
Fast Control Plane Analysis
Using an Abstract Representation

Aaron Gember-Jacobson∗◦, Raajay Viswanathan∗◦, Aditya Akella◦, Ratul Mahajan†

◦University of Wisconsin-Madison, †Microsoft Research
◦{agember,raajay,akella}@cs.wisc.edu, †ratul@microsoft.com

ABSTRACT

Networks employ complex, and hence error-prone, routing
control plane configurations. In many cases, the impact of
errors manifests only under failures and leads to devastating
effects. Thus, it is important to proactively verify control
plane behavior under arbitrary link failures. State-of-the-art
verifiers are either too slow or impractical to use for such
verification tasks. In this paper we propose a new high level
abstraction for control planes, ARC, that supports fast con-
trol plane analyses under arbitrary failures. ARC can check
key invariants without generating the data plane—which is
the main reason for current tools’ ineffectiveness. This is
possible because of the nature of verification tasks and the
constrained nature of control plane designs in networks to-
day. We develop algorithms to derive a network’s ARC from
its configuration files. Our evaluation over 314 networks
shows that ARC computation is quick, and that ARC can
verify key invariants in under 1s in most cases, which is
orders-of-magnitude faster than the state-of-the-art.

CCS Concepts

•Networks → Control path algorithms; Network dynam-

ics; Network reliability;

Keywords

Network verification; control plane; abstract representation

1. INTRODUCTION

A network’s routing control plane is responsible for gen-
erating the data plane (i.e., forwarding tables) using one or
more distributed routing protocols (e.g., OSPF, RIP, BGP).

∗These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22-26, 2016, Florianopolis , Brazil

c© 2016 ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934876

Prior work has shown that the configuration of these routing
protocols [5, 6] and their interactions [19, 21] can be quite
complex in modern networks. Consequently, control planes
are prone to configuration errors that compromise network
security, availability, and performance [8, 25].

Many control plane errors manifest only during failures
and can have a devastating impact. For example, in 2012,
failure of a router in a Microsoft Azure data center trig-
gered previously unknown configuration errors on other de-
vices, degrading service in the West Europe region for over 2
hours [23]. Another large class of errors arises when refac-
toring a network’s control plane: e.g., consolidating rout-
ing domains to improve manageability [5], changing rout-
ing protocols to improve scalability [18], or replacing old
devices, potentially with hardware from a different vendor.
These common errors highlight the importance of proac-

tively analyzing a control plane.
Unfortunately, many network verification tools [15, 16,

17, 20] analyze a network’s current data plane. This limits
the scope of their analyses to the current live network and
prevents them from being used for proactive analysis. To
overcome this limitation, more recent tools, such as Bat-
fish [9], simulate the control plane and generate the net-
work’s expected data plane under specific failure scenarios,
e.g, a single link failing. However, these tools operate at a
low level of abstraction, modeling individual protocol mes-
sage exchanges to generate the data plane. As such, they
tend to be slow. Further, these tools must generate the com-
plete data plane for every possible failure scenario of in-
terest. These attributes render them impractical for several
key tasks, such as proactively verifying certain security and
availability invariants under arbitrary failures, where the tools
must generate an exponential number of data planes.

Fortunately, we observe that detailed data plane genera-
tion is not always necessary due to two factors. First, proac-
tive analysis tasks often require computing properties of
paths, not the paths themselves. For example, invariants I1–
I4 in Table 1 focus on the existence (or absence) of paths;
I5 relies on the set of paths taken, but we show that actually
computing the paths is unnecessary. Second, many enter-
prise and data center networks use only a handful of routing
protocols which interact in very specific ways (§7.1).

We leverage the above factors to develop a new abstrac-
tion that operates at a higher level than today’s control plane

300

verifiers, enabling more direct proactive analyses. We call
this abstract representation for control planes, or ARC. ARC
enables the aforementioned proactive analyses to run orders
of magnitude faster than state-of-the-art tools.

ARC abstracts the mechanics of individual routing pro-
tocols and simply captures the collective impact they could

have on the network’s data plane. ARC is composed of a se-
ries of weighted digraphs that are routing protocol-indepen-
dent. We develop algorithms for generating ARCs that accu-
rately model the common protocols (OSPF, RIP, and eBGP)
and mechanisms (static routes, ECMP, access control lists,
and route redistribution) used in enterprise and data center
networks; for example, our university network and hundreds
of data center networks operated by a large online service
provider (OSP) use these constructs (§7.1). To maintain
ARC’s efficiency, we do not model protocols that are less
common in enterprise and data center networks (e.g., iBGP).

Crucially, the ARC’s edges and vertices are chosen such
that the true forwarding path between network locations un-
der any failure scenario is provably included in the ARC’s di-
graphs. Consequently, verifying key security and availability
invariants (e.g., I1–I4 in Table 1) boils down to computing
simple graph characteristics of the ARC, such as connected
components and max-flow, which run in polynomial time.

Furthermore, for control planes using a restricted set of
features—e.g., AS path length is the only path selection cri-
terion used by eBGP instances—we show how to configure
edge weights in the ARC such that the shortest path com-
puted on the ARC under a given failure scenario is the same
as the path computed by the real network. Our university
network and a large fraction (97%) of the data center net-
works we study use such a restricted set of features. In
these cases: (1) We can use the ARC to generate a counter-
example for violations of the security and availability invari-
ants (I1–I4) in Table 1, where the counter-example includes
a failure scenario and an invariant-violating path.1 Opera-
tors can use these examples to make proactive fixes to buggy
configurations before rolling them out into a live network.
(2) We can enable equivalence testing (I5) for networks sat-
isfying the restrictions by simply comparing the ARCs for
the old and new configurations.

We implement our ARC generation algorithms in Java,
using Batfish [9] to parse configurations written in vendor-
specific languages; our code is publicly available [1]. To
evaluate ARC, we check the control planes of 314 data cen-
ter networks operated by a large OSP against the invariants
in Table 1. We find that each network’s ARC can be gen-
erated in a few seconds. Verifying many of the invariants
under arbitrary failure scenarios takes less than 1s for 99%
of networks. Checking I3 across collections of traffic flows
is the most time-consuming: it can take up to a few tens of
minutes. In contrast, state-of-the-art tools [9] are 3-5 orders
of magnitude slower in checking limited failure scenarios.

2. MOTIVATION

1We can still verify (but not present a counter-example for)
I1–I4 even if networks do not satisfy the restrictions.

Invariant Example
I1: Always blocked External hosts can never commu-

nicate with hosts in subnet S
I2: Always reachable
with < k failures

Up to 5 links can fail with-
out breaking connectivity between
subnets S1 and S2

I3: Always isolated Traffic between subnets S1 & S2

and S3 & S4 never traverses the
same link simultaneously

I4: Always traverse
waypoint

Traffic between external hosts and
internal hosts must always tra-
verse a firewall

I5:
Equivalent(C1, C2)

Traffic between hosts must always
traverse the same paths if control
plane C2 were to replace C1

Table 1: Invariants of common interest

The network control plane is the heart of a network. It
may be composed of multiple routing domains, or routing

instances. Each routing instance is a collection of processes
running on different routers that exchange information (e.g.,
link-state updates) using a specific protocol (e.g., OSPF, RIP,
BGP) [13, 21]. Routing processes on the same device may
exchange routes with each other using route redistribution.
Static routes may also be used. The routing instances col-
lectively generate the network’s data plane, i.e., forwarding
tables, based on protocol-specific algorithms (e.g., Bellman-
Ford), various parameters (e.g., link weights), access control
lists (ACLs), and the current state of network links. In addi-
tion, operators may define knobs (e.g., redistribution costs
and administrative distances) that determine how a router
chooses among the many routes it learns via the processes
configured on it. Routing processes and their parameters,
access controls, and the operator defined knobs are specified
in a router’s configuration file.

Recent work has shown that most networks’ control planes
use complex designs to realize sophisticated goals [5, 6, 19].
Unfortunately, the complexity makes these control planes er-
ror prone [12]. In particular, critical errors may arise only

during failures, e.g., when one or more links fail simultane-
ously, or while refactoring the control plane’s design.

In this paper, we focus on two important ways of identify-
ing such errors in control planes: (1) verifying security and

availability invariants hold across arbitrary failures and (2)
equivalence testing. Below, we illustrate the importance of
these tasks using a toy example. We argue that no existing
tool is capable of performing these tasks, at least not feasibly
on sufficiently large networks. We then highlight opportuni-
ties we can leverage to efficiently support the two tasks.

2.1 Satisfying Invariants

Figure 1a shows an example network’s control plane. It
uses three routing instances: one BGP instance and two OSPF
instances. Routers A, E, G, H run processes for the OSPF0

instance, routers D, E, and F run processes for the BGP1

routing instance, and routers A, B, C, and D run processes
for the OSPF2 instance. The picture also shows links costs
(e.g., 4 on the A-B link), route redistribution and the cost of
such redistributed routes (e.g., from OSPF2 to BGP1, whose
cost is 0), and data plane ACLs (e.g., at router D, on the

301

F

D

B

BGP
1

OSPF
2

T

1

C

1

T
T

T

1

1

S

0

4

OSPF
0

E

A

G

H

1

100

100

100

T

(a) Initial control plane

Z
F

D

B

BGP
1

OSPF
2

T

OSPF
3

U 1

C

1

T
T

T

1

1

S

0

1

Y

0

1

5

4

OSPF
0

E

A

G

H

1

100

100

100

S

U

T

(b) Expanded control plane

Figure 1: An example enterprise network: Circles represent
routers and rectangles represent routing instances. Links be-
tween routers are labeled with OSPF costs. No-entry sym-
bols represent ACLs blocking traffic destined for T . Arrows
between instances indicate route redistribution, and spec-
ify the cost assigned to such routes. Tubes represent static
routes that are redistributed in the direction of the arrow.

A-D link). One of the objectives this control plane ensures,
among many, is that S cannot communicate with T .

Security & availability. To avoid undesirable outcomes
from manifesting under failures, operators may require that
certain key security and availability invariants always hold
in their network (i.e., even under arbitrary failures). In the
above example, it is easy to see the invariant “subnet S can
never send traffic to subnet T ” always holds, because the
only possible path from S to T is via D or E, and every
interface on D (E) that participates in the OSPF2 (OSPF0)
routing instance has an ACL that blocks traffic destined for
T . Now assume the enterprise acquires a startup and con-
nects the startup’s network—represented by OSPF3 in Fig-
ure 1b—to the existing network. To allow subnets S and T
to communicate with subnet U , the operator configures route
redistribution and static routes on routers B and Z.

Unfortunately, the change introduces the subtle side-effect
that S can now send traffic to T under some specific failure
scenarios, violating the operator’s requirement that the in-
variant always hold. In particular, without any failures, there
is a cheaper path from S to T : F→Z→Y→B→D→A;
since this passes through D, traffic is still blocked. How-
ever, if the B–D and C–D links both fail, the new cheapest
path goes directly from B to A, bypassing the ACLs on D.

Equivalence. In some situations, operators refactor the net-
work’s control plane to simplify device configurations and
improve manageability. For example, an operator may want
to combine multiple OSPF instances (e.g., OSPF2 and OSPF3

in Figure 1b) into a single OSPF instance [5]. Operators
inform us that, in making such a change, they wish to en-
sure the optimized control plane is equivalent to the original
control plane: i.e., under arbitrary failures the new and old
control planes should generate the same data plane. Testing
for equivalence is also important when operators alter their
control plane design to use a different set of protocols (e.g.,
replace OSPF with BGP for scalability reasons [18]) or dif-
ferent hardware (e.g., replace old devices, potentially with
hardware from a different vendor). It is difficult to evalu-
ate the equivalence of such changes, because the raw device
configurations look very different.

2.2 Limitations of Existing Verifiers

Current verification tools are designed to check the net-
work in its present state or under a limited set of failure sce-
narios (e.g., all single link failures). As a result, current tools
are incapable of, or very inefficient at, both determining that
the above reachability invariant can be violated and testing
if the optimized control plane is equivalent to the original.

Data plane modeling. Many tools [15, 16, 17, 20] build a
model of the data plane based on snapshots of device for-
warding tables, or SDN control messages. Because they
verify the current data plane, these tools cannot proactively

check if an invariant, such as our reachability example above,
would be satisfied if links failed. Likewise, data plane veri-
fiers cannot be used for equivalence testing.

Control plane modeling. Older control plane tools model
specific devices (e.g., firewalls [24]) or routing protocols
(e.g., BGP [8]). As such, they are not well suited for verify-
ing today’s enterprise and data center networks, which make
use of multiple device types and routing protocols [12].

A more recent tool, Batfish [9], models several routing
protocols and their interactions using Datalog. This allows
Batfish to generate data plane models for a set of failure
scenarios and verify an invariant holds across the generated
data planes. Unfortunately, tools such as Batfish are slow be-
cause they do not abstract the network at all, but instead try
to mimic low level protocol interactions and generate a full
data plane. This can take as long as a few minutes (§7.3).
Furthermore, Batfish must generate the data plane for every
possible k link failure scenario. In our reachability example
above, Batfish can only detect the invariant violation after
generating and examining O(|ℓ|2) data planes for single and
two-link failure scenarios, where ℓ is the set of links in the
network. In the worst case, Batfish must generate an expo-
nential (in |ℓ|) number of data planes, making it impractical.

For equivalence testing, control plane verifiers must gen-
erate data planes under all possible failures for both control
planes and compare them, which is again impractical.

2.3 Opportunities for Improvement

Our insight is that, in practice, checking many key invari-
ants does not require computing the actual forwarding paths.
In the reachability example above, which illustrates I1 in Ta-
ble 1, we ideally only need to check if S and T are in differ-
ent connected components of a logical graph induced by the
network’s control plane configuration and physical topology.
As we show later, the remaining invariants (I2–I5) can also
be analyzed without generating the data plane.

Furthermore, many networks, especially enterprise and
data center networks employ a limited set of routing con-
structs in their control plane design. We list the key attributes
we observe in our university network and the data center net-
works of a large online service provider in Table 3. Notably,
only a handful of routing protocols are used, and they oper-
ate and interact in limited ways.

Thus, our intuition is that by focusing on what check-
ing key invariants actually entails and by considering con-
strained control plane designs, we can develop a new ab-

302

B C

OSPF
T

D
U S

1

3 1

T

T

T

(a) Control plane for a network with three subnets (squares) and 3
routers (circles) participating in a single OSPF instance (rectangle);
no-entry symbols indicate inbound ACLs on traffic from T

B

I

 C

O

B

O

D

I

D

O

3 C

I

0

3

0
0

Dst:T Src:U

0
0

1

1

1 1

Dst:U Src:T

0
0

C

O

 D

I

D

O

 C

I

0
0

3

3

Dst:U Src:S

0
0

B

I

 C

O

B

O

D

I

D

O

 C

I

0
0

0

1

1

1 1

3

3

B

I

 C

O

B

O

D

I

D

O

3 C

I

0

3

0
0

Dst: S
Src:U

0
0

1

1

1 1

C

O

 D

I

D

O

3 C

I

3

0
0

Dst: S
Src:T

0

Dst:T Src:S

0

B

I

 C

O

B

O

D

I

D

O

 C

I

0
0

0

1

1

1

1

3

3

0

(b) Abstract representation for the control plane (ARC): it contains
one digraph for every pair of source and destination subnets; ver-
tices correspond to routing processes; edges represent the possible
flow of traffic enabled by the exchange of routing information be-
tween the connected processes

Figure 2: Example network with three endpoint groups and
three routers participating in a single OSPF instance

straction that operates at a higher level than today’s control
plane verifiers and enables more direct analysis.

3. A NEW ABSTRACTION: ARC

To avoid modeling a network’s data plane, which depends
on the current state of network links, and instead analyze the
network at a higher-level, we present an abstract represen-

tation for control planes (ARC).
A network’s ARC is a data structure that contains a collec-

tion of weighted digraphs, one for each “traffic class”, i.e.,
a source-destination subnet pair. As an example, Figure 2b
shows the ARC for the simple control plane in Figure 2a;
the ARC has six graphs: one for each possible combina-
tion of source and destination subnets. Each digraph models
the behavior of the routing instances/protocols in the control
plane, and the interactions among them, with respect to the
corresponding traffic class. Vertices correspond to routing
processes—each has an in (I) and out (O) vertex for reasons
described in §4.2. Directed edges represent the possible flow
of data traffic enabled by the exchange of routing informa-
tion between the connected processes.

For an ARC to be useful for verification and equivalence
checking, its constituent digraphs must satisfy two key at-
tributes: pathset-equivalence and path-equivalence. We de-
scribe these next.

Pathset-equivalent graphs. Each digraph in an ARC is
constructed such that it contains every path between the source
and destination endpoints that is used in the real network,
and does not contain any path that is infeasible in the real
network, under arbitrary failures. We say such a digraph

is pathset-equivalent, because it encodes all possible and
no impossible forwarding behaviors, respectively. In §4.2,
we describe how to construct provably pathset-equivalent
graphs for networks that use OSPF, RIP, eBGP, static routes,
ACLs, route filters, and route redistribution.

One of the main benefits of a pathset-equivalent ARC is
that verifying invariants I1–I4 in Table 1 for arbitrary link
failures boils down to checking simple graph attributes. For
example, suppose we want to verify that “subnet T can never
send traffic to subnets S or U under any link failures” in the
network shown in Figure 2a. Assuming the graphs in Fig-
ure 2b are pathset-equivalent, this can be done by checking
if T and S (or T and U) are in separate connected com-
ponents of the graphs for the corresponding traffic classes
(center graphs in Figure 2b). Because T and U are in the
same connected component in the lower-center graph, there
is some link failure scenario where the invariant is violated
and T can send traffic to U (e.g., when the B–D link fails).

Path-equivalent graphs. To aid operators in debugging vi-
olations, and allow for fast equivalence testing, the edge
weights in each digraph are assigned such that, after remov-
ing edges corresponding to failed links, the min-cost path

in the digraph between the source and destination vertices
is the exact path taken in the real network. We say such a
graph is path-equivalent, because it encodes the network’s
actual forwarding behavior under arbitrary link failures.

For example, when there are no link failures in the net-
work in Figure 2a, traffic from S to U takes the path S →
B → C → U , which is the min-cost path in the lower-right
graph in Figure 2b. When the B − C link fails, the actual
and min-cost path is S → B → D → C → U . While in this
example, edge weights are the same as OSPF cost metrics,
in a real ARC the weights are a function of the relative rank
of specific routing protocols, AS paths, and network links.

In §4.3, we describe how to construct provably path-equiv-
alent graphs for networks under some restrictions, i.e., the
route redistribution policy is acyclic and the costs assigned
to redistributed routes are congruent with each process’s ad-
ministrative distance (AD).

When the digraph is path-equivalent, we can produce all
min-cost paths from T to U as counter-examples to the afore-
mentioned invariant. The operator can use this to add the
missing ACL to C and prevent T and U from ever commu-
nicating. Additionally, we can check the equivalence of two
control planes by directly comparing the graphs contained
in their ARC. If each graph in each control plane’s ARC has
the same vertices and edges, and the edge weights are pro-
portional, then the control planes are equivalent.2

The main challenge in constructing ARCs is determining
the appropriate vertices, edges, and weights to use for the
graphs to be pathset- and path-equivalent.

2An equivalent ordering of edges by weight does not guar-
antee the ordering of paths is the same: e.g., changing the
weight of the B–C edge in Figure 2a to 2.5 results in the
same ordering of edges but causes the path D → C to be
preferred over the path D → B → C.

303

4. GENERATING A NETWORK’S ARC

We start by discussing the practical challenges in design-
ing the ARC. Then, we motivate and present our approach
for constructing a pathset-equivalent ARC. Finally, we de-
scribe our algorithms for deriving edge weights to get a path-
equivalent ARC.

For simplicity, we focus on networks that use OSPF, RIP,
eBGP, static routes, AD-based route selection, route redistri-
bution, data plane ACLs, and/or route filters. These are the
constructs we find in our campus network and hundreds of
data center networks operated by a large OSP (§7.1). How-
ever, other protocols (e.g., EIGRP) can be accommodated
through extensions to our algorithms.

4.1 Opportunities and Challenges

Modeling the collective behavior of multiple routing in-
stances in a series of weighted digraphs in the ARC is en-
abled by the fact that most routing protocols in use today

employ a cost-based path selection algorithm. For exam-
ple, OSPF uses Dijkstra’s algorithm to compute min-cost
paths from a source to all destinations; RIP computes short-
est paths using the Bellman-Ford algorithm. If multiple min-
cost paths are available and ECMP is enabled, then traffic
is evenly divided among the paths using multi-path routing.
BGP associates cost labels with paths based on numeric met-
rics: e.g., operator-defined local preference, path length, and
multi-exit discriminator (MED) [7, 14]. These have similar
properties to link costs used in IGPs, except BGP costs are
per-path rather than per-link.

While these similarities allow us to use weighted digraphs
to model routing behavior, differences between protocols in-
troduce at least two challenges:

1. In the actual control plane, interior and exterior gateway
protocols (IGPs and EGPs, respectively) compute routes
at different granularities. An IGP treats each router as
a node, while an EGP views each AS as a node. For-
tunately, enterprise and data center networks tend to use
EGPs in restricted ways (§4.3.3) that mirror IGPs’ view.

2. Each routing protocol uses a different currency for ex-
pressing link and path costs/preferences: e.g., a link with
an OSPF cost of 1 may be less desirable than an AS path
whose local preference is 1, or vice versa. Thus, we
cannot directly add or compare costs between protocols.
However, in real network control planes, redistributed
routes are assigned fixed costs (§4.3.4); this masks the
costs used in other routing instances and provides an av-
enue for reconciling differences in currency.

There are other subtle aspects of network routing that also
impact our modeling:

• Traffic-class-specific policies. Only certain classes of
traffic are blocked by data plan ACLs and route filters.

• Redistribution of routes between routing instances. A
routing process may advertise routes computed by an-
other routing instance, allowing traffic to traverse a path
composed of segments selected by different protocols.

• Selection of routes based on AD. When multiple routing
processes on the same device identify a route to a desti-

nation, only the route from the process with the lowest
administrative distance (AD) is installed in the device’s
global routing information base (RIB) [19].

We next describe how we select ARC vertices, edges, and
weights to accommodate the above issues.

4.2 ARC Vertices and Edges

A network’s physical topology may seem like a natural
starting point for the ARC’s graphs. By having a vertex for
each router and an edge for each physical link, we can as-
sign edge weights based on the per-interface cost metrics
defined for IGPs (e.g., OSPF and RIP) and the AS prefer-
ences defined for BGP. However, this is too coarse to express
route selection and redistribution policies between routing
processes running on the same device.

4.2.1 Extended Topology Graph

To accommodate these features, we introduce an abstrac-
tion we call an extended topology graph (ETG). Figure 3
shows the ETG for the example control plane depicted in
Figure 1b. Vertices in the ETG correspond to individual
routing processes.3 Directed edges represent inter- and intra-
device communication paths between routing processes, in-
cluding: hardware paths—a single physical link or multiple
physical links that form a layer-2 network—and software

paths—inter-process communication channels used to ex-
change information between processes on the same device.

Some aspects of a network’s control plane only apply to
specific traffic classes: e.g., data plane ACLs, route filters,
and static routes. To accommodate these features, an ARC
includes a customized ETG for each traffic class. As men-
tioned earlier, a traffic class represents the set of traffic flow-
ing from one endpoint group—a set of related hosts, sub-
nets, etc.—to another. We use the network prefixes in device
configurations, including prefixes assigned to interfaces, ad-
vertised by routing processes, and referenced in ACLs, as
the basis for determining a network’s endpoint groups. Be-
cause some prefixes may overlap, we use standard firewall
rule optimization algorithms [10] to compute a set of non-
overlapping prefixes. We generate a list of traffic classes by
enumerating all possible pairings of prefixes.

Modeling forwarding behavior at the level of routing pro-
cesses results in an ARC that is not protocol-independent.
This model is nevertheless useful to answer control plane
verification questions. In §5.2, we show, under restricted as-
sumptions, how to transform an ETG from a process-based
to an interface-based model, resulting in a protocol-independent
ARC that can be useful for equivalence testing.

4.2.2 Constructing ETGs

We now describe how to construct ETGs from device con-
figurations. The complexity of constructing an ETG is
O(maxr |Ir |

2 + maxr |Ir | ∗ maxi |Ri |), where maxr |Ir |
is the maximum number of routing processes running on a
single device, and maxi |Ri | is the maximum number of de-
vices participating in a single routing instance.

3Static routes are also viewed as a routing process.

304

SRC:S

DST:T

A.2
O

B.2
O

C.2
I

C.2
O

0

0

D.2
I

D.2
O

0

D.1
O

D.1
I

0

E.1
O

E.1
I

0

F.1
O

F.1
I

0

1

1

5

1

1 Z.1
O

Z.1
I

0

1

1

Z.3
I

Z.3
O

0

Y.3
O

0

Y.3
I

1

1

B.3
I

B.3
O

0

1

1

1

B.2
I

0

0

0.1

0.1

0.1

0.1

0.5

Intra-device,
inter-instance

Intra-device,
intra-instance

Inter-device

E.0
O

E.0
I

0

G.0
O

G.0
I

0

H.0
O

H.0
I

0

0

1

0.0024

1

0.0024

1

0

1

1

4

4

A.0
O

100

100

100

100

1

1

0

100

A.0
I

100

A.2
I

1

0 0.0024

0.0024

0.0024

0.0024 0.0024

0.0096

0.0024 0.0096

0.041

0.041 0.041

0.041

0.041

0.041

1.25

0.00041

OSPF
0

BGP
1

OSPF
2

Figure 3: ETG for the control plane in Figure 1b (sans
ACLs) for the S → T traffic class: light shaded regions
indicate routing instances; the structure and weights are the
same for all traffic classes, with the exception of endpoint
edges, edges removed due to ACLs, and static route ver-
tices; weights in dashed boxes are assigned by our scaling
algorithm to model route redistribution and selection

Vertices. The ETG contains two vertices (in and out) for
each routing process, including static routes. For example,
the processes on routers B, Y , and Z for routing instance
OSPF3 in Figure 1b are represented by vertices B.3I, B.3O,
Y.3I, Y.3O, Z.3I, and Z.3O in Figure 3. We use two ver-
tices per process in order to accommodate route selection
and redistribution (described in detail below). We identify
a network’s routing processes from the router stanzas in
device configurations [21].

We also add special source and destination vertices (SRC

and DST, respectively) to the ETG to represent the source
and destination endpoints associated with the traffic class.

Inter-device edges. The out vertex for a routing process
on one device is connected to the in vertex for a process
on another device if: (1) the two devices are connected by a
(sequence of) physical link(s),4 and (2) the routing processes
participate in the same routing instance. Such an inter-device

edge thus represents two things. First, it represents the di-
rect exchange of routing information (e.g., link-state updates
or AS-level path advertisements) within a routing instance.
Second, it represents a possible physical path over which
data traffic may be forwarded due to the RIB entries result-
ing from the aforementioned exchange of routing informa-
tion. Inter-device edges always go from an out vertex to an
in vertex and point in the direction data traffic flows, which
is the inverse of the direction routing information flows.

For example, in the network shown in Figure 1b, the

4We assume two devices are connected if they each have an
interface that participates in the same subnet [21].

BGP1 routing process on router E may compute a route to
the subnet S via router F as a result of routing information
sent by the BGP1 process on router F . The flow of routing
information from F to E and the resulting flow of data traffic
from E to F is represented by the edge from E.1O to F.1I
in Figure 3. There is a similar edge from F.1O to E.1I, be-
cause routing information also flows from E to F and may
result in the flow of data traffic from F to E.

Unlike routes computed by IGP and BGP processes, static
routes are not based on advertisements from a specific neigh-
boring process. Thus, we connect a static route’s out vertex
to the in vertices for all processes on the next hop device—
i.e., the device with an interface whose IP address matches
the next hop IP specified in the static route.

Intra-device edges. The ETG also contains edges between
vertices associated with routing processes running on the
same device to model the flow of data traffic resulting from
route redistribution and route selection.

When a routing process (redistributor) is configured to re-
distribute routes into another process (redistributee) on the
same device, we connect the redistributee’s in vertex to the
redistributor’s out vertex; similar to above, this intra-device

edge points in the opposite direction that routing informa-
tion flows. For example, the redistribution of routes from
routing instance OSPF2 to OSPF3 is represented by the edge
from B.3I to B.2O in Figure 3. Similarly, we connected a
process’s in vertex to its own out vertex to model a routing
process’s role in propagating routes. For example, the route
propagation performed by the process for OSPF3 on B is
represented by the edge from B.3I to B.3O in Figure 3.

When multiple routing processes on a device have a route
to the destination, the route from the process with the lowest
administrative distance (AD) is used to reach the destination.
The aforementioned intra-device edges already capture cases
where the lowest-AD process with a route to the destination:
(1) redistributes routes into higher-AD processes, or (2) ad-
vertises a route to the destination to processes on neighbor-
ing devices. However, we must also model the case where a
higher-AD process (H) advertises a route to the destination
to processes on neighboring devices, but the lower AD pro-
cess’s (L) route will be used at the device in question to reach
the destination. This situation only occurs when both H and
L have independently learned routes to the destination (i.e.,
there is no route redistribution). We model this case by con-
necting H’s in vertex (HI) to L’s out vertex (LO), assuming
there exists at least one path from HI to DST and LO to DST

prior to the addition of this edge.

Endpoint edges. Edges are added from the SRC vertex to a
routing process’s out vertex if the device on which the pro-
cess runs can be directly reached by the source endpoint(s)
using layer-2 forwarding: e.g., SRC → A.2O in Figure 3.
Similarly, edges are added from a routing process’s in vertex
to the DST vertex if the device on which the process runs can
directly reach the destination endpoint(s): e.g., F.1I → DST.
For traffic classes whose source endpoint is external, we add
an edge from SRC to the out vertices of all processes that
send external route advertisements; we add similar edges for

305

external destinations.

Factoring in ACLs and route filters. Data plane ACLs pre-
vent particular classes of traffic from entering or leaving a
router. Similarly, route filters prevent a routing process from
advertising particular prefixes to a process on another device,
or a process on the same device through route redistribution.

To account for these filtering mechanisms, we prune some
edges from the ETG. In particular, we prune an inter-device
edge if: (i) there is an outgoing or incoming data plane
ACL configured on the interfaces associated with the phys-
ical link(s) the edge represents, and (ii) the ACL blocks the
traffic class associated with the ETG. We also prune an inter-
device edge if a route filter that blocks the traffic class’s des-
tination prefix has been applied to the process whose out ver-
tex is incident with the edge. Similarly, we prune an intra-
device edge if a route filter that blocks the traffic class’s des-
tination prefix is applied to routes redistributed by the pro-
cess whose out vertex is incident with the edge.

4.2.3 Pathset-equivalence

We now prove the above methodology results in pathset-
equivalent ETGs. We first show that a path-equivalent ETG
is also pathset-equivalent. (Our technical report [11] con-
tains proofs of ETG path-equivalence.)

THEOREM 1. A path-equivalent ETG is pathset-equivalent.

PROOF. Let P be the min-cost path in the ETG from SRC to
DST under some failure. Now assume the actual network has
a more preferred path P

′ between the source and destination,
but P ′ does not exist in the ETG. Because P

′ does not exist
in the ETG, the min-cost path in the ETG is incorrect. This
contradicts the assumption that the ETG is path-equivalent.
Thus, a path-equivalent ETG must contain every path taken
by the actual network under all possible failures.

Now assume the ETG contains a path P
′′ from SRC to

DST which is infeasible in the actual network. Also assume
all edges not on the path have been removed due to failures.
The only, and hence min-cost, path through the ETG will
be P

′′. Because P
′′ is infeasible in the actual network, the

min-cost path in the ETG is incorrect. This contradicts the
assumption that the ETG is path-equivalent. Thus, a path-
equivalent ETG must not contain any paths that are infeasi-
ble in the actual network.

For some route redistribution policies we cannot generate
a path-equivalent ETG (details in §4.3). However, we can
still generate a pathset-equivalent ETG.

THEOREM 2. An ETG is pathset-equivalent when routes are

redistributed between OSPF, RIP, and/or eBGP instances.

We refer readers to our technical report [11] for the proof.

4.3 ARC Edge Weights

While pathset-equivalent ETGs are sufficient for verify-
ing many important invariants, such as I1–I4 in Table 1,
path-equivalent ETGs are required for generating counterex-
amples or testing equivalence (I5). The key challenge in

constructing path-equivalent ETGs is determining the ap-
propriate edge weights such that the min-cost path through
the ETG matches the actual path taken in the network un-
der arbitrary failures. Next, we describe how to assign such
weights to different types of edges. In our technical re-
port [11], we prove the resulting ETGs are path-equivalent.

4.3.1 Endpoint edges

When assigning weights to endpoint edges, we must con-
sider the route selection policies of the devices to which the
source and destination endpoints are connected.

Source edges. When the source is connected to a device
with one routing process, then the best route (if any) com-
puted by that process is always used. Thus, the edge from
SRC to the process’s out vertex is assigned a weight of 0.

If the device has multiple routing processes, then a route
computed by a process with a lower AD is preferred over a
route computed by a process with a higher AD. We model
this by assigning edge weights proportional to a process’s
AD. The weight of an edge from SRC to r .iO is set to

ADi ∗max
i′∈Ir

(

∑

e∈Ei′

we

)

(1)

where ADi is the AD for routing instance i, Ir is the set of
routing instances in which router r participates, Ei′ is the
set of edges originating from the in and out vertices for the
routing processes in instance i

′, and we is the weight as-
signed to edge e . This ensures the cost of a path originating
at a process with a higher AD is always more expensive than
the longest possible path through a routing instance whose
process has a lower AD.

Destination edges. When the destination is directly con-
nected to a device, the device always sends traffic directly to
the destination; no other route is ever preferred. Thus, edges
to DST are assigned a weight of 0.

4.3.2 Inter-device edges for IGPs

For inter-device edges connecting RIP or single-area OSPF
processes, we directly assign the cost metric specified in
the device configurations. If no cost is explicitly defined,
we assign the DEFAULT-RIP-COST or DEFAULT-OSPF-
COST defined by the device vendor. For example, edges
A.2O → B.2I and B.2O → A.2I in Figure 3 are assigned
the OSPF cost configured on the A − B link in Figure 1b.
This methodology, along with the methodology described
in §4.3.4 and §4.3.5, also allows us to identify the multiple
min-cost paths that are used when ECMP is enabled.

4.3.3 Inter-device edges for eBGP

eBGP processes inside the network. We model the primary
path selection criterion used by eBGP for computing paths:
AS path length. We do not model other path selection crite-
ria, e.g., local preference, because: (1) it is not possible to
statically assign edge weights such that local decisions (e.g.,
local preferences) override global cost computations (e.g.,
route selection based on AS path length) without compro-
mising our modeling of the global cost computations; and

306

(2) local preference is not widely used to select between pri-
vate ASes within enterprise and data center networks (§7.1).

In the absence of iBGP (which we show in §7.1 is not
used in the networks we study), each autonomous system
(AS) can only have a single eBGP speaker (i.e., process)
that is directly connected to the eBGP speakers of neigh-
boring ASes.5 Thus, the length of an AS path is simply
the number of eBGP processes traversed. We capture this
by assigning a weight of 1 to inter-device edges connecting
eBGP processes. For example, edges F.1O → E.1I and
E.1O → D.1I in Figure 3 are assigned weight 1.

eBGP processes outside the network. We cannot precisely
model paths that depend on advertisements from external
eBGP processes, because we do not know the length of paths
advertised. As discussed in §4.2.2, if the source or destina-
tion is external, we simply add an edge to/from the out/in
vertex, respectively, of every eBGP process inside the net-
work that peers with an eBGP process outside the network.
Edge weights are assigned as described in §4.3.1.

4.3.4 Intra-device edges for route redistribution

As discussed in §4.2.2, route redistribution is modeled via
intra-device edges connecting the in vertex of one routing
process (the redistributee) to the out vertex of another pro-
cess (the redistributor). When assigning weights to these
edges, we must consider the fixed costs assigned to redis-
tributed routes. Routing processes within the redistributee’s
routing instance use these fixed costs, along with the costs
assigned to links within the instance, to determine the for-
warding path through the instance.

Modeling route redistribution is difficult, because paths
through the ETG are computed globally and include edge
weights associated with multiple routing instances; whereas
in an actual network the path to the destination through the
redistributor’s routing instance (denoted by i) does not af-
fect forwarding within the redistributee’s routing instance
(denoted by j). To ensure an ETG is path-equivalent, we:
(1) rescale the weights of edges in the ETG such that even
the longest path through routing instance i is less than the
minimum difference of path lengths within instance j, and
(2) assign fixed costs to the intra-device edges representing
redistribution in accordance with the redistributee instance’s
scaling factor.

Constraints. To produce a path-equivalent ETG for a net-
work leveraging route redistribution, the control plane must
satisfy two constraints. First, route redistribution must be
acyclic—i.e., a routing instance’s routes are not redistributed
back to itself. Prior work has shown that cyclic route redis-
tribution is fragile [19], so data center and enterprise net-
works tend to use only acyclic route redistribution. We can
check if a network’s route redistribution policy is acyclic
by constructing a graph with one vertex for each routing
instance and directional edges between instances in the di-

5An AS without iBGP can have multiple eBGP speakers, but
each eBGP speaker can only compute paths through ASes
with which it has a direct connection; different eBGP pro-
cesses in the same AS cannot directly exchange routes.

rection routes are redistributed (the inverse of intra-device
edges in the ETG).

Second, the fixed costs assigned to redistributed routes
must be congruent with the ADs assigned to the redistrib-
utor(s). More formally, if ADi < ADi′ < .., then it must
be the case that ci,j < ci′,j < ..., where ci,j is the fixed cost
assigned to routes redistributed from routing instance i to
instance j. This constraint ensures we accurately model the
fact that a route is redistributed only when: (1) the redistrib-
utor is the only routing process on the device that has a route
to the destination, or (2) the redistributor has the lowest AD
among the processes that have a route to the destination.

Scaling edge weights. We scale the weights of all edges
between vertices corresponding to the redistributor’s routing
instance (i)6 by a scaling factor fi. The scaling factor is com-
puted using the equation on line 15 of Algorithm 1. C is the
set of routing instances into which i redistributes routes; the
scaling factor fi must be less than the scaling factor for all
j ∈ C. The term gj denotes the minimum non-zero differ-
ence in cost between any two acyclic paths between any two
vertices corresponding to routing processes associated with
routing instance j. We can conservatively compute gj by
finding the greatest common divisor (GCD) of the unscaled
edge weights corresponding to edges associated with rout-
ing instance j. For example, the GCD for edges associated
with routing instance BGP1 in Figure 3 is 1. The denomina-
tor in the equation for fi represents the maximum possible
path length through routing instance i. The scaling factor
for a routing instance can only be obtained after we have
determined the scaling factor for all instances into which it
redistributes routes (C); if |C| = 0, the scaling factor is 1.

Consider the control plane shown in Figure 1b and the
corresponding ETG in Figure 3. Assume the G–E link has
failed. A packet from S → T can either be forwarded
through router D or through router Z via the OSPF3 rout-
ing instance. In the absence of link failures, the path through
OSPF3 will be chosen by BGP1, because the hop count to
the destination is 1, as opposed to a hop count of 2 through
router D. However, the shortest path through the ETG with
unscaled weights is: SRC → F.1O → E.1I . . . D.1I →
D.2O . . . A.2O → DST; this path is chosen because of the
higher cost of the path through OSPF3. However, by scal-
ing weights using the computed scaling factors, we ensure
that no path to the destination through router D is shorter
than a path through router Z, because weights on edges in
BGP1 dominate overall cost.

4.3.5 Intra-device edges for route selection

While the above methodology applies to routers whose
processes engage in route redistribution, we need a slightly
different approach for routers where multiple routing pro-
cesses have a route to the destination but there is no route
redistribution—i.e., there is route selection without route re-
distribution. Thus, after the above methodology has been
applied, we apply the methodology described below.

6Including intra-device edges corresponding to route redis-
tribution from another routing instance k to instance i.

307

Algorithm 1 Procedure to determine scaling factors

Input:
I: the set of all routing instances in the network
≤I : the partial order over I determined by route redist.

Output:
fi, hi, ∀i ∈ I: the scaling factors for all routing instances

1: fi = 1, hi = ∞, ∀i ∈ I ⊲ Init. scaling factors
2: ≤ = ≤I ⊲ Init. partial order
3: RESCALE(I , ≤I) ⊲ Route redistribution rescaling §4.3.4
4: for all routers, r, with no route redist. do ⊲ Route selection
5: for all i ∈ Ir do ⊲ rescaling §4.3.5

6: hi =
figi
1+|I|

7: for all i′ ∈ Ir do
8: if AD(i′) < AD(i) then
9: ≤ = ≤ ∪ (i′, i)

10: D = DOWNSTREAMINST(i′, I,≤)
11: RESCALE(D, ≤I)

12: procedure RESCALE(T , ≤)
13: for all i ∈ reverseTopologicalSort(T,≤) do
14: C = getChildren(i,≤)

15: fi = min
j∈C

min(hj , fjgj)

1 +
∑

e∈Ei

we

16: if hi < ∞ then
17: hi =

figi
1+|I|

⊲ Update hi based on new fi

18: function DOWNSTREAMINST(i, I , ≤)
19: D = {i}
20: for all j ∈ I do
21: if (j, i) ∈ ≤ then
22: D = D ∪ j

23: return D

Consider the example control plane in Figure 1b (sans
ACLs) and the corresponding ETG in Figure 3. There is
no route redistribution on router E. However packets arriv-
ing on E destined to T have two possible paths: (1) through
router D, and (2) through routers G and H via the routes
learned through OSPF0. Under the scenario where there
are no failures, the path through OSPF0 will never be taken,
because OSPF0’s routes are not redistributed within BGP1.
However, if the F–Z link fails, F will forward packets to E
along the two hop path F → E → D to the destination; at
E, the process with the lowest AD (OSPF0) dominates and
the packets will be forwarded along G and H , ignoring the
path computed by the BGP1 process on E.

To ensure that any path through router E is more expen-
sive than a path through OSPF3 and less expensive than
the path through router D, weights of the intra-device route
selection edges are obtained by summing two components:

w = fi

(

min
b∈Bi∪{DST}

disti(r, b)

)

+ hi ∗ rank(i
′) (2)

The first component is the minimum cost path from the cur-
rent router (r) to a border router with a path to the destina-
tion (b ∈ Bi), or to the destination itself; we include the cost
of intra-device route redistribution edges at a border router.
For example, in the BGP1 routing instance, there are two

Construct Pathset Path-equivalent
OSPF yes single area
RIP yes yes
eBGP yes select only by AS path length
Static routes yes yes
ECMP yes yes
ACLs yes yes
Route filters yes yes
Route redistrib. yes acyclic + costs & ADs align
Route selection yes instance’s processes use same AD

Table 2: Control plane constructs modeled in ARC

border routers with a path to the destination: D and Z; the
path from E to D is shorter (1 versus 2). This ensures that
the path from SRC to DST through router E is greater than
a path through OSPF3. The second component is used to
distinguish between different processes on the current router
(r), each with a route to DST, based on AD’s. The routing
instance to which the route selection edge points is denoted
by i′ and rank(i′) is the rank of routing instance i′ based
on its AD. The example has only one alternate process, E.0,
whose rank is 1 (the process E.1 has rank 2). The scaling
factor hi ensures the path through OSPF0 is lower-cost than
the path through router D; hi is computed using the equation
on line 6 of Algorithm 1.

After hi’s are obtained for all the routing instances, the
downstream routing instances7 need to be re-scaled such that
the weights on the intra-device route selection edges domi-
nate the costs of the routing instances to which they point.
Thus, we update fi using the equation on line 15 of Algo-
rithm 1. Upon recomputing fi, the scaling factors for all
downstream instances have to be recomputed.

Algorithm 1 provides an overview of the steps involved in
computing the scaling factors for all routing instances. It
assumes that for a pair of routing instances, i and i′, the
relative AD ordering is the same in all routers, and if a route
selection edge from a process in i to a process in i′ exists,
then i does not redistribute routes to i′. This restriction is
required to avoid any cyclical dependency between instances
in terms of re-scaling.

Table 2 summarizes the protocols and features for which
an ETG is pathset- and path-equivalent. A network with
any combination of these constructs results in ETGs that are
pathset-equivalent and, if the listed constraints are met, path-
equivalent. In the next section, we describe how to use a
network’s ARC for verification and equivalence testing.

5. USING ARC

ARC enables us to check important invariants across ar-
bitrary failure scenarios. It is particularly well suited for
verifying invariants that pertain to properties of a path. In
such cases, verification/equivalence testing is a matter of
(dis)proving that an ETG, or a pair of ETGs for different
control planes, has a specific graph-level characteristic. This
section describes our verification and equivalence testing al-
gorithms that at their essence compute such graph character-
istics. Furthermore, we describe how to use precise ETGs

7downstream routing instances refer to possible instances
encountered on a path to the destination (line 18 in Alg. 1).

308

to generate counter-examples when violations occur. These
help an operator take corrective actions before a buggy con-
trol plane is made “live” on the network.

5.1 Verifying Security/Availability

Invariants I1–I4 in Table 1 can be expressed as graph
characteristics that can be computed on a pathset-equivalent
ETG using polynomial-time graph algorithms.

I1: Always blocked. For security reasons, an operator may
want to ensure that a particular traffic class is always blocked.
For this to be true under arbitrary failure scenarios, there
must not exist a path from src-node to dst-node in the traf-
fic class’s ETG. We can check for the existence of a path by
traversing (e.g., depth-first or breadth-first) the ETG starting
from src-node. If dst-node remains unvisited, then the prop-
erty holds. Otherwise, assuming the ETG is path-equivalent,
we provide the shortest path as a counterexample.

I2: Always reachable with < k failures. To improve avail-
ability, an operator may want to ensure that a particular desti-
nation d can always be reached from a particular source s as
long as there are fewer than k link failures in the network. To
verify this, we can leverage properties of graph cuts. In par-
ticular, according to Menger’s Theorem, the maximum num-
ber of edge-disjoint paths from s to d in a digraph equals the
minimum number of edges whose removal separates s and
d [3]. Thus, as long as the ETG has at least k edge-disjoint
paths from s to d, d will always be reachable from s.

Finding the number of edge-disjoint paths in an arbitrary
acyclic digraph is NP-Complete [22], but in a unit-weight
graph the problem reduces to computing the max-flow/min-
cut. Because we are only concerned with the presence of
paths, and not which paths are chosen under specific failures,
we can safely convert the weight of all inter-device edges in
the ETG to 1 and the weight of intra-device edges to ∞. We
set the weight of intra-device edges to ∞, because we are
only concerned with counting physical-link-disjoint paths,
not device-disjoint paths, and a weight of ∞ allows multiple
physical-link-disjoint paths to traverse the same device. We
compute the max-flow/min-cut on the ETG with modified
weights to identify the number of edge-disjoint paths. When
the max-flow is ≥ k + 1, the invariant is satisfied.

When the invariant is violated, we produce a counter-exam-
ple set of edges that form a cut of size ≤ k.

I3: Always isolated. For security or performance reasons,
an operator may want to ensure that two disjoint traffic classes
(s1→d1 and s2→d2; s1 6= s2, d1 6= d2) can never simul-
taneously traverse the same link. Thus, the preferred path
for s1→d1 must never overlap with the preferred path for
s2→d2 under any scenario. Such overlap is possible in some
scenario if the ETG for s1→d1 has an edge in common with
the ETG for s2→d2. An extreme scenario is where all links
have failed except those used in paths that contain the com-
mon edge. The traffic isolation invariant is guaranteed to
hold only if the ETGs for the two traffic classes do not have
any edges in common, a property we can easily check.

ETGs constructed using our algorithm in §4.2 are com-
plete, so they do not contain extra paths. However, the ETGs

may still contain “dead-ends”—i.e., extra edges and vertices
that are never part of any path from SRC to DST. Dead-ends
arise because: (i) we do not add intra-device edges between
vertices associated with different processes unless one pro-
cess has a lower AD than the other or one process redis-
tributes routes into the other, and (ii) we remove edges to
account for ACLs and route filters (§4.2). When an ETG
contains extra edges, we will inadvertently claim that two
traffic classes are not always isolated, when in reality the ex-
tra edges are not part of any path from SRC to DST and hence
have no bearing on traffic isolation. Thus, prior to checking
this property, we recursively remove all vertices (excluding
SRC and DST) whose in- or out-degree is 0; these vertices
are dead-ends. When removing such vertices, we also re-
move their incident edges.

If the pruned ETGs have any edges in common, we return
the set of common edges as a counter-example.

I4: Always traverse a waypoint. When a network includes
middleboxes, such as firewalls, an operator may want to en-
sure that traffic always traverses some instance of the mid-
dlebox (i.e., a waypoint) under arbitrary failure scenarios.
To verify this, we augment the ETG to include special ver-
tices that represent waypoints. Then we remove all waypoint
nodes from the ETG and check if there exists a path from
src-node to dst-node. If such a path exists, then there is some
path that may be taken by the traffic that does not traverse a
waypoint; we return this path as a counterexample.

Other invariants. Other important security and availabil-
ity invariants can also be verified by computing graph-level
attributes on the ARC. For example, we can verify traffic “al-
ways traverses a chain of waypoints” by removing the ver-
tices associated with one type of waypoint at a time, and
checking if there exists a path from a vertex associated with
one of the preceding waypoints in the chain to a vertex asso-
ciated with one of the following waypoints in the chain. We
can verify forwarding of particular traffic class is “always
loop free” by checking that the ETG does not have a cycle
containing a static route vertex and one or more vertices as-
sociated with processes in the same routing instances. We
omit details for brevity.

5.2 Equivalence Testing

Invariant I5, equivalence, differs from the other invari-
ants in three respects: (1) equivalence testing involves mul-
tiple ARCs; (2) it requires path-equivalent ARCs, because
the actual paths taken in the network are the attributes un-
der scrutiny; and (3) it is implemented by comparing ETGs,
rather than computing graph characteristics of ETGs. How-
ever, prior to comparing the ETGs from different ARCs, we
must make two transformations to the ETGs.

Convert process-based ETGs to interface-based ETGs.

Modeling forwarding behavior at the level of routing pro-
cesses (§4.2) prevents us from determining if any two con-
trol planes are equivalent, because the two control planes
may use a different set of routing instances, causing their
ETGs to contain a different set of vertices and edges. To
address this issue, we convert our process-based ETGs into

309

B

I

1 C

O

1

B

O

1

D

I

2

D

O

2 C

I

1

0

3

0

Dst:T Src:U

0 0

1

1

1
1

B

I

2

B

O

2

0

C

I

2

C

O

2

0

D

I

1

D

O

1

3

0 0

0 0

Figure 4: Part of the interface-based ARC for the example
control plane in Figure 2a

interface-based ETGs, which depends only on the physical
network topology, not the routing processes running atop it.
As an example, Figure 4 shows the transformed ETG that
corresponds to the upper-left ETG in Figure 2b. Our conver-
sion process assumes each interface is used by at most one
routing process to send/receive route advertisements; this is
common practice in data center and enterprise networks, in-
cluding those we study (§7.1).

In particular, we take the following steps:

1. Replace each process’s in and out vertices with an in and
out vertex for each physical interface over which the pro-
cess sends/receives route advertisements. We identify in-
terfaces on which a routing process operates based on
overlap between the IP addresses assigned to interfaces
and the networks (for OSPF and RIP) and neighbors (for
eBGP) specified in the router stanzas in device con-
figurations. For example, BI and BO in Figure 2b are
replaced with vertices BI

1 , BO
1 , BI

2 , and BO
2 in Figure 4.

2. Replace the inter-device edges that used to connect the
out vertex of a process P on one device to the in vertex
of a process P ′ on another device with an edge connect-
ing the out vertex of the interface over which P sends
advertisements to P ′ to the in vertex of the interface over
which P ′ receives advertisements from P . For example,
the edge BO → DI in Figure 2b is replaced with the
edge BO

2 → DI
2 , because the second interface on router

B is connected to the second interface on router D.8

3. Replace the intra-device edge E that used to connect a
routing process’s in and out vertices by a set of edges
that connect the in vertex of each interface associated
with the process to the out vertex of every interface as-
sociated with the process. The edge weight is the same
as the edge weight that was assigned to E. Note that an
edge is not created between the in and out vertices of the
same interface, because a router will never send traffic
out the same interface on which it arrived. For example,
the edge BI → BO in Figure 2b is replaced with the
edges BI

1 → BO
2 and BI

2 → BO
1 in Figure 4.

4. For each intra-device edge that connected the in vertex of
a routing process P to the out vertex of another routing
process P ′, create an intra-device edge from the in ver-
tex associated with each of P ’s interfaces to the out ver-
tices associated with P ′’s interfaces; again, the weight
of these edges is the same as the weight of the original
edge. (No such edges exist in Figure 2b.)

An ARC constructed in this manner represents a network’s
routing behavior with the same fidelity as the ARC described

8We assume interfaces corresponding to the inter-router
links in Figure 2a are numbered clockwise for each router.

earlier, because it captures the exact same pathways between
routers (no inter-device edges are added), and models at a
fine granularity the same software pathways within routers.

Convert edge weights to canonical weights. There are in-
finitely many ARCs that differ only in the scale of their edge
weights. All of these will produce the same data plane un-
der all failure scenarios, and hence are equivalent. To ensure
we can detect such equivalence, we must reduce all edge

weights to canonical weights. In other words, we compute
the lowest possible weight for every edge in every ETG in
the ARC such that the relative order of all possible loop-
free paths between src-node and dst-node in each ETG is the
same as using the original weights. We can perform such a
reduction using a linear program; details are included in our
technical report [11].

After applying the above transformations, we can test the
equivalence of two control planes by checking whether their
ARCs have the same vertices, edges, and edge weights. This
is facilitated by the fact that vertices are always named based
on the device interfaces to which they pertain. Thus, vertices
and their incident edges can be easily matched across ARCs.

6. IMPLEMENTATION

We implemented the ARC generation process described
in §4 and the verification tasks described in §5.1 in Java.
We use Batfish [9] to parse Cisco IOS configurations. From
these, we extract traffic classes and generate ETGs. We
use JGraphT [2] to apply common graph algorithms (Dijsk-
tra’s shortest path, max-flow/min-cut, etc.) to the generated
ETGs and obtain the information required to verify a partic-
ular property. Our tool outputs the results of the requested
verification for all of a network’s flows. Our code is open
source [1], so operators can apply it to their own networks.

7. EVALUATION

We now evaluate ARC along two different dimensions:
(1) How efficiently can we represent real network control
planes using ARC? (2) How quickly can we verify key in-
variants using ARC? How does this compare to state-of-the-
art control plane verification tools (e.g., Batfish [9])?

We generate ARCs and verify invariants using a machine
with a quad-core Intel Xeon 2.8GHz CPU and 24GB of RAM.

7.1 Network Characteristics

In our evaluation we use configurations from 314 data
center networks operated by a large OSP. These networks
have between two and a few tens of routers connected using
between one and several tens of physical links (Figure 5a).

Two-thirds of the networks have a single routing process
on each device, while the remaining third have two processes
per device on average (ignoring static routes). Similarly,
two-thirds of the networks have a single routing instance,
while the rest have a handful of instances (Figure 5a). As
shown in Table 3, only two routing protocols are used—
OSPF (37% of networks) and eBGP (all networks)—along
with static routes (27% of networks). Only one network has
OSPF processes that use multiple areas, and only 10 net-

310

●
C

o
u
n
t

0

O(10)

D
ev

ic
es

Li
nk

s

Pro
ce

ss
es

In
st
an

ce
s

(a) Network size

of Traffic Classes

C
D

F

10 10
2

10
3

10
4

10
5

0.0

0.2

0.4

0.6

0.8

1.0

(b) Number of traffic classes

Figure 5: Scale of the OSP’s networks

Protocols % of Networks Modifiers % of Networks
OSPF 37.6% ACLs 100.0%

single area 37.3% Route filters 84.1%
eBGP 100.0% Route redistribution 5.4%

no local prefs 96.8% acylic 5.4%
Static routes 27.1% costs & ADs align 5.4%
Table 3: Constructs used in the OSP’s data center networks

works have eBGP processes that use local preference (in ad-
dition to AS path length) for computing routes. Route re-
distribution occurs in 5% of the networks; in all cases, the
redistribution conforms to the constraints necessary to pro-
duce a path-equivalent ARC (§4.3.4).

The number of distinct traffic classes ranges from less
than 100 to more than 100K (Figure 5b). There are less
than 10K traffic classes in 69% of the networks, and less
than 1000 in 41% of networks. As shown in Table 3, the
OSP uses route filters (84% of networks) and ACLs (all net-
works) to selectively block certain traffic classes.

By comparing Tables 2 and 3, it is clear we can generate
a pathset-equivalent ARC for all of the OSP’s networks, and
a path-equivalent ARC for 97% of the networks (those with
one OSPF area and no BGP local preferences).

For comparison, we examined the routing protocols and
features used in our university network. The same proto-
cols used in the OSP’s networks (OSPF, eBGP, and static
routes) are used in our university, along with RIP; ACLs,
route filters, and acyclic route redistribution are also used.
BGP local preferences are not used, but there are multiple
OSPF areas, so we can generate a pathset-equivalent but not
path-equivalent ARC for our university network.

7.2 ARC Efficiency

We now examine how efficiently we can represent real
network control planes using ARC. We consider both the
time to generate the ARC and the ARC’s size, and we show
how this relates to the size and complexity of a network.

Time. Figure 6 shows the time required to generate the
ARC, included edge weights, for each of the OSP’s net-
works. ARC generation takes less than 5s for 78% of the
networks, and at most 11.8s across all the networks we study.
The majority of the time (85% on average) is spent parsing
network configurations; this time is roughly correlated with
the number of devices in the network (Pearson correlation
co-efficient of 0.58). The remaining time is dedicated to con-
structing the ETGs; this time is roughly correlated with the

●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●
●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●
●

●

●
●
●

●
●

●

●

0
5
0

1
0
0

1
5
0

Networks

N
u
m

b
e
r

o
f
V

e
rt

ic
e
s

0 100 200 300

(a) Number of vertices

●●●
●●●●●●●●●●

●
●●●●●●●●
●●●●●
●
●
●●
●●●●●●●●●

●●●
●
●
●

●●●●
●
●
●●
●●●
●●
●●●
●
●●●●
●●
●
●●
●●
●
●●
●
●●
●●
●●
●
●

●

●
●
●●●●
●●●●
●
●●
●●●●●

●

●●●●
●
●●
●●●●●

●

●
●●●
●

●

●●●●●●●●●

●

●

●

●●
●●●●●●●●●●●●●

●●
●
●●●●●●●●●●●●

●

●●●●●●●●●●

●

●

●●

●

●
●

●

●●●●●●●●●●
●●

●

●●●●
●
●●●●●●●●●●●●●

●

●●

●●

●●
●●

●

●

●
●●●●

●

●

●

●

●●●●●●●●●●●●●
●

●

●
●

●

●

●

●

●

0
5
0

1
0
0

2
0
0

Networks

N
u
m

b
e
r

o
f
E

d
g
e
s

0 100 200 300

(b) Number of edges

Figure 7: Size of the ETGs for the OSP’s networks; net-
works are sorted by number of vertices in the ETG

number of traffic classes in the network (Pearson correlation
co-efficient of 0.62), because the ARC contains an ETG for
every traffic class.

Size. Figure 7 characterizes the size of the generated ETG
for each network. We observe that ETGs are relatively com-
pact: 45% (45%) of the ETGs have fewer than 20 vertices
(edges) and 74% (70%) have fewer than 50. By design, the
number of vertices is directly correlated with the number of
routing processes (including static routes) in the network for
which the ETG is generated.

As mentioned above, the number of ETGs required for
each network is a function of the number of traffic classes
(Figure 5b). Although this seems substantial, 78% of net-
works’ ETGs take less than 100MB of space when stored
as serialized Java objects; more efficient encoding schemes
could significantly reduce this. Furthermore, we show in the
next section that exhaustively verifying key invariants for all
of a network’s traffic classes takes less than a second for
most networks.

7.3 Verification Efficiency

We next examine how efficiently we can verify the invari-
ants discussed in §5.1. We compare the speed of ARC-based
control plane verification against Batfish [9], a state-of-the-
art network configuration analysis tool.9

Figure 8 shows the time required to verify invariants I1,
I2, I3, and I5 for all traffic classes (or pairs of traffic classes)
for each of the OSP’s networks.10 When checking equiva-
lence, we compare a network’s control plane against itself.

We observe that invariant I1 can be checked for arbitrary
link failures and all traffic classes in less than 500ms for
97% of the OSP’s networks, and 62% of the networks can
be checked in less than 100ms. The networks that take the
longest to verify have the most traffic classes. The time per
traffic class ranges from 8µs to 347µs (median 21µs).

The time required to verify invariant I2 is slightly higher,
because computing max-flow/min-cut is more complex than
checking if two nodes reside in separate connected compo-
nents. However, for 99% of the OSP’s networks, this prop-
erty can be checked in less than 1s, and 54% of networks can

9We do not compare against other verifiers [16, 15, 20, 17],
because they only consider the current network data plane.

10We do not check invariant I4, because we do not know
where middleboxes reside in the OSP’s networks.

311

T
im

e
 t
o
 B

u
ild

 E
T

G
s
 (

s
e
c
)

0
2

4
6

8
1
0

Networks

Parse Configs

Build ETGs

Figure 6: Time required to generate ARC for the OSP’s networks; networks are sorted by number of traffic classes

●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●
●●●
●●●●●●●
●●●●●
●●
●●
●
●●●●●
●
●
●●●●●
●●
●
●●●●●●
●
●●●●●●
●●●●●●
●●●●●
●

●
●
●
●●●
●
●
●
●●

●
●
●●
●●●
●
●
●●●●
●

●●
●●●●●●●
●
●●
●●●●
●●●●●●●●●●

●
●
●●
●

●
●●●●
●●●●
●
●

●
●

●
●●
●●

●
●●●●●●
●●●●●
●

●

●●●●

●
●●●
●
●
●
●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

Networks

T
im

e
 t
o
 V

e
ri

fy
 (

s
)

0 100 200 300

0
.0

0
.2

0
.4

0
.6

(a) I1: Always blocked, using
ARC

●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●
●
●●

●

●●●●●●●●●●
●●●●●●
●
●

●

●●

●

●
●●
●●●●
●●
●
●
●

●
●●●●
●●
●●
●

●

●

●
●●
●

●
●
●
●

●●
●

●

●

●●●●
●
●

●
●
●●

●
●●

●●

●●●

●
●

●●●

●
●
●●

●
●

●

●

●●●

●

●
●
●

●

●
●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●●

●

●
●

●●●

●

●

●

●

●

●●

●●

●●
●●●●●

●

●
●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

Networks

T
im

e
 t

o
 V

e
ri

fy
 (

s
)

0 100 200 300

0
.0

0
.5

1
.0

(b) I2: Always reachable with
< k failures, using ARC

●

●

●

●●

●

●●
●●

●

●
●
●

●
●

●

●
●

●●

●

●

●
●●●●●
●●

●
●

●●
●●

●
●●●●
●●●●●
●●
●●
●
●

●

●●●●

●
●

●●●●
●
●

●

●

●●●●●
●
●●●
●

●
●
●
●●
●
●
●
●

●●
●●
●●

●

●

●

●
●
●●●
●●●●●●
●
●

●

●●●●●●
●●●●●

●

●●
●●●●●
●
●●
●
●●

●

●●●●●●●
●●
●
●●
●
●
●
●●
●●●●●●●
●
●●
●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●

●●●●
●●●
●●●●●●●●●●●●

●●●●
●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●

●●●●
●●●
●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●
●●●●●
●
●●

●
●●●●●
●●

●

Networks

T
im

e
 t
o
 V

e
ri

fy
 (

m
s
)

0
1

0
2

1
0

4
1

0
6

0 100 200 300

(c) I3: Always isolated, us-
ing ARC

●●●
●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●
●
●●●●●●●●●●●●●●

●●●●●
●●●●●
●●
●●
●●●
●
●●●●●●●●

●●●●●●
●●●

●

●

●●

●
●

●●●

●
●
●●●

●

●●●
●●

●●●●
●●●●●

●
●●●●●

●
●
●

●
●●●
●●

●●●

●

●●
●
●

●●●

●

●
●

●●

●

●●

●

●
●
●●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

Networks

T
im

e
 t
o
 V

e
ri

fy
 (

s
)

0 100 200 300

0
2

0
4

0
6

0
8

0

(d) I5: Equivalent, using ARC

Figure 8: Time required to check key invariants for all traffic
classes (or pairs of traffic classes) using ARC; networks are
sorted by number of traffic classes.

be checked in less than 100ms. In the worst case, verifica-
tion takes 1.13s. Again, the networks that take the longest to
verify are those with the most traffic classes. The time per
traffic class ranges from 7µs to 467µs (median 32µs). Note
that the time required for checking this property is indepen-
dent of the value of k.

Invariant I3 takes substantially longer to verify, because
we check all pairs of traffic classes, as opposed to each indi-
vidual traffic class. It takes about 1.7 hours to check all pairs
of traffic classes in the network with the largest number of
traffic classes (> 100K), but this property can be checked
in less than 1 minute for all pairs of traffic classes in 73%
of networks. In practice, only a subset of traffic classes in a
network require isolation, so the number of traffic class pairs
that need to be checked is substantially smaller.

While I3 takes the longest to verify overall, equivalence
checking (I5) takes the most time per traffic class: 0.9ms to
4.8ms (median 1.3ms). Most of this time is spent generating
and solving the linear program used to compute canonical
weights (§5.2). The former requires generating all possible
paths between SRC and DST, which is significantly more
computationally expensive than the graph algorithms used

●●
●●
●
●
●
●●●

●●●●
●●
●●●●●

●
●●●

●
●●
●●●●●●●●●●

●●
●
●●●●

●●●●●●●●
●●
●●●●

●
●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

Networks

T
im

e
 t

o
 V

e
ri

fy
 (

m
in

u
te

s
)

0
1
0

2
1
0

4
1
0

6

0 25 50 75 100

● Single Link

Up to 3 Links

Figure 9: Time required by Batfish to verify (lack of) reach-
ability across a limited set of failure scenarios; networks are
sorted by number of links.

to verify I1–I3. Nonetheless, we can check control plane
equivalence in less than one minute for 98% of networks
and less than one second for 28% of networks.

Comparison with Batfish. To put our performance results
in perspective, we ran Batfish [9] on the device configu-
rations from one-third of the OSP’s networks. We chose
networks of varying size and complexity. We ran Batfish’s
“failure consistency” checker, which verifies that each traffic
class is consistently blocked or allowed when any one of the
network’s links fails. This is similar to verifying invariants
I1 and I2 (k = 2) using ARC, except verification with ARC
covers all link failures, not just single link failures.

Figure 9 shows the time required for Batfish to check the
reachability of all traffic classes under a limited set of link
failures. We observe that the time taken by Batfish to check
all single link failure scenarios is at least three orders of

magnitude larger than the time required for ARC-based ver-
ification to check all link failure scenarios. If we were to
run Batfish for all scenarios with up to 3 link failures, the
time would further increase by up to five orders of magni-

tude making Batfish impractical to use in this case.
The time required by Batfish to verify invariants across a

set of link failure scenarios is a function of: (1) the number
of scenarios, and (2) the time required to generate the data
plane and verify the invariant for each scenario. In our ex-
periments, Batfish takes between 48s and 131s (median 92s)
to generate the data plane and verify the invariant for each
link failure scenario. With ARC, the time required to verify
invariants across arbitrary link failure scenarios is a function
of: (1) the number of traffic classes, and (2) the time re-
quired to generate the ETG and verify the invariant for each
traffic class. As mentioned above, the median verification
time per ETG for invariant I1 is 21µs and the median ETG
build time is 98µs. Thus, a network with a single link would

312

need to have over 773K traffic classes in order for ARC to
be less efficient than Batfish.

Identifying problems. In addition to evaluating verification
performance, we used the output from our tool to identify
possible configuration errors. For each traffic class, we com-
pared the results of I1 and I3 against the behavior of the net-
work in the absence of link failures. We assumed the control
plane was configured incorrectly if traffic was blocked (or
isolated) in the failure-free scenario but not always blocked
(or isolated). We did not find any such cases in the networks
we studied; this is likely due to the fact that the organization
whose networks we studied already employs other verifica-
tion tools. However, we were able to detect such errors when
we intentionally introduced bugs into configurations mod-
eled after real networks; see examples in our repository [1].

8. CONCLUSION

We described ARC, a new high level abstraction for rout-
ing control planes that enables fast verification of key prop-
erties under arbitrary failure scenarios. ARC achieves this
by avoiding data plane generation, which is made possible
by the nature of common verification tasks and control plane
designs observed in networks today. On real data center con-
figurations, ARC offers orders of magnitude faster verifica-
tion performance than existing verifiers.

This paper lays the groundwork for accelerating the verifi-
cation and repair of network control planes, and a variety of
important problems remain open. These include: modeling
additional protocols and features, such as those commonly
used in service provider networks (e.g., iBGP) and for traf-
fic engineering (e.g., MPLS TE [4]); generating ARCs that
over- or under-approximate pathset-equivalence to handle
non-deterministic protocols (e.g., RSVP); producing ARCs
for software-defined network (SDN) control planes, includ-
ing hybrid control planes that use both SDN and traditional
distributed routing protocols; and automatically generating
minimal configuration repairs (e.g., changing a minimal set
of devices or adding a minimal number of lines of config-
uration) when invariant violations are detected. We plan to
address these open problems in our future research.

9. ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd Brad
Karp for their insightful comments. This work is supported
by the Wisconsin Institute on Software-defined Datacenters
of Madison and National Science Foundation grants CNS-
1302041, CNS-1330308, and CNS-1345249.

10. REFERENCES
[1] Abstract representation for control planes.

http://bitbucket.org/uw-madison-networking-research/arc.

[2] JGraphT. http://jgrapht.org.

[3] R. Aharoni and E. Berger. Menger’s theorem for infinite
graphs. Inventiones mathematicae, 2008.

[4] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and
J. McManus. Requirements for traffic engineering over
MPLS. RFC 2702, RFC Editor, September 1999.

[5] T. Benson, A. Akella, and D. Maltz. Unraveling the
complexity of network management. In NSDI, 2009.

[6] T. Benson, A. Akella, and A. Shaikh. Demystifying
configuration challenges and trade-offs in network-based ISP
services. In SIGCOMM, 2011.

[7] Cisco Systems. BGP best path selection algorithm.
http://cisco.com/c/en/us/support/docs/ip/border-gateway-
protocol-bgp/13753-25.html.

[8] N. Feamster and H. Balakrishnan. Detecting BGP
configuration faults with static analysis. In NSDI, 2005.

[9] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan,
R. Govindan, R. Mahajan, and T. Millstein. A general
approach to network configuration analysis. In NSDI, 2015.

[10] E. W. Fulp. Optimization of network firewall policies using
directed acyclic graphs. In IEEE Internet Mgmt Conf, 2005.

[11] A. Gember-Jacobson, R. Viswanathan, A. Akella, and
R. Mahajan. Fast control plane analysis using an abstract
representation. Technical report, University of
Wisconsin-Madison, 2016.

[12] A. Gember-Jacobson, W. Wu, X. Li, A. Akella, and
R. Mahajan. Management plane analytics. In IMC, 2015.

[13] S. Hares and D. Katz. Administrative domains and routing
domains: A model for routing in the internet. RFC 1136,
RFC Editor, Dec 1989.

[14] Juniper Networks. Understanding BGP path selection.
http://juniper.net/documentation/en_US/junos12.1/topics/
reference/general/routing-ptotocols-address-
representation.html.

[15] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real time network policy
checking using header space analysis. In NSDI, 2013.

[16] P. Kazemian, G. Varghese, and N. McKeown. Header space
analysis: Static checking for networks. In NSDI, 2012.

[17] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. VeriFlow: Verifying network-wide invariants in real
time. In NSDI, 2013.

[18] P. Lapukhov, A. Premji, and J. Mitchell. Use of BGP for
routing in large-scale data centers. Internet-Draft
draft-ietf-rtgwg-bgp-routing-large-dc-07, IETF Secretariat,
Aug 2015.

[19] F. Le, G. G. Xie, D. Pei, J. Wang, and H. Zhang. Shedding
light on the glue logic of the internet routing architecture. In
SIGCOMM, 2008.

[20] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey,
and S. T. King. Debugging the data plane with Anteater. In
SIGCOMM, 2011.

[21] D. A. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjálmtýsson, and
A. Greenberg. Routing design in operational networks: A
look from the inside. In SIGCOMM, 2004.

[22] A. Slivkins. Parameterized tractability of edge-disjoint paths
on directed acyclic graphs. SIAM J. Discret. Math.,
24(1):146–157, Feb. 2010.

[23] Y. Sverdlik. Microsoft: misconfigured network device led to
azure outage. http://datacenterdynamics.com/servers-
storage/microsoft-misconfigured-network-device-led-to-
azure-outage/68312.fullarticle, July 2012.

[24] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and
P. Mohapatra. FIREMAN: a toolkit for FIREwall Modeling
and ANalysis. In IEEE SP, 2006.

[25] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.
Automatic test packet generation. In CoNEXT, 2012.

313

