
Fast Control Plane Analysis 
Using an Abstract Representation	

Aaron	Gember-Jacobson,	Raajay	Viswanathan,	
Aditya	Akella,	Ratul	Mahajan	

	

1	



ConfiguraAon	errors	are	common	

•  MulAple	rouAng	protocols	
•  RouAng	process	prioriAes	
•  Route	exchange	
•  Traffic	SelecAvity	

–  Route	Filters	
–  ACLs	

2	

						

									

Human	errors	are	unavoidable	



Errors	lead	to	policy	violaAons	

3	

Network	verificaAon	is	important	

ViolaAon	Policy	



Some	violaAons	only	occur	under	failures		

4	

RC	 RB	

RA	

OSPF	1

1

3

SRC	

DST	

Network	verificaAon	under	arbitrary	failures	
is	required	



State-of-the-art	verificaAon	with	failures	
•  Analyze	current	data	plane	[HSA	NSDI’13,	VeriFlow	NSDI’13]	

–  Cannot	verify	policies	across	failures		

5	

Forwarding	
Table	

Forwarding	
Table	

Forwarding	
Table	

Forwarding	
Table’	

Forwarding	
Table’	

Forwarding	
Table’	

Forwarding	
Table’’	

Forwarding	
Table’’	

Forwarding	
Table’’	

Forwarding	
Table’’’	

Forwarding	
Table’’’	

Forwarding	
Table’’’	

•  Simulate	low	level	protocol	messages	[Ba[ish	NSDI’15]	
•  Generate	data	planes	for	each	failure	case	

–  Time	consuming	



6	

How	do	we	speedup	network	verificaAon	
under	failures	?	

Network	
verificaAon	

under	
failures	

Graph	
Analysis	



Network	verificaAon	under	failures	using	
		graph	algorithms	

7	

Network	configuraAons	

•  Graphs	encode	the	network’s	forwarding	behavior	under	all	
possible	failure	scenarios	

•  VerificaAon	reduces	to	checking	simple	graph-level	properAes	
à	polynomial	:me	

•  CollecAon	of	digraphs	à	ARC:	Abstract	RepresentaAon	for	
Control	planes	

	

		2	
2	

4	

1.2	

10	

0	

6	

CollecAon	of	weighted	digraphs	

…...	



Outline	

•  MoAvaAon	
•  Requirements	&	Challenges	for	ARC	creaAon	
•  Our	approach	for	construcAng	ARCs	
•  Network	verificaAon	using	ARCs	
•  EvaluaAon	

8	



Requirement:	Encoding	forwarding	
behaviors	under	all	failures	

•  Graph	contains	all	possible	paths	in	the	actual	
network	

•  Actual	path	under	parAcular	failure	scenario	is	
obtainable	through	graph	traversal	

9	

		

2	
2	

4	

1.2	

10	

0	

6	

6	

2	

10	



ARC	construcAon:	First	steps	

•  Network	topology	is	
essenAally	a	graph	

•  RouAng	protocols	do	least	
cost	forwarding	
–  OSPF:	Djikstra’s	Algorithm	

using	OSPF	weights	
–  BGP:	Min	AS	hops	

•  Route	redistribuAon	
•  RouAng	cost	varies	/	protocol	
•  AdministraAve	Distance	
•  Traffic	class	filters	
•  RouAng	granulariAes	
•  …	

10	

Shortest	path	
SRC	

DST	

Need	sophisAcated	approaches	to	determine	
graph	structure	and	edge	weights	

Opportuni:es	 Challenges	

1	
1	

1	

1	

1	
1	10	

10	

10	

10	

20	 20	

OSPF	 BGP	

SRC	 DST	

A	 D	

E	B	

C	
20	

10	

10	



ARC	ConstrucAon:	Graph	Structure	

•  One	directed	graph	per	Src-Dst	subnet	pair	
•  Ver:ces:	hosts,	rouAng	processes	
•  Edges:	flow	of	data	enabled	by	exchange	of	rouAng	
informaAon	

11	

SRC:S 

DST:T 

A.1I

A.1O B.1I

B.1O Z.1I

Z.1O

Z.3I

Z.3O

Y.3O

Y.3I

X.3I

X.3OZ 

B 

X 

BGP1 

OSPF3 

T 

S 

Y 
1 

2 

A 

3 

Inter-device:	adver:sements	

Intra:	Route		
redistribu:on	

Intra:	within	device	forwarding	



2 

Z.5O

ARC	construcAon:	Edge	weights	

•  For	single	rouAng	instance,	
use:	
•  OSFP	link	weights	
•  BGP	hop	counts	

•  MulAple	processes:	AD?	
RedistribuAon?		
•  Normalize	weights	across	

instances	

•  Novel	algorithm	for	scaling	
weights	

12	

SRC:S 

DST:T 

A.1I

A.1O B.1I

B.1O Z.1I

Z.1O

Z.3I

Z.3O

Y.3O

Y.3I

X.3I

X.3O

1 

1 

1 

1 

0 0 0 

0 0 0 

2 

2 

3 

3 

1 

0.4 0.6 

0.4 0.6 

Shortest	path	in	ARC	
==	actual	path	



Policy	verificaAon	using	ARCs	

13	

Is	a	policy	
violated	in	

the	network?	
::	

Does	the	graph	
saAsfy	some	
property	?	

What	graph	
algorithms	to	use	?	



Verify	always	blocked	policy	

14	

CI

CO

DO

DI

DST SRC 

Is	communicaAon	
between	SRC	and	DST	
not	allowed	under	any	
failure	scenario?	

::	
Does	there	exist	
a	path	from	SRC	
to	DST	in	the	
corresponding	
ARC?	

Connected	components	

SRC	

DST	

3	

1	

1	

D	

C	
B	



Verify	‘k-’reachability	policy	

15	Max-flow	=	3	

DO

DI

EO

EI

FO

FI

GO

GI

CO

CI

BO

BIDST 

SRC 

OSPF 
∞ 1 

Is	DST	always	
reachable	from	SRC	
with	‘<	k’	failures	?	

Are	there	’k’	edge-disjoint	
paths	from	SRC	to	DST	?	

Max-flow	algorithm	on	ARC	

::	

SRC	DST	

D	

C	B	

F	 G	

3	edge-disjoint	paths	

E	



Verify	path	equivalency	

•  Re-scaling	algorithms	can	result	in	different	weights	
•  Reduce	weights	to	canonical	form	and	compare	

16	

? 

u2	
		

u1	
u3	

u1	

u5	

u4	
u8	

u7	

u6	

u9	

u10	

w2	
		

w1	

w3	
w1	

w5	

w4	
w8	

w7	

w6	

w9	

w10	

Is	a	traffic	class	forwarded	
in	the	same	manner,	before	
and	aner	a	configuraAon	
change?	

Are	ARCs	the	same	?		::	



AddiAonal	properAes	we	can	verify	

•  Always	isolated:	Traffic	of	different	tenants	
are	always	isolated	

•  Always	traverse	waypoints:	Traffic	between	
hosts	always	traverse	waypoints	

17	



EvaluaAon	

•  ARC	construcAon	performance	
•  ARC	verificaAon	performance	
•  ARC	fidelity	

18	



Network	configuraAons	

•  ConfiguraAons	from	314	data	
center	networks	operated	by	a	
large	online	service	provider	

19	



Time	to	generate	ARC	

20	

Fast	(<10	seconds)	even	for	large	networks	

Ti
m
e	
to
	b
ui
ld
	A
RC

s	(
se
co
nd

s)
	

Networks	(sorted	by	size)	

Parse	configuraAons	
Build	ARC	from	scratch	



Time	to	verify	ARC	

21	

Always	blocked	
(connected	components)	

Always	reachable	
with	<	k	failures	

(max	flow)	

Equivalent	paths	
(convert	to	canonical		
weights	and	compare)		

	
<	500	ms	 Up	to	100	s	<	1	sec	

•  VerificaAon	per	traffic	class	is	parallelizable	



Comparison	with	Ba[ish	

22	

Always	blocked	
using	ARC	

Always	blocked	
using	BaCish	

<	500	ms	 Up	to	694	days!	

3	-	5	orders	of	magnitude	speedup	



ARC	fidelity	

23	

•  For	any	given	failure	scenario,	is	ARC	shortest	
path	==	actual	network	path?	

•  Formally	prove	ARC	fidelity	for	networks	with:	
– RouAng	protocols	:	OSPF,	RIP,	BGP	
– Route	redistribuAon	is	acyclic	
– Route	selecAon	preference	follow	a	global	order	

96%	of	networks	saAsfy	these	properAes	



ARC	fidelity	

24	

•  For	remaining	networks	
– We	can	sAll	generate	the	graph	structure	
– Cannot	generate	edge	weights	
– Verify	“always	blocked”,	“k-reachability”	

96%	 4%	

All	properAes	can	be	verified	

Cannot	verify	path	equivalence	



Summary	
•  Network	verificaAon	under	

failures	can	be	formulated	as	
graph	analysis	

•  Presented	an	abstract	
representaAon,	ARC	

•  Can	construct	high	fidelity	ARCs	
for	96%	of	networks		

•  O(103)-O(105)	speedup	in	
verificaAon	

25	

hDps://bitbucket.org/uw-madison-networking-research/arc	

		



26	


