occurrences shown in
color). There are six ET occurrences of ((A B) — C) which are: h{ = [146], h§ =
[478], h§ = [578], hy = [71013], h§ = [1011 13] and hg = [11 12 13]. Here we
are using the vector of times representation for specifying the occurrences. Thus, for
example, hf is the occurrence consisting of events ((B, 1), (A, 4), (C, 6)). The occur-
rence [579] is not an ET occurrence in the data sequence as (C, 9) is not the earliest
C after seeing its set of parents {A, B} at time tick 5 and 7. Similarly, [15 6] is also
not an ET occurrence. The occurrences of ((A B) — C) indicated in Fig. 11, namely,
h§ and kg, are the ones tracked by our algorithm for an expiry constraint Ty = 4.

For an episode «, the associated FSA (as per Definition 5) basically track ET occur-
rences of « in the data stream. In our algorithm (described earlier in this section), the
first automaton initially in the start state would exactly track i{. Similarly the second
automata initialized in the start state after the first one moves out of its start state would
now track /5. Thus our algorithm searches in the space of ET occurrences. However,
not every automaton of o would reach the final state because when two automata come
into the same state the older one is removed. If we follow the algorithm as described ear-
lier, the automaton corresponding to 41 is the first one that reaches final state. But since
h§ violates expiry of 4 we retire only this automata and continue. The next automaton
which reaches final state would track hg (Note that the automaton tracking h$, after
accepting event (A, 5), would reach the same state that was occupied by the automaton
tracking h5. Hence the automaton tracking 45 would be retired.) Since the occurrence
h satisfies expiry constraint of 4, we increment the frequency and discard all automata
except the one in start state. Continuing like this, one can see that the next automaton
that reaches final state tracks ig. These two are the occurrences highlighted in Fig. 11.

We now discuss the idea of the proof of correctness for the counting scheme.
Consider a set of occurrences H,, = {h1, ha,...hy} chosen in a greedy fashion as
follows. k1 is the first ET occurrences satisfying T. hj is the first ET occurrence
non-overlapped with 1 and satisfying Tx and so on. There is no ET occurrence sat-
isfying Tx beyond #; ,(v). For example, in the data stream of Fig. 11, by = h and
hy = hy = hS. We have indicated these occurrences separately in Fig. 12. Because of
the greedy strategy, it is intuitively clear that H,, is a maximal set of non-overlapped
occurrences satisfying Ty and it can be formally shown to be so (Achar 2010). The
important property to note from Figs. 11 and 12 is that the set of ET occurrences
tracked by our algorithm (say {h}, /5 ...}), even though different from H,, is such
that h; is the last ET occurrence that ends with &;. For a formal proof of this, refer

(B, 1), (4,4), (A5, (C,6), (BT, ((C,8) (C,9), (4,10), ((B,11)), ((A,12)), ((C,13)).

Fig. 11 A maximal set of non-overlapped occurrences of ((A B) — C) with Ty = 4 tracked by the
algorithm
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(B, 1), (A9, (4,5), (C,6), (BT, ((C8) (C,9), (A10), (B,AL), (4,12), ((C,13))).

Fig. 12 A maximal set of non-overlapped occurrences of ((A B) — C) with Ty = 4 chosen in a greedy
fashion

to Achar (2010). Because of this, the maximality of the set of occurrences tracked by
our algorithm follows.

The algorithm for counting non-overlapped occurrences of general injective epi-
sodes with an expiry-time constraint is given as a pseudocode in Algorithm 2. As
explained in Sect. 2, the event-types associated with an £-node episode, «, are stored in

the array «..g, i.e., a.g[i] = go(vi),i = 1, ..., £. We store the partial order, <, asso-
ciated with the episode as a binary adjacency matrix, «..e. The notationis: a.e[i][j] = 1
iff v; <q vj.

The main data structure is an array of lists, waits(), indexed by the set of event-
types. The elements of each list store the relevant information about all the automata
that are waiting for a particular event-type. The entries in the list are of the form
(o, q, w, j) where « is a candidate episode, (q, w) is one of the possible states of the
automaton associated with o (cf. Definition 5) and j is an integer. Recall that each
state of the automaton is specified by a pair of subsets, (Q%, WW*), of the set of event-
types X% of «. In our representation, q and w are | X*|-length binary vectors encoding
the two sets (Q%, W%). For an event-type E, if (o, q, w, j) € waits(E), it denotes
that an automaton of the episode o (with «.g[j] = FE) is currently in state (q, w)
and is waiting for an event-type E to make a state transition. Consider the episode
B = (A B) — (C D) with XP ={A, B, C, D}. Suppose an automaton corresponding
to this episode has already accepted an A and B and is waiting for a C or D. We would
have (8, q, w, 3) € waits(C) and (8, q, W, 4) € waits(D) where ¢ = [1100] and
w=[0011].

In addition to the «.g and «.e arrays, we also have three other quantities associated
with each episode, namely, «. freq, «.init and a.wy,,,;. The frequency of an episode
is stored in «. freq. The list «.init keeps track of the times at which the currently
active automata of o made their transitions out of the start state. Each entry in the list
is a pair, (q, t), which indicates that an automaton that made its first state transition at
time 7 is currently in a state with the set of accepted events represented by . Since an
automaton in the start state is yet to make its first transition, it has no corresponding
entry in «.init. o.Wgqy; 1S a binary vector of length | X*| which encodes W, the set
of all least elements of X (that is, the set of all event-types that an automaton for «
would be ready to accept in its start state).

Algorithm 2 works as follows. We start by initializing all waits lists. For each
candidate episode, we put one automaton (in its start state) in the list waits(E) for
all E € Wg. The main computation consists of traversing the data stream, and, for
each event, (Ey, ty), effecting appropriate changes in the automata waiting for Ej.
If (&, Qeur> Weur, j) € waits(Ey), we have to find the next state (q,x¢, Wpyr) Of this
automaton and make appropriate changes in all lists to reflect this state transition. The
Qnx: 18 easily computed by adding Ex to qcyr. If qeur = 0 (the start state), it means
that this automaton is moving out of its start state at the current time #; and hence we
add (qu.s, tx) to a.init list. We also need to initialize another automaton for « and

@ Springer



Injective episodes with general partial orders 91

this done by adding « to bag. (After processing all automata in waits(Ey), we ini-
tialize fresh automata for all episodes in bag.) If q,x; 7 1 (the final state), we update
the entry for this automaton in «.init list. Also, if there is already an automaton in
state s in a.init, we drop the older automaton. Then, we compute w,,,; using qy,y;
and «.e (cf. Eqn. 7 or more efficiently as in lines 21-23 of Algorithm 2). Next, we
make changes to appropriate waits lists so that the automaton is in waizs(E) only for
those E indicated by W,,;. Note that we effect all these changes only if q,,, # 1. If
qnx = 1 then this automaton has reached its final state. Also, this automaton would
have made its first state transition at 7., if entry in «.init reads (qcyr, teyr). Hence
if #tp — t.yr < Ty, the occurrence tracked by this automaton satisfies the expiry time
constraint and hence we increment frequency and retire all currently active automata
for this episode.

Except for the features that the automaton structure here is more complicated and
that an active automaton can simultaneously be in multiple waits() lists, the overall
structure of this algorithm is similar to the serial episode mining algorithm in Laxman
et al. (2005).

In the algorithm described above we implicitly assumed that different events in
the data stream have distinct time stamps. This is because, in the data pass loop an
automaton can accept Ey after accepting Ey, in the previous pass through the loop.
With small changes to Algorithm 2 we can use the same general approach to track
occurrences even when multiple events in the data have the same time-stamp. The
main change needed is in the state transition step of Algorithm 2. Let us denote the
set of event-types occurring at time ¢ by S. In general, an automaton waiting for
WE,, just before time ¢, should now accept all events in S N WY, . and we will have

o = 9%, U(SNWE,). Wy, can be computed from QF , as in Eq. 7. We could
do the same thing by processing one event after another as in Algorithm 2, but this
would need some additional book-keeping. Consider an automaton for the episode
(B C) — D waiting in its start state (Q%,,., W<,.) = (¢, {B, C}). Suppose we have
the event-types B, C and D occurring together at time . We should accept both B
and C but not D, even though we add («, [1 10], [00 1], 3) to waits(D) after seeing
(B, 1)&(C, t). This potential transition cannot be active at time ¢. Such potential tran-
sitions, newly added to waits() (at the current time) must be initially inactive, till all
event-types at the current time are processed. After performing the state transitions
pertaining to all event-types at the current time instant, the rest of the steps are same
as in Algorithm 2. Since we increment frequency only after processing all events at a
given time instant, during state transition, we also need to remember which automata
(if any) reached their final states.

5.2.1 Space and time complexity of the counting algorithm

The number of automata that may be active (at any time) for each episode is cen-
tral to the space and time complexities of the counting algorithm. The number of
automata currently active for a given £-node episode, «, is one more than the num-
ber of elements in the «.init list. Suppose there are m entries in «.init list, namely,
@i, ti), .-, (Qu, t,), with t;; < t;, <--- < t;,. (Recall our notation: q; represents

@ Springer



92

A. Achar et al.

Algorithm 2: Count frequency expiry time (C;, D, y, &, Tx)

1
2
3
4

13
14
15
16
17
18
19

20
21
22
23
24
25

26

27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42

Input: Set C; of candidate episodes, event stream D = ((Eq, t1), ..., (En, ty)), frequency threshold
y, set € of event-types (alphabet), Expiry Time, Ty
Output: Set F of frequent episodes out of C;

/* Initialization */
F; < ¢pand bag < ¢ ;
foreach event-type E € € do waits[E] < ¢;
foreach « € C; do
a.freq < 0and o.Wyiqrr < 0;
forall i such that i has no parents in a.e do a.Wgsqrt[i] < 1;
forall i such that «.Wszqr:[i] = 1 do Add (o, 0, .Wgrart, i) to waits[o.g[i]];
/* 0 is a vector of all zeros */
/* Database pass */
for k < 1ton do
foreach (o, Yeur Weur s j) € waits[Ek] do
/* n is the number of events and Ey is the currently processed event-type in the event stream
*/
/* Transit the current automaton to the next state */
Qnxt < Qeur and Quy[j] < 15
if qcyr = 0 then Add (qpx:, fx) to w.init and Add « to bag;
/* 1, - time associated with the current event in event stream */
else
if qux; # 1 then Update (qcyr, feyr) in a.init o (Quxt s feur);
/* 1 is a vector of all ones and 7., is the first state transition time of the current
automaton®/
if q,x; # 1 then
Wnxt <= Weur, Wnxt[j] < 0 and Wiemp <= Wnxt 5
for each child i of j in a.e do
if for each parent m of i, qux¢[m] = 1 then wyx[i] < 1;
fori < 1to |«| do
if Wyempli] = 1 then Replace (o, qcur, Weur, 1) from waits[a.g[i]] to
(@, Qnxt> Wnxt» 1);
if (Wrempli]l = 0 and wpy[i] = 1) then Add (@, qnxr, Wnxt, 1) to waits[a.g[i]];
Remove («, qeur, Weur, j) from waits[a.g[j]];
/* Removing an older automaton if any in the next state */
if ((quyxs,t') € a.init and t' < toy, ) then
/% 1" is the first state transition time of an older automaton existing in state q;xs */
Remove (quyxt, t') from a.init and all waits|[] entries corresponding to this older
automaton;
/¥ Increment the frequency */
if (quxt = 1and (ty — teyr) < Tx) then
. freq <— a.freq + 1 and Empty «.init list;
Remove all waits[] entries corresponding to o and Add « to bag;
/* Add automata initialized in the start state */
foreach « € bag do
forall i such that «.Wssqr:[i] = 1 do Add (o, 0, @.Wgtars, i) to waits[e.g[i]];
/* 0 is a vector of all zeros */
Empty bag;
foreach o € C; do if . freq > y then Add « to Fy;
return F;
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the set of accepted event-types for the jth active automaton which moved out of start
state at time ti; .) Consider k, £ such that 1 < k < £ < m. The events in the data stream
that effected transitions in the £th automaton (i.e., automaton which moved out of start
state at #;,) would have also been seen by the kth automaton. If the kth automaton has
not already accepted previous events with the same event-types, it will do so now on
seeing the events which affect the transitions of the £th automaton. Hence, q; C qx
forany 1 < k < £ < m. Since |X*| = ¢, there are at most £ (distinct) telescoping
subsets of X%, and so, we must have m < £.

The time required for initialization in our algorithm is O(|€| + |C¢|€%). This is
because, there are |E|waits() lists to initialize and it takes O (¢2) time to find the
least elements for each of the |C;| episodes. For each of the n events in the data, the
corresponding waits() list contains no more than £|C;| elements as there can exist
at most £-automata per episode. The updates corresponding to each of these entries
takes O(¢£2) time to find the new elements to be added to the waits() lists. (Note
that we take ((¢?) time because we are explicitly computing the next state using the
adjacency matrix «.e rather than store the state transition matrix of the automaton.
This is done to save space. Otherwise, computing next state would be O(1) time.)
Thus, the worst-case time complexity of the data pass is O (n£3|Cy|).

For each automaton, we store its state information in the binary £-vectors q and w.
To be able to make || transitions from a given state, we maintain |/V| elements in
various waits() lists with each element ready to accept one of the event-types in W.
In the pseudocode (for ease of explanation), we kept the state information of q and w
in each of these |WW| elements. We can instead do it more efficiently by storing the state
information of ¢ and w just once in the «.init list along with the first state transition
time and keeping a pointer to this element in the various waits () lists elements. Hence,
we only require O(¢) space per automaton. Since there are £|Cy| such automata in
the worst case, the contribution of the various automaton to the space complexity is
(’)(ZZIC ¢]). Also since each episode needs O space to store its adjacency matrix
the overall worst-case space complexity is O(£2|C|).

5.3 Computing H («) and mining with an additional H («) threshold

We now explain how bidirectional evidence (H («)) can be computed during our fre-
quency counting process. For each candidate episode «, the matrix «. H is initialized
to 0 just before counting. For each automaton that is initialized, we initialize a separate
£ x £ matrix stored with the automaton. Whenever an automaton makes state transi-
tions on an event-type j, for all i such that event-type i is already seen, we increment
the (i, j) entry in this matrix. The matrix associated with an automaton that reaches
its final state, is added to «v. H and results in increment of relevant entries. Thus, at the
end of the counting, «. H gives the fl‘;‘ information.

One way to use a threshold on bidirectional evidence is to apply it as only a post
processing filter. This way, we will only report all frequent episodes that also meet
the minimum H («) criterion. While this may reduce the number of frequent episodes
in the final output, there will still be a combinatorial explosion in the number of fre-
quent/candidate episodes as the algorithm traverses from lower to higher size episodes.
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For example, on embedding a serial episode of size 8 (based on the data generation
described in Sect. 6.1), the discovery algorithm (with a level-wise frequency threshold
only) generated in excess of 100,000 candidates at level 6. In order to avoid this, we
filter frequent episodes using a threshold on H () at each level in the algorithm. Note
that, unlike a threshold on frequency, a threshold on H («) may not meet anti-monoto-
nicity criteria in general, since H (o) is computed using the specific set of occurrences
tracked by the counting algorithm. However, if an episode « has a bidirectional evi-
dence H(x) = e in a given set of occurrences, then any maximal subepisode of «
(obtained by the restriction of R* onto a subset of X“) will also have a bidirectional
evidence of at least e in the same set of occurrences (by Eq.5). If occurrences of the
subepisodes of o predominantly coincide with the corresponding partial occurrences
of «, then bidirectional evidence of all its maximal subepisodes will be at least that of
a. Since our candidate generation is based on the existence of all maximal subepisodes
at the lower levels, the level-wise procedure would not eliminate interesting patterns
with high H («). Further, the bidirectional evidence of the non-maximal subepisodes
of o will be low (often close to zero). The reason for this is as follows. In any non-
maximal subepisode y (of @) we can find a pair of nodes i and j, such that, while
there is an edge between them in «, there is no edge between them in y. Now, if
most occurrences of y coincide with the corresponding partial occurrences of «, then
i precedes j in almost all occurrences of y and hence H (y) will be small (by Eq.5).
Hence almost all non-maximal subepisodes of «, though frequent, will have negligi-
ble bidirectional evidence. These non-maximal subepisodes, if not weeded out, would
otherwise contribute to the generation of an exponential no. of patterns at various lev-
els. This huge reduction in candidates across all levels results in efficient mining when
H (o) threshold is incorporated level-wise. In the results section, we show through
simulation that mining with a level-wise threshold on H,, is effective in practice.

6 Simulation results

In this section we present experimental results obtained on synthetic data as well
as on multi-neuronal spike train data. We show that our algorithm for mining unre-
stricted partial orders that uses the new notion of bidirectional evidence is capable of
efficiently discovering all the ‘correct’ partial order patterns embedded in synthetic
data (while reporting only a small number of spurious or noisy patterns as frequent).
Next we show the performance of our algorithms on two classes of neuroscience data
sets—(i) data from a mathematical model of multiple spiking neurons (Sastry and
Unnikrishnan 2010), and (ii) real neuronal activity recorded from dissociated cortical
cultures (Wagenaar et al. 2006).5

6.1 Synthetic data generation

Input to the data generator is a set of episodes that we want to embed in the synthetic
data. For each episode in the set, we generate an episode event-stream which contains

5 We are thankful to Professor Steve Potter at Georgia Tech for providing us this data.
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just non-overlapped occurrences of the episode (and no other events). Thus, an episode
event-stream for (A — (BC)) would, e.g., look like ((A, t1), (B, t2), (C, 13), (A, ta),
(C,1t5), (B, t6), ...). Separately, we generate a noise stream ((X1, 71), (X2, 12), .. .)
where X;’s take values from the entire alphabet of event-types. All the episode event-
streams and the noise stream are merged to generate the final data stream (by stringing
together all events in all the streams in a time-ordered fashion). The data generation
process has three important user-specified parameters: 1 (span parameter), p (inter-
occurrence parameter) and p (noise parameter), whose roles are explained below.

To generate an episode event-stream, we generate several occurrences of the episode
successively. For each occurrence, we randomly choose one of its serial extensions®
and this fixes the sequence of event-types that will appear in the occurrence being
embedded. The time difference (¢;+1 — t;) between successive events in an occurrence
is generated according to a geometric distribution with parameter n(0 < n < 1).
The time between end of an occurrence and the start of the next is also distributed
geometrically with (a different) parameter p(0 < p < 1). Thus, n determines the
expected span of an occurrence and p controls the expected time between consecutive
occurrences.

We generate the noise stream as follows. For each event-type in the alphabet we
generate a separate sequence of its occurrences with inter-event times distributed geo-
metrically. For all noise event-types, namely event-types that are not in any of the
embedded episodes, the geometric parameter is p(0 < p < 1) and for all other event-
types this parameter is set to p/5. This way, we introduce some random occurrences
of the event-types associated with the embedded partial orders. All these streams are
merged to form a single noise stream. Noise stream is generated in this way so that
there may be multiple events (constituting noise) at the same time instant. We note
here that the value of p does not indicate any percentage of noise. For example, with
p = 0.05 we expect each noise event-type to appear once every 20 time-ticks and if
there are 40 noise event-types, then (on the average) there would be two noise events
at every time tick. Thus, even small values of p can insert substantial levels of noise
in the data. We chose such a method for synthetic data generation as it allows us to
control the expected spans/frequency of embedded episodes independently of the level
of noise.

While presenting our results, in all our tables, we give the values of different param-
eters in the table caption. In addition to p, p and n, the other parameters are as follows:
M denotes the total number of event-types or the cardinality of £, T’ is the expiry-time
threshold, f;; and Hy; are the thresholds on frequency and bidirectional evidence.

6.2 Effectiveness of partial order mining

We generated a data stream of about 50,000 events (using an alphabet of 60 event-types)
with 10,000 time-ticks or distinct event-times, by embedding 2 six-node partial orders,
aj=(A— (BC) > (DE) »> F)andap = (G - (H - (JK))(I — L)).
(As is evident, the data stream has more than one event-type per time tick, specifically

6 A serial extension of a partially ordered set (X%, RY) is a totally ordered set (X%, R’) such that R¥ C R’.
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Table 2 Results obtained in three cases: (A) frequency threshold (f;;) only, (B) bidirectional evidence
threshold (Hyy,) as a post filter, (C) both f;;, and Hyj, level-wise

Level A) (B) ©
#Cand #Freq #Cand #Freq #Cand #Freq

1 60 60 60 60 60 60
2 5310 565 5310 565 5310 565
3 3810 435 3810 331 3810 331
4 1358 760 1358 129 623 125
5 1861 1855 1861 37 36 32
6 2993 2993 2993 6 6 6
7 0 0 0 0 0

Run-time 134s 142 s 52s

Patterns: oy and o, n = 0.7, p = 0.055, p = 0.07, M = 60, f;, =350, Tx = 15, H;, = 0.4

has five event-types on an average per time-tick.) Other data generation parameters
are given in the caption of Table 2. These were chosen such that the one-node frequen-
cies of all event-types were almost same and many of two-node episodes involving
noise event-types are frequent. Table 2 shows the results obtained with our mining
algorithm.” We show the number of candidates (#Cand) and the number of frequent
episodes (#Freq) at different levels. (Recall that at level &, the algorithm finds all fre-
quent episodes of size k.) The table shows the results for three cases: (A) when we
apply (at each level) only a frequency threshold, f;j, to determine the output, (B) when
we apply f;, as usual, but also use a threshold, Hyj,, on bi-directional evidence, H («),
to post-filter the output, and (C) when we apply f;;, as usual and use H,;, within each
level (during the level-wise procedure) to filter episodes propagating to the next level.

The two embedded patterns are reported as frequent in all the three cases. (To
keep the terminology simple, we generally refer to the output, even in cases that use
Hyp,, as ‘frequent episodes’.) However, with only a frequency threshold (case A), a
lot of uninteresting patterns (like the subepisodes of the embedded patterns) are also
reported frequent. When we use an H («) threshold for post-filtering the output (case
B), the number of candidates remains unaffected, but the numbers of frequent epi-
sodes (at different levels) reduce considerably. This shows the utility of bi-directional
evidence in reporting only the interesting partial orders. However, the run-time actu-
ally increases marginally because of the overhead of post-filtering based on H ().
If we filter using the H («) threshold within the level-wise procedure (case C), then
the efficiency also improves considerably, as can be seen from the reduction both in
numbers of candidates as well as in run-times. In terms of output quality, we observe
that the same episodes are output in both case B and case C at level 6.

Table 3 provides details of the kinds of episodes obtained at different levels (start-
ing with level 4) under the three cases described earlier. Columns #Cand and #Freq

7 The source codes have all been written in C++. The experiments have been run on a 2 GHz Pentium PC
under a Linux operating system.
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Table 3 Details of frequent episodes obtained with (A) frequency threshold ( f;,) only, (B) bidirectional
evidence threshold (Hyj,) as a post filter, (C) both f;, and Hyj, level-wise

Level Case #Cand #Freq Subepisodes #0Others
#Max #Non-max
o] o) o] o)
(A) 1358 760 15 15 411 142 117
4 (B) 1358 129 15 15 15 14 70
©) 623 125 15 15 15 13 67
(A) 1861 1855 6 6 1268 228 347
5 (B) 1861 37 6 6 6 1 18
© 36 32 6 6 6 1 13
(A) 2993 2993 1 1 2385 174 432
6 (B) 2993 6 1 1 1 0 3
©) 6 6 1 1 1 0 3

Patterns: o and aa, n = 0.7, p = 0.055, p = 0.07, M = 60, f;; = 350, T = 15, Hyj, = 0.4

indicate the number of candidates and frequent episodes obtained at each level. The
remaining columns group the frequent episodes output (at each level) into different
categories. The four columns under Subepisodes category indicate the number of fre-
quent episodes output which are subepisodes of the embedded patterns. These are
categorized under maximal (#Max) and non-maximal (#Non-max) subepisodes of «
and «;. (Frequent episodes corresponding to the embedded patterns themselves will
come under the maximal subepisode category.) The final column (#others) shows the
number of frequent episodes output that are not subepisodes of either of the embedded
patterns. The Case column refers to the three cases A, B and C defined earlie—which
indicate whether (and how) bi-directional evidence was used in the pattern mining
algorithm.

From Table 3 we see that using only a frequency threshold (Case A) leads to a total of
2,993 episodes of size 6 being reported as frequent. Of these, 2,559 (= 2, 385 4 174)
are non-maximal subepisodes of «; and ap. When we use bi-directional evidence
(cases B and C), only six episodes of size 6 are reported in the output: the two embed-
ded patterns, one non-maximal subepisode of «; and three super-episodes of «>. Thus,
when we use only a threshold on frequency (case A), many of the frequent episodes
are the non-maximal subepisodes of embedded patterns which can never be eliminated
based on their frequencies. This is the issue of an explosive number of frequent but
uninteresting patterns being thrown up by frequent partial order mining that we pointed
outin Sect. 4. It was also observed that the remaining frequent episodes (other than the
super-episodes of ap) generated in the others category for case A were neither subep-
isodes nor superepisodes of the embedded patterns. They involved the same event
types as ap and contain a pair of event-types i, j unrelated in them, but related in o5.
Bidirectional evidence is effective in eliminating not only non-maximal subepisodes
but also a significant number of such spurious episodes (others category) (see discus-
sion in the second part of Sect. 5.3). The results in Table 3 show that using a level-wise
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threshold on H («) provides substantial improvement in efficiency while not missing
any important patterns present in the data. In all the subsequent experiments, we use
a level-wise threshold on H («) in addition to the frequency threshold.

6.2.1 Robustness with respect to parameters

Next we study the performance of our algorithms when patterns are embedded with
different strengths in the data (in varying levels of noise). Toward this end, we gen-
erated nine data sets, each containing occurrences of the six-node patterns o1 and o
defined earlier. The data sets are generated by varying the parameters p, n and p as
given in Table 4. The span parameter 7 is varied across the X sets; in the Y sets the
inter occurrence parameter p is varied; and in the Z sets, we vary the noise parameter
p. As p increases, the expected inter-occurrence time reduces and hence the extent of
overlap between occurrences of o1 and «» also increases. This makes the mining task
harder (the data denser) because, spurious patterns consisting of a part of «; and part
of a» can also become frequent.

Table 5 gives the ranks (based on frequency) of «; and «p obtained for a range of
expiry-time thresholds. The results show that our algorithms consistently report the
two embedded partial orders in the top three patterns. In case of very small expiry
times (Tx = 9) we do not find the embedded partial orders in sets X and Y since

Table 4 Synthetic data sets

X1 X2 X3 Y1 Y2 Y3 Z1 72 73
n 0.4 0.6 0.8 0.6 0.6 0.6 0.8 0.8 0.8
p 0.03 0.03 0.03 0.03 0.05 0.07 0.07 0.07 0.07
o 0.03 0.03 0.03 0.05 0.05 0.05 0.03 0.05 0.07

Patterns: o1 and ap, M = 60

Table 5 Frequency ranks of the embedded patterns «, «p (Rank) and no. of frequent patterns (#Fre) at
level 6 as Ty is varied, on Table 4 data sets at H;;, = 0.4

Tx — 9 11 13 15 17

Rank #Fre Rank #Fre Rank #Fre Rank #Fre Rank #Fre

X1 - - 0 - = 0 - - 0 - - 0 2,3 3
X2 - - 0 2,1 2 2,1 5 2,1 5 2,1 5
X3 2,1 4 2,1 4 2,3 6 2,3 6 2,3 6
Y1 - - 0 3,1 3 3,1 4 3,1 6 53 13
Y2 - - 0 2,- 2 2,3 3 2,3 4 2,3 4
Y3 - - 0 3,2 3 3,1 6 3,2 6 3,1 39
Z1 2,1 5 2,1 5 3,1 6 3,1 6 3,1 10
72 1,2 4 2,3 6 2,3 6 2,3 8 2,3 42
z3 2,3 4 2,3 6 4,5 8 4,5 12 4,5 135

Dash indicates the pattern(s) were not found in the output
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the expected spans in these sets exceeds Ty. (In Z sets, the higher  parameter keeps
the expected span to less than Tx.) Of the nine data sets, the patterns are weakest in
X1 (since both 1 and p are lowest); our algorithms do not find the embedded patterns
except at a large expiry time of 7y = 17. These experiments show how Tx can be used
as a tool to guide the pattern discovery process. Small expiry-times can be used when
we are looking for strongly correlated patterns with small spans and vice-versa. Table 5
also reports the number of frequent patterns output. (We set the frequency threshold
fin as 80% of the expected frequency of patterns in the data.) We can see that, mostly,
the number of spurious patterns reported is small (less than 4); this number increases
with Ty, as also with increasing noise level p and also as p increases.

In the nextexperiment (Figs. 13a, b) we plot the number of frequent patterns reported
as a function of frequency threshold f;; and bi-directional evidence threshold H;j,. For
these experiments, we used a more difficult data set with 5 eight-node partial orders
(taken from Fig. 14). At low thresholds the numbers of patterns reported is high, but the
numbers fall sharply as the thresholds increase. We observe that there is a reasonably
wide range of thresholds for both frequency and bidirectional evidence within which
the number of eight-node frequent patterns output is fairly constant. Any threshold in
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the ‘flat’ region of these curves results in a small number of output patterns containing
the embedded episodes. This shows that our algorithm under reasonable values of
thresholds, will unearth only the patterns present in the data.

6.3 Flexibility in candidate generation

As described in Sect. 3.4, the same algorithm (with minor modifications in the candi-
date generation) can be used to mine either serial episodes, parallel episodes or any
sub-class of partial orders satisfying the maximal-subepisode property. To illustrate
this, we generated a data stream of about 50,000 events where, in addition to the epi-
sodes o and a defined in Sect. 6.2, we embedded two more serial episodes and two
more parallel episodes. We ran our algorithm on this data in the serial episode, parallel
episode and the general modes. When run in the serial episode mode and the parallel
episode mode, we recovered the two serial and the two parallel episodes respectively.
In the general mode, all six embedded partial orders (along with two other episodes
which were superepisodes of the embedded partial orders) were output.

Next, we generated synthetic data by embedding all the 8§ partial orders of Fig. 14.
Recall that L, is the threshold on the length of the largest maximal path and Ny is
the bound on number of maximal paths. We present results obtained by mining in this
data under different values for L;; and Ny, (Table 6). The column titled ‘Satisfying
(Fig. 14)’ refers to the partial orders in Fig. 14 which satisfy the L;;, and Ny, threshold
constraints in the corresponding row. We get all the embedded patterns that satisfy
the L, Ny, constraint as frequent episodes along with a few extra episodes (as seen
under the column titled #Freq). From the table we see that at lower values on either L,
OR Ny, the algorithm runs faster. At higher thresholds, the run-times were almost the
same as those for mining all partial orders. This is because most of the computational

@, c (A L (9 . . (d)
B F 7
D E F A P ESH

G H D——H E——H

(e /EF ® 5 .
A*>B*>C*>D§G A—>B—>C>">E*>F<
H H
(® (h)
AP E T E G A—B—C—D—E—F—G—H

Fig. 14 Partial order episodes used for embedding in the data streams: a L;; = 0, N, = 8 (parallel
episode), b L, = I,Ny, =8, ¢ Ly = 2,Ny, = 18,d Ly, =3, Ny =4, e Ly, = 4, Ny = 4,
fLy=5Nn=48Ly=6Ny=2hL,; =7, Ny =1 (serial episode)
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Table 6 Results obtained when

mining with various values for Ly Nip Satistying (Fig. 14) #Freq Run-time

L;j, and Nyj, simultaneously 0 10 a 1 6m29s
2 10 a,b 3 9m48s
3 3 None 0 9m27s
5 4 d,e, f 5 9m45s
6 2 g 2 2m57s
7 1 h 1 53s

p =0.045, p = 0.055,

77=O-7aM:100»fth= 7 6 d-h 10 9m55s

300, Hyp =035, Tx =15 7 18 a-h 13 10mOs

Table 7 Run-time as noise level is increased by varying p

0 Noise level (L) Run-time Avg. #Freq Avg. #FN Avg. #FP
0.005 0.43 3s 2 0 0

0.02 0.75 6s 2 0 0

0.03 0.82 30s 2 0 0

0.045 0.87 1m45s 2.2 0 0.2

0.05 0.885 6mls 2 0 0

Patterns embedded: ¢ and f from Fig. 14; p = 0.055, n = 0.7, M = 100, f;;, = 300, Tx = 15, H;, = 0.35

Table 8 Run-time as the data length is increased

T Data length (n) Run-time Avg. #Freq Avg. #FN Avg. #FP
5,000 22,500 52s 22 0 0.2
10,000 45,000 1m45s 22 0 0.2
15,000 67,500 2m36s 2 0 0

20,000 90,000 3m25s 2.1 0 0.1

fin/T =0.03, p = 0.045, rest same as Table 7

burden is due to large number of candidates at levels 2 and 3, and the candidates at
these lower levels are not reduced if the thresholds L, and N, are high.

6.4 Scaling properties of the algorithm

The algorithm scales well with number of embedded patterns, data length and noise
level. In Tables 7, 8 and 9 the data is generated with different eight-node episodes
embedded from Fig. 14. The run-times given are average values obtained over ten dif-
ferent runs. In these tables, the column titled Avg. #Freq gives the number of frequent
episodes at level 8 averaged over the 10 runs. Column titled Avg. #FN denotes the
number of embedded patterns missed by the algorithm, averaged over ten trials. Avg.
#FP denotes the average (over 10 runs) number of false positives, i.e., the number of
non-embedded frequent patterns at level 8. Table 7 describes increase in run-times
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Table 9 Run-time as the number of embedded patterns is increased

Nemb Patterns (Fig. 14) Run-time Avg. #Freq Avg. #FN Avg. #FP
[abcde [ gh]

0 [00000000] 8m42s 0 0 0

2 [00100100] 10m27s 22 0 0.2
5 [I0101101] I12m5s 6.2 0 1.2
8 [T1111111] 14m17s 134 0 5.4
10 [11211211] 17m31s 18.7 0 8.7
12 [21212211] 17m52s 19.6 0 7.6
15 [21222222] 18m17s 29.7 0 14.7
18 [32322222] 1I9m5s 34.4 0.1 16.5
20 [32323322] 18m33s 34.6 0 14.6

p=0.04,p=0.05,7=0.7,M =200, f;;, =300, Ty =15, H;;;, =0.3

with noise level L,,, which is the ratio of the number of noise events to the total
number of events in the data. Similarly, Table 8 describes the run-time variations with
data length. We observe that the run-times increase almost linearly with data length.
As the data length is increased, the ratio of f;,/ T is kept constant, where 7" denotes
the number of time ticks up to which we carry out the simulation. Table 9 shows the
run-time variations with the number of embedded partial orders (Ney,p,). We use one
or more patterns from the set of eight patterns given in Fig. 14. The patterns embed-
ded in a given experiment is represented as a vector of eight components, where each
component corresponds to a particular structure in Fig. 14 and the value of the com-
ponent corresponds to the number of patterns of that structure. For example, if this
vectoris [2 10000 00], then it means 2 eight-node episodes of the structure in Fig. 14
(basically parallel episodes) and 1 eight-node episode of the structure in Fig. 14 are
used for embedding and each of these 3 embedded episodes have no event-types in
common. We observe that the algorithm scales reasonably well with the density of the
embedded patterns. The increase in run-times with the number of embedded patterns
is because of increased number of candidates. We observe that the false negatives
are almost negligible. We also infer from the Avg. #FP (false positives) column that
there is no blow-up in the number of non-embedded patterns reported, even though it
roughly increases with the number of embedded patterns.

6.5 Application of partial order mining to multi-neuronal spike train data

In this section we illustrate the utility of partial order mining for multi-neuronal spike
train data analysis. As explained in Sect. 1.2, the data consists of a time-series of
spikes (or so called action potentials) recorded simultaneously from a group of poten-
tially interacting neurons. This contains spikes due to the spontaneous activities of
individual neurons as well as spikes due to coordinated action by a group of neurons
that are functionally interconnected. The data mining approach based on serial and
parallel episodes has been explored for this problem (see Patnaik et al. (2008) and
Sastry and Unnikrishnan (2010) for details). Here we show utility of our partial order
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Table 10 Unearthing patterns o and 8 from multi-neuronal spike train data: performance of the algorithm
for different values of Eg

Eg Data length 18 (fa) fin #Freq Rank of a(B) Run-time
0.4 17,500 45 (79) 40 5 2(1) 2025

0.6 20,000 17073 100 2 2(1) 305

0.75 22,500 187 (298) 150 5 2(1) 25s

M =26,Tx = 10, Hy, = 0.7

mining method for directly inferring the graph patterns. We use data generated using
a neuronal-spike simulator described in Sastry and Unnikrishnan (2010). In this sim-
ulator, the spiking of each neuron is modeled as an inhomogeneous Poisson process
whose rate changes with time due to the inputs (spikes) received from other neurons.
The background firing rate of the simulator models the spontaneous activity of indi-
vidual neurons and is chosen to be about 5Hz (which means a given neuron fires
randomly every 200 ms). We keep random connections of small strength among all
neurons and we can embed patterns by adding specific connections with large strength.
The strength of a connection of, say, A — B, is specified in terms of conditional prob-
ability of B firing after a specific delay in response to a spike from A. We refer to
such a strength parameter as E;. We generate spike train data from a network of 26
neurons using this simulator and show that our algorithms are effective in unearthing
the connectivity pattern. Since, in this application, effect of one neuron on another is
felt within a delay time, an expiry time constraint for an episode is very natural.

In our first experiment, we generate a data stream with 2 six-node patterns o =
(A - (BC) - (DE) > F)and B = (G — (HIJ) — (KL)) embedded, with
each synaptic delay of 3 ms, at different values of E;. The stream had a timespan of
100s. On such a data we see if our partial order mining algorithm is able to infer
the connectivity pattern. Table 10 shows the results obtained for different levels of
strength of connectivity, E. The table shows that our algorithm is able to discover the
underlying connectivity correctly.

In our second experiment we embed a large 1l-node pattern ¢ = (A —
(BCDE) — (FG) — (HIJK), with each synaptic delay as 3ms. The stream
here also had a timespan of 100 s with about 32,500 event-types. We analyze the effect
of expiry-time, Ty, on the run-times of the algorithm (cf. Table 11). It was observed
that as long as the Ty is greater than the span of occurrence, the algorithm is able to
discover the pattern. We also noted that the run-times of the algorithm decreases as
the expiry time becomes tight. This is because for high Tx more (random) patterns
become frequent resulting in an increase in number of candidates.

We ran our algorithms on in-vitro recordings from neural cultures, obtained using a
multi-electrode array setup (Wagenaar et al. 2006). Neuron cells used in the culture had
a synaptic time-delay of about 100 ms. In our experiments, we chose a Tx = 500 ms,
in a bid to unearth all interesting neuronal correlations up to size 6. The algorithms
were run on a data slice of about 100s, with M = 56 participating neurons and a data
length of about 10,000 event-types, for a variety of frequency and H («) thresholds.
We report the no. of serial, parallel and general (neither serial nor parallel) episodes at
various levels and thresholds in Tables 12 and 13. As is evident from the Table 12, the
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Table 11 Run-times of the

algorithm for different expiry Tx Run-time Pattern found
time thresholds 25 ms 28 min 30's Yes
20 ms 11 min 35 s Yes
15 ms 6 min 47 s Yes
10 ms 2min32s Yes
Pattern embedded: ¢, Es = .
0.9, f5 = 300, Hy, = 0.9 8 ms I min 335 No

Table 12 Number of serial (Ser), parallel (Par) and general (neither serial nor parallel) episodes for different
frequency thresholds, H;;, = 0.5, Tx = 0.5s, M = 56

Level frn =250 fin =300 fin =350
Ser Par General Ser Par General Ser Par General
3 65 47 250 30 20 112 6 10 65
4 25 30 926 0 8 269 0 5 70
5 0 10 1020 0 1 94 0 1
6 0 1 55 0 0 0 0 0

Table 13 Number of serial (Ser), parallel (Par) and general (neither serial nor parallel) episodes for different
bidirectional evidence thresholds, f;;, = 250, Ty = 0.5s, M = 56

Level Hy, =0 Hy, =03 Hy, =05 Hy;, =0.8
Ser Par General Par General Par General Par General
3 65 48 286 48 269 47 250 11 88
4 25 33 1378 33 1143 30 926 2 151
5 0 11 2459 11 1615 10 1020 0 15
6 0 1 84 1 68 1 55 0 0

algorithm, in addition to the serial and parallel episodes, unearths a large number of
general partial order episodes having a H (o) greater than 0.5. This illustrates the utility
of algorithms that can mine for general partial order episodes. Since a serial episode
hasa H(«) = 1, variation in H;j, doesn’t affect the serial episode output for a fixed f;,
and Ty. So in Table 13, we record only one column for serial episodes. One can also
observe how the number of general partial order patterns reported, drastically reduces
with increase in H () threshold. A drop in the number of interesting parallel episodes
is also seen with Hyj,. Atlevel 5, for Hy;, = 0.8, we only find episodes which are neither
serial nor parallel. In the set of general episodes, we observed interesting partial order
structures like (A1 B1) — (C1 D1 E1), (A2 — (B2C2 D2) — E3). Also the num-
ber of patterns reported do not grow exponentially with the size of the episode. With
this, we demonstrate that our a priori-based general partial order discovery algorithms
tackles the combinatorial explosion of the pattern space and simultaneously unearths
interesting patterns. An interpretation of the unearthed episodes in the multi-neuronal
context is beyond the scope of this paper.
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7 Discussions and conclusions

In this paper we presented a method for discovering frequent episodes with unre-
stricted partial orders. Episode discovery from event streams is a very useful data
mining technique though all the currently available methods can discover only serial
or parallel episodes. Here, we restricted our attention to injective episodes where
event-types do not repeat within an episode. However we place no restrictions on
the partial order. We presented a novel candidate generation algorithm for episodes
with unrestricted partial orders. The candidate generation algorithm presented here
is very flexible and can be used to focus the discovery process on many interesting
subclasses of partial orders. In particular, our method can be easily specialized to mine
only serial or only parallel episodes. Thus, the algorithm presented here can be used
as a single method to discover serial episodes or parallel episodes or episodes with
general partial orders. We presented a FSA based algorithm for counting non-over-
lapped occurrences of such injective episodes. The method is efficient and can take
care of expiry-time constraints. Another important contribution of this paper is a new
measure of interestingness for partial order episodes, namely, bidirectional evidence.
We showed that frequency alone is not a sufficient indicator of interestingness when
one considers mining episodes with general partial orders. Our bidirectional evidence
is very useful in discovering the most appropriate partial orders from the data stream.
We also believe that this new notion of interestingness is equally relevant for partial
order mining in the sequential pattern context. The effectiveness of the data mining
method is demonstrated through extensive simulations.

As noted in Remark 1, our candidate generation exploits the necessary condition
that, if an ¢-node episode is frequent then all its (¢ — 1)-node subepisodes are also
frequent. It doesn’t exploit the part of subepisode lattice structure where an £-node
partial order episode can have £-node subepisodes as well. Thus an alternate strategy
for candidate generation would be to generate an ¢-node episode as a final candidate
not only when all its (¢ — 1)-node subepisodes are frequent but also when all its £-node
subepisodes are also frequent. This would, of course, mean that we would generate
multiple £-node candidate sets and for each, we have one database pass to find fre-
quent episodes. This approach has two problems as mentioned in Remark 1. One is
with regard to the number of data passes needed (i.e., to extract frequent episodes of
a given size, one would have to now traverse the data multiple times). This can affect
the run-times severely when the data resides in the secondary memory. Also, as the
size of episode increases, the subepisodes lattice (among candidates of a given size)
would have many levels and hence we may need many passes over the data.

A second and equally important reason for the approach we adopted is that we
use thresholds on both frequency and bidirectional evidence (which is a new mea-
sure we introduced in this paper) at each level. Based on our experiments, using a
frequency threshold alone during discovery (and bidirectional evidence (BE) based
threshold as a post-filter) turned out to be time-wise very inefficient because of the
combinatorially explosive number of non-maximal subepisode candidates generated
atthe higher levels. We note that these candidates would be generated even if we exploit
the subepisode structure at the same level to generate candidates. Even though the
BE measure is not strictly anti-monotonic, we roughly argued how level-wise BE
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threshold was effective in not only retaining the embedded interesting patterns, but
also pruning lots of uninteresting non-maximal subepisodes of the embedded pattern
right from the lower levels (see the discussion in Sect. 5.3 and the simulation results
presented in Sect. 6.2). The embedded pattern having a high enough frequency and
BE was recovered by the algorithm mainly because its maximal subepisodes also
had a high BE and frequency. The non maximal subepisodes on account of having
a low BE were pruned right from the lower levels. Hence thresholds based on both
frequency and BE are needed for discovery in our method. Given this, in case we
change the candidate generation exploiting the subepisode structure at the same level,
we would actually miss out on interesting patterns. To illustrate this, suppose we have
a data stream with just non-overlapped occurrences of some four-node serial episode
o. Most of its four-node subepisodes (all of which are non-maximal) even though are
frequent would have a low BE. As per the modified candidate generation scheme,
with both frequency and BE thresholds, none of «’s four-node subepisodes would be
generated as interesting (frequent and satisfying BE threshold) and hence the modified
scheme would never generate « as a candidate. With all these considerations, we feel
the candidate generation scheme employed here (where by an £-node episode is a can-
didate when all its (£ — 1)-node maximal subepisodes are frequent) is a good strategy
even though it may be counting the frequency of some of the episodes unnecessarily.

Apart from the episodes idea, another important framework of data mining for
ordered data (event) sequences is that of the sequential patterns approach (Agrawal
and Srikant 1995; Casas-Garriga 2005; Pei et al. 2006; Mannila and Meek 2000).
Here the data consists of a large number of event sequences (where each sequence is
typically short) and we are interested in patterns (episodes) that occur at least once in a
large fraction of all the sequences. There have been methods to mine for episodes with
unrestricted partial orders in the context of sequential patterns. Mannila and Meek
(2000) tries to learn a partial order which can best explain a set of sequences, where
each sequence is such that a given event-type occurs at most once in the data sequence.
The learning problem is posed as a maximum-likelihood estimation problem, which
equivalently boils down to a search over the space of all partial orders. For computa-
tional feasibility, the search is carried out over the space of series-parallel partial orders
only. Casas-Garriga (2005) proposes a two-step method to extract all frequent closed
partial orders from a set of sequences. The first step involves discovering all closed
patterns with a total order along with the identification of the sequences in which
they occur. For this, one can use any of the existing algorithms for closed sequen-
tial patterns (with a total order) like BIDE (Wang and Han 2004). The second step
involves grouping together patterns which occur in the same sequences. From each
such group, one constructs a partial order in a manner that each serial pattern in the
group exactly corresponds to a maximal path in the constructed partial order and vice
versa. Further, it is shown that each such partial order is a frequent closed partial order.
Pei et al. (2006) proposes a more efficient algorithm for the same problem, but on data
where each sequence has no repeated event-types. This additional assumption helps
them view the frequent closed partial order mining problem as an equivalent closed
itemset mining problem by representing each sequence by its transitively closed total
order graph and viewing each edge in this graph as an item. The final algorithm is an
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efficient version of this equivalent closed itemset mining solution, by trying to mine
transitively reduced frequent partial orders directly.

In contrast to the sequential patterns approach, in the frequent episodes framework,
the data consists of a single long stream of events and we are interested in the number
of times an episode occurs. Consequently, the computational techniques that work well
in the sequential patterns context will not be suitable for discovering frequent episodes
from an event stream. The sequential patterns approach is more suitable when the data
itself naturally comes as many different sequences. (For example, given the individual
sequence information of a number of proteins we may want to find motifs that occur
in a large fraction of them.) In data where frequent episodes framework is suitable
(e.g., the neuronal spike train data considered here), it is not possible to a priori cut the
sequence into many small pieces so that it is enough to find partial orders that occur
at least once in each piece. We do not know beforehand where occurrences are. Also,
within our framework, while different occurrences of a single frequent episode are
non-overlapped with each other, the occurrences of different frequent episodes can be
(and mostly will be) overlapped and hence one way of cutting the long sequence into
pieces may not work for all episodes. On the other hand, if we have data as a number of
short sequences (where most sequences will not have multiple occurrences of relevant
patterns) then we can string all these together into a single long data stream and can still
discover partial order episodes which would be frequent under the sequential patterns
approach also by suitable choice of frequency threshold. Thus, the problem we con-
sider in this paper, namely discovering of interesting episodes with unrestricted partial
orders from a single long event stream, is more general and the currently available
techniques are not adequate for tackling it.

In this paper we have considered the case of only injective episodes. Even though
in principle, the counting ideas presented here can be extended to general episodes,
our candidate generation algorithm will not work without the assumption of injec-
tive episodes as explained in Remark 2. Extending the ideas presented here to the
class of all partial order episodes is an important direction in which the work reported
here can be extended. In whole of frequent pattern mining, the choice of frequency
thresholds is typically user-defined or arbitrary. Assessing interestingness of patterns
based on sound statistical methods is a popular approach in pattern discovery. Another
potential future direction based on this work is to statistically assess significance of
general partial order patterns in event streams. We will address these in our future
work.
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