
Eliminating Duplication in Source Code via
Procedure Extraction

Raghavan Komondoor
raghavan@cs.wisc.edu

Susan Horwitz
horwitz@cs.wisc.edu

Computer Sciences Department
University of Wisconsin-Madison

1210 W. Dayton St, Madison, WI 53706 USA

ABSTRACT
Duplication in source code is a widespread phenomenon that
increases program size and complexity, and makes program
maintenance more difficult. A solution to this problem is
to detect clones (instances of copied code) and to eliminate
them. Elimination works by extracting the cloned code into
a separate new procedure, and replacing each clone by a
call to this procedure. Several automatic approaches to de-
tecting clones have been reported in the literature. In this
paper we address the issue of automatically extracting a pre-
viously detected group of clones into a separate procedure.
We present an algorithm that can extract “difficult” groups
of clones, and a study that shows that difficult clone groups
arise frequently in practice, and that our algorithm handles
them well.

1. INTRODUCTION
Programs undergoing ongoing development and mainte-

nance often have a lot of duplicated code. The results of
several studies [1, 13, 16] indicate that 7–23% of the source
code for large programs is duplicated code. Duplication is
usually caused by copy and paste activities: a new feature
that resembles an existing feature is implemented by copy-
ing and pasting code fragments, perhaps followed by some
modifications. Duplication increases code size and complex-
ity, and makes program maintenance more difficult. For
example, if an enhancement or bug fix is done on one clone
(an instance of duplicated code), it may be necessary to
search for the other clones in order to perform the corre-
sponding modification. In large legacy programs it is likely
that programmers will miss some clones while doing modi-
fications [16].

The maintainability of such legacy programs can be im-
proved by detecting and eliminating clones. Elimination
works by extracting the cloned code into a separate new
procedure, and replacing each clone by a call to this proce-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

dure. In that case, there will be only one copy to maintain
(the new procedure), and the fact that the procedure can
be reused may cut down on future duplication. (Note that
for a language like C with a preprocessor, macros can be
used instead of procedures if there is a concern that intro-
ducing procedures will result in unacceptable performance
degradation.) Several automatic approaches to detecting
duplication have been reported in the literature [1, 13, 5, 8,
11]. In this paper we address the issue of automatic extrac-
tion of a previously detected group of clones into a separate
procedure.

1.1 Main contributions
This paper has two main contributions:

1. An algorithm for extracting “difficult” groups of clones:
groups in which statements within an individual clone
are not contiguous, groups in which clones have match-
ing statements in different orders, and groups in which
clones involve exiting jumps (jumps from within the re-
gion containing the clone to outside that region). Such
clone groups are hard to extract manually; therefore,
tool support for this task is desirable. Our algorithm is
a significant improvement over previously defined au-
tomatic approaches to clone-group extraction; because
those approaches employ a narrow range of techniques,
they often perform poorly on difficult groups of clones.

2. A study of 56 clone groups from 3 programs to deter-
mine how often difficult clone groups occur in practice,
and how well our algorithm performs compared with
the best previous clone-group extraction algorithm and
with the results that would be produced by a human
programmer. We found that nearly half of the clone
groups exhibited at least one problematic aspect. We
also found that our algorithm produced exactly the
same output as the programmer on 66% of the dif-
ficult groups, while the previous algorithm matched
that “ideal” output on fewer than 8% of the groups.

Extracting a difficult group of clones is a two-step process.
The first step involves dealing with the difficult aspects by
applying semantics-preserving transformations to the clones
to make them easily extractable into a new procedure. The
second step involves extracting the new procedure and re-
placing the (transformed) clones by calls to the procedure.
The focus of this paper is the first step. We do not address

the second step; the main issue in that step is to deter-
mine what local variables and parameters the new procedure
needs; this has been addressed in previous clone-group ex-
traction approaches [18, 8] (however, those approaches work
on assembly code, and therefore need to be extended to work
on source-level languages.)

1.2 Algorithm overview
We provide an overview of our algorithm using the mo-

tivating example in Figure 1, which shows a difficult group
of two clones. The first column of Figure 1 shows two frag-
ments of code, with the two clones indicated by the “++”
signs. Both fragments have a loop that iterates over all
employees. The cloned code reads in the number of hours
worked from a file and uses that to compute the overtime
pay and total pay for the current employee. The overtime
pay rate and base pay for the employee are obtained from
the arrays OvRate and BasePay respectively, while the com-
puted total pay is saved in the array Pay (these three arrays
are global variables, as is the file pointer fh). This clone
group is difficult to extract because:

1. Intervening non-cloned statements are present in both
fragments (the statement “nOver++” in the first frag-
ment, the update of totHours in the second fragment,
and also the adjustment of the variable excess, in the
second fragment, when its value is greater than 10).
In other words, both clones are non-contiguous.

2. Matching statements are in different orders in the two
clones: the position of “base = BasePay[emp]” dif-
fers in the two cases, and so does the relative order-
ing of the two statements “oRate = OvRate[emp]” and
“excess = hours - 40”. We call such groups out-of-

order groups.

3. Both clones contain exiting jumps (the break state-
ments).

The middle column of Figure 1 shows the result of apply-
ing our algorithm; the regions that originally contained the
clones have been transformed to make the group extractable

(i.e., ready to be extracted). The final code after actual ex-
traction (which is not done by our algorithm) is shown in
the right column of Figure 1.

The algorithm runs in two phases. The first phase consists
of applying the single-fragment algorithm described in [12]
individually on each clone to make it extractable (into its
own procedure). In this phase, as many intervening non-
cloned statements as possible are moved out of the way, to
either before or after the cloned statements, while preserving
semantics. Such movement is accompanied by duplication
of predicates and jumps, where necessary, to preserve se-
mantics. If a non-cloned statement cannot be moved while
preserving semantics, it is promoted, which means that it
will be present in the extracted procedure guarded by a flag
that is a parameter of the procedure.

Figure 2 shows the intermediate result after Phase 1 has
been applied to the two fragments in Figure 1 (the loops
enclosing the clones are omitted from the figure). Notice
that the promoted code in the second fragment is indicated
by “****” signs. In the example, “nOver++” in the first
fragment and “totHours += hours” in the second fragment
are moved past the last statements in the respective clones,

with duplication (of two predicates and a jump in the first
fragment, and one predicate and a jump in the second). The
non-cloned statement “if (excess>10) excess=10” cannot
be moved out of the way without affecting data dependences.
Therefore it is promoted.

The first phase also deals with exiting jumps. Notice that
in the example, since the surrounding loop is not included in
the procedure, the break statement would not make sense
if included unchanged in the extracted procedure. Instead,
the extracted procedure should have a return statement in
place of the break; this works because the new copy of the
break after the cloned code will execute after control returns
through this return statement. Therefore, the algorithm
of [12] converts the two original copies of the breaks into
gotos whose targets are the points just after the cloned code
(as shown in Figure 2). At the time of actual extraction,
these gotos are simply converted into return statements.

Phase 2 of the algorithm works on the entire group si-
multaneously, unlike Phase 1. The goal is to deal with the
out-of-order aspect; i.e., Phase 2 permutes the statements
in the clones in order to make matching statements line up
in the same order in all clones in the group. As in Phase
1, dependences are preserved during this permutation in or-
der to guarantee semantics preservation. In the example in
Figure 1, as can be noted in the middle column (which is
the algorithm’s output), the algorithm permutes the second
clone to: (a) move down the assignment to base to near the
end of the clone, and (b) move up the assignment to oRate

to the beginning of the “if” statement.
The algorithm terminates at this point, and the group

has become extractable. Actual extraction can now proceed
(the parameters and local variables need to be determined
at this time); in Figure 1, the right column shows the re-
sult of extraction. The two (transformed) clones are simply
replaced by calls to the newly extracted procedure CalcPay

resulting in the rewritten fragments (notice that the code
that was moved out of the way in Phase 1 is present after
the two call sites). The promoted code is placed in the ex-
tracted procedure guarded by a flag parameter that is set
appropriately at the two call sites.

1.3 Comparison to previous work
A few approaches to clone-group extraction in source code

have been proposed in the literature [10, 2], while much
work has been reported in the area of compacting assembly
code by identifying and extracting clones (e.g., [18, 7, 8]).
The novel aspect of our work in comparison to all previous
clone-group extraction approaches is the use of semantics-
preserving transformations both to move intervening non-
cloned statements out of the way, and to reorder out-of-order
clones. Also, ours is the first approach to handle exiting
jumps in to-be-extracted code. These features allow our
algorithm to perform well on difficult clone groups, where
the performance of previous approaches is unsatisfactory.

In addition to disallowing exiting jumps, the approaches
of [18, 7] only find sequences that are contiguous and that
match exactly. The approach of [8] does allow inexactly
matching sequences; however they perform no code motion,
using guarding to resolve all mismatches when extracting
non-contiguous clones or out-of-order clones. This means
that every intervening non-matching statement, and every

copy of an out-of-order statement will be placed in the ex-
tracted procedure in guarded form.

Original Fragment 1 Algorithm Output 1

emp = 0;
while(emp < nEmps) {

++ fscanf(fh,"%d",&hours);
++ if (hours < 0) {
++ error("illegal input");
++ break;
++ }
++ overPay = 0;
++ if (hours > 40) {
++ oRate = OvRate[emp];
++ excess = hours - 40;

nOver++;
++ overPay = excess*oRate;
++ }
++ base = BasePay[emp];
++ Pay[emp] = base+overPay;

emp++;
}

emp = 0;
while(emp < nEmps) {

++ fscanf(fh,"%d",&hours);
++ if (hours < 0) {
++ error("illegal input");
++ goto L;
++ }
++ overPay = 0;
++ if (hours > 40) {
++ oRate = OvRate[emp];
++ excess = hours - 40;
++ overPay=excess*oRate;
++ }
++ base = BasePay[emp];
++ Pay[emp] = base+overPay;

L: if (hours < 0)
break;

if(hours > 40)
nOver++;

emp++;
}

Original Fragment 2 Algorithm Output 2

emp = 0;
while(emp < nEmps) {

++ fscanf(fh,"%d",&hours);
++ if (hours < 0) {
++ error("illegal input");
++ break;
++ }

totHours += hours;
++ base = BasePay[emp];
++ overPay = 0;
++ if (hours > 40) {
++ excess = hours - 40;

if (excess > 10)
excess = 10;

++ oRate = OvRate[emp];
++ overPay = excess*oRate;
++ }
++ Pay[emp] = base+overPay;

emp++;
}

emp = 0;
while(emp < nEmps) {

++ fscanf(fh,"%d",&hours);
++ if (hours < 0) {
++ error("illegal input");
++ goto L;
++ }
++ overPay = 0;
++ if (hours > 40) {
++ oRate = OvRate[emp];
++ excess = hours - 40;
**** if (excess > 10)
**** excess = 10;
++ overPay = excess*oRate;
++ }
++ base = BasePay[emp];
++ Pay[emp] = base+overPay;

L: if (hours < 0)
break;

totHours += hours;
emp++;

}

Extracted Procedure

void CalcPay(int emp,int *pHrs)
int doLimit) {

int overPay,oRate,
excess,base;

++ fscanf(fh,"%d",pHrs);
++ if (*pHrs < 0) {
++ error("illegal input");
++ return;
++ }
++ overPay = 0;
++ if (*pHrs > 40) {
++ oRate = OvRate[emp];
++ excess = *pHrs - 40;

if (doLimit)
**** if (excess > 10)
**** excess = 10;
++ overPay = excess*oRate;
++ }
++ base = BasePay[emp];
++ Pay[emp] = base+overPay;

}

Rewritten Fragment 1

emp = 0;
while(emp < nEmps) {

CalcPay(emp,&hours,0);
if (hours < 0)
break;

if(hours > 40)
nOver++;

emp++;
}

Rewritten Fragment 2

emp = 0;
while(emp < nEmps) {

CalcPay(emp,&hours,1);
if (hours < 0)
break;

totHours += hours;
emp++;

}

Figure 1: Example illustrating extraction of two difficult clones

To be fair, it should be noted that while the assembly-
code-compaction approaches solve a problem that is similar
to ours, there is a significant difference: whereas the goal
of our algorithm is to extract a given group of clones that
represent a meaningful computation, their goal is to find and
extract groups of clones that yield space savings. Because of
this difference, it is reasonable for those algorithms to find
and extract small, easy subsets of larger, more meaningful
clones.

Previous approaches to clone-group extraction in source
code [10, 2] have weaknesses similar to those exhibited by the
assembly-code algorithms. The approach of [2], which works
on object-oriented programs, is conceptually similar to the
assembly-code approach of [8]; while they do allow extrac-
tion of inexact matches, they do no code motion. However,
rather than place mismatching code in the extracted pro-
cedure with guards, they place each mismatching statement
(or sequence of statements) in a new method, and they place

a call to that new method at the appropriate point in the
extracted procedure. The new methods that are called by
the extracted procedure are then passed as parameters to
the extracted procedure. The drawback of their approach
is clear: since they perform no code motion, they are likely
to produce extracted procedures that contain too many new
method calls. However, their idea of method parameters
could be incorporated into our approach to take the place
of guarding, which could make the output cleaner in some
situations.

The clone-group-extraction approach of [10] allows extrac-
tion of out-of-order clones. However, they do not address
extracting non-contiguous clones or clones involving exiting
jumps. Our studies (see Section 4) indicate that clones with
these difficult aspects occur frequently, and thus handling
them is essential for good performance.

The rest of this paper is organized as follows. Section 2

Clone 1

++ fscanf(fh,"%d",&hours);
++ if (hours < 0) {
++ error("illegal input");
++ goto L;
++ }
++ overPay = 0;
++ if (hours > 40) {
++ oRate = OvRate[emp];
++ excess = hours - 40;
++ overPay=excess*oRate;
++ }
++ base = BasePay[emp];
++ Pay[emp] = base+overPay;

L: if (hours < 0)
break;

if(hours > 40)
nOver++;

Clone 2

++ fscanf(fh,"%d",&hours);
++ if (hours < 0) {
++ error("illegal input");
++ goto L;
++ }
++ base = BasePay[emp];
++ overPay = 0;
++ if (hours > 40) {
++ excess = hours - 40;
**** if (excess > 10)
**** excess = 10;
++ oRate = OvRate[emp];
++ overPay = excess*oRate;
++ }
++ Pay[emp] = base+overPay;

L: if (hours < 0)
break;

totHours += hours;

Figure 2: Output of Phase 1 for the two clones in

Figure 1

presents basic assumptions and terminology. Section 3 de-
fines our algorithm for extracting a group of clones. Sec-
tion 4 presents the results of the study mentioned in Sec-
tion 1.1, which provides quantitative data on how well our
algorithm works in practice and how much of an advance it
is over previous techniques.

2. ASSUMPTIONS AND TERMINOLOGY
We assume that the reader is familiar with the standard

definitions of control and data dependence [9, 14, 4]. We
assume that programs are represented using a set of control-
flow graphs (CFGs), one for each procedure. Predicate
nodes in CFGs have two or more outgoing edges (loop-
predicates and “if” predicates have exactly two, whereas
“switch” predicates have one for each “case” label and for
the default case); the exit node of a CFG has no outgoing
edges, whereas all other nodes (assignments and procedure
calls) have a single outgoing edge. The entry node of a CFG
is considered to be a pseudo-predicate (i.e., one that always
evaluates to true); its outgoing true edge goes to the first
actually executable node, and its outgoing false edge goes

to the exit node.
Jumps (gotos, returns, continues, and breaks) are also

considered to be pseudo-predicates, as in [3, 6]. The true

edge out of a jump goes to the target of the jump, while
the (non-executable) false edge goes to the node that would
follow the jump if it were replaced by a no-op. Jump state-
ments are treated as pseudo-predicates so that the state-
ments that are semantically dependent on a jump—as de-
fined in [15]—are also control dependent on it.

We assume that nesting relationships can be obtained
from the abstract syntax tree (AST) representation of the
program. “Normal” predicates (as well as the entry node)
have nesting children, whereas non-predicates and jumps do
not (whenever we say nesting parent or nesting child, we re-
fer to only the immediate relationships, not transitive ones).
Any nesting child n of a predicate p can be further qualified
as a C-nesting child, where C is the label of the edge out of
p under which n is nested (C can be true, false, or a “case”
label value).

A block is a subgraph of a CFG that corresponds either
to a simple statement, or to an entire compound statement
such as a loop or an if-then-else statement.

The CFGs in Figure 3 illustrate blocks (the figure actually
shows CFG fragments, not entire CFGs). Consider the sec-
ond CFG: the node labeled a2 in the beginning is a block by
itself. Other examples of blocks are the subgraphs labeled
b2, f2 and l (this last block is nested inside the block f2).

Every block in a CFG is the nesting child of some normal
predicate or the entry node; e.g., l is a true-nesting child of
the predicate “if (hours>40)”.

A block sequence B is a sequence of blocks in the CFG
such that control flows out of every block to the next one in
the sequence, ignoring jumps, and such that all the blocks
are C-nesting children of the same predicate node p, for
some value C. The block sequence B is a C-nesting child of
p (and p is the nesting parent of B).

In Figure 3, [a2, b2, j2, e2, f2, k2] is a block sequence (this
sequence spans the entire second CFG fragment), as are
[b2, j2] (which is a subsequence of the previous sequence),
and [h2, l, g2, i2] (which is nested inside the block f2).

3. CLONE-GROUP EXTRACTION ALGO-
RITHM

The input to the algorithm is a group of clones and the
CFGs of the procedures that contain them (each individual
clone is contained in a single procedure, although different
clones in the group can be in different procedures). The in-
put also includes a mapping that defines how the nodes in
one clone match the nodes in the other clones. The algo-
rithm allows inexact matches in a number of ways, thereby
enabling extraction of a wide variety of difficult clones:

• Individual clones can be non-contiguous.

• Mapped nodes can be in different orders in the differ-
ent clones.

• Although all mapped nodes are required to have mapped
nesting parents, other differences in control structure
(caused by intervening unmatched if blocks or jumps)
are allowed.

• When the group consists of more than two clones, a
node in one clone can be mapped to nodes in some but

not all other clones; i.e., different clones in the group
can consist of different numbers of nodes.

The input mapping is required to satisfy the following
properties: The mapping is transitive; i.e., if m, n and t are
nodes in three different clones, m is mapped to n and n is
mapped to t, then m is mapped to t. A node in a clone
can be mapped to at most one node in any other clone (this
allows for a node in a clone to be mapped to nodes in some

but not all other clones). The clones are “non-overlapping”;
i.e., the tightest block sequences containing the individual
clones are disjoint (by “tightest” block sequence we mean
innermost, in terms of nesting, and within that the short-
est, in terms of the number of blocks). Mapped nodes have
mapped nesting parents; i.e., if a node n is mapped to a node
m, then one of the following must be true: neither node has
a nesting parent within the tightest block sequence contain-
ing its clone, or m and n are the C-nesting children of two
mapped predicates, for some value C. Mapped nodes are of
the same “kind”; e.g., an assignment node is mapped only to
other assignment nodes, a while predicate is mapped only
to other while predicate nodes, and so on.

When the algorithm finishes, the group of clones will have
been transformed so that they are easily extractable into a
separate procedure.

3.1 Phase 1: Making individual clones ex-
tractable

As discussed in the Introduction, Phase 1 of our clone-
group extraction algorithm applies the algorithm of [12] to
each individual clone. Given the set of nodes that com-
prise a single clone, that algorithm transforms the tightest
block sequence containing those cloned nodes in a semantics-
preserving manner by moving as many intervening non-cloned
nodes as possible out of the way of the cloned nodes, pro-
moting nodes that cannot be moved, and handling exiting
jumps. The output of the algorithm is three block sequences:
the first one contains the non-cloned nodes that were moved
out of the way before the cloned nodes, the second one con-
tains the cloned and promoted nodes, and the last one con-
tains the non-cloned nodes that were moved after the cloned
nodes. The block sequence that contains the cloned nodes
is a single-entry single-exit structure; this is a structure that
is easily extractable into a procedure.

The algorithm runs in polynomial time (in the size of the
block sequence that it transforms), and always succeeds.
The final output produced by the algorithm for the clone
in Fragment 1 of Figure 1 is shown in the top half of Fig-
ure 2.

After Phase 1, the first and third block sequences pro-
duced by that phase are ignored (because they contain only
non-cloned nodes), and Phase 2 operates on the block se-
quences that contain the cloned nodes. The promoted nodes
were originally not mapped to any nodes, and they continue
to be regarded that way.

If at the end of Phase 1 the clone group is “in order” (as
defined below in Section 3.2), then the algorithm terminates
(the group has already become extractable). Otherwise, the
block sequences in the clones (at all levels of nesting) are
permuted in a semantics-preserving manner, to make the
clone group be in-order. This is Phase 2 of the algorithm,
and is described in Section 3.2.

3.2 Phase 2: reordering block sequences
The goal of Phase 2 is to make the given group of clones be

in-order if they are not already. This involves the following
two steps:

1. Identify sets of mapped blocks, and sets of mapped
block sequences.

2. For every set of mapped block sequences that is not
top-level in-order, permute the sequences in that set
in a semantics-preserving manner to make it top-level
in-order. All sets of mapped block sequences – those
at the outer level as well as those nested inside others
– are considered in this step.

Recall that part of the input to the algorithm is a mapping
between the nodes in the individual clones. That mapping
applies to the blocks that represent individual statements; in
this phase, we extend the mapping to blocks that represent
compound statements, and to block sequences.

By definition, a “compound” block b1 in clone C1 is mapped
to a “compound” block b2 in clone C2 iff at least one node in
b1 is mapped to a node in b2, and no node in b1 is mapped to
a node in C2 that is not in b2. (Note that either of the two
blocks may contain unmapped nodes, or may contain nodes
that are mapped only to nodes in other clones besides C1

and C2.) Similarly, by definition, a block sequence s1 in
clone C1 is mapped to a block sequence s2 in clone C2 iff
at least one block in s1 is mapped to a block in s2, and no
block in s1 is mapped to a block in C2 that is not in s2.

Example: Throughout this discussion, the two-clone group
in Figure 3 serves as our running example. This figure shows
the clones in Figure 1 in the form of CFG subgraphs, after
Phase 1 is done. The dashed edges out of the goto nodes
are “non-executable” edges (see Section 2).

In the figure, each (individual-statement and compound)
block is labeled. The mappings for the individual-statement
blocks are assumed to be the intuitive ones (identical state-
ments are mapped, e.g., nodes a1 and a2, and nodes c1 and
c2). Mappings for the compound blocks are determined ac-
cording to the definition given above; blocks b1 and b2 are
mapped, blocks f1 and f2 are mapped, and so on. Notice
that f2 (in the second clone) contains an inner block l that
is not mapped to any block in the first clone.

There are a total of three sets (pairs, in this case) of
mapped block sequences: (1) [a1, b1, e1, f1, j1, k1],
[a2, b2, j2, e2, f2, k2], (2) [c1, d1], [c2, d2], and (3) [g1, h1, i1],
[h2, l, g2, i2]. Notice that the second and third pairs of block
sequences are nested inside the first one, but are still con-
sidered as separate pairs of block sequences. 2

A set of mapped block sequences is said to be top-level
in-order iff, for every pair of block sequences in the set, con-
sidering only the top-level blocks in each sequence that are
mapped to top-level blocks in the other, the corresponding
top-level blocks are in the same order in both sequences.

Example: Of the three sets of mapped block sequences
listed above, set 2 is top-level in-order, while sets 1 and 3
are not. (The presence of the unmapped block l has nothing
to do with set 3 being not in-order.) 2

Note that a set of mapped block sequences can be top-
level in-order even if smaller sets of mapped block sequences
nested inside are not top-level in-order (hence the use of the
phrase “top-level”).

It is not difficult to see that a group of clones is (com-
pletely) in-order if every set of mapped block sequences is

fscanf(..)

if(hours<0)

error(..)

goto

base=
BasePay[emp]

overPay=0

if(hours>40)

fscanf(..)

if(hours<0)

error(..)

goto

overPay=0

if(hours>40)

excess=
hours−40

base=
BasePay[emp]

Pay[emp]=
base+overPay

a1

b1
c1

d1

e1

f1

g1

h1

i1

j1

excess=
hours−40

if(excess>10)

excess=10

Pay[emp]=
base+overPay

1k

ml

a2

b2
c2

d2

j2

e2

f2

h2

g2
i2

k2

true true

true

true

false false

false

false

oRate =
OvRate[emp]

overPay=
excess*oRate

oRate =
OvRate[emp]

overPay=
excess*oRate

Figure 3: Clones from Figure 1, after Phase 1

top-level in-order. Therefore our approach is to visit each
set of mapped block sequences that is not top-level in-order,
including nested sets, and to permute the block sequences
to make the set be top-level in-order.

“Visiting” a set of mapped block sequences involves gen-
erating ordering constraints among the blocks in each se-
quence, and then permuting the (top-level) blocks in each
sequence while respecting the constraints. Constraint gener-
ation is described in the next two subsections; Section 3.2.1
describes constraints for preserving control-dependences, and
Section 3.2.2 describes constraints for preserving data de-
pendences. The actual procedure for doing the permutation
is then described in Section 3.2.3.

3.2.1 Constraints for preserving control dependences
Constraints are needed to preserve control dependences

while permuting a block sequence if it has any of the fol-
lowing properties: there are jumps outside the sequence
whose target is inside, there are jumps inside the sequence
whose target is outside, or there are jumps from one block
in the sequence to another. If none of these conditions hold
for a block sequence, then any permutation preserves all
control dependences, and therefore no control-dependence-
based constraints are needed.

if(p)

if(q)

goto

if(p)

goto

if(q)

c2

e2

f2

b1

f1

b2

1c

d
e1

g

a1

h1

a2

h2

....

....

....

....

....

....

....

....

....

....

Figure 4: Example illustrating control dependence

constraints

Figure 4 contains an (artificial) illustrative example. Assume
every node in the example (except the predicates and jumps)
is an assignment, and that block a1 is mapped to block a2,
h1 is mapped to h2, and so on. The assignment nodes d

and g are unmapped, as are the two gotos. Our algorithm
allows such unmapped jumps, and these make extraction
challenging (unmapped jumps are plausible in real clones;
e.g., a computation could occur at two places, but one of
them could have an intervening statement that checks some
boundary condition and jumps out based on that).

The two outer-level mapped block sequences [a1, c1, h1, d, e1],
[e2, c2, a2, g, h2] contain the kinds of jumps mentioned ear-
lier, and therefore need control-dependence-based constraints.
Consider the first of these two block sequences. Any permu-
tation needs to preserve the property that d and e1 come af-
ter h1 (otherwise d and e1 would execute whether or not the
goto in h1 executes, which is incorrect). Similarly, a1 and
c1 need to come before h1 (else the goto could incorrectly
bypass a1 and c1). Notice that all these constraints are sim-
ple precedence constraints. Going on to the second block
sequence in the figure, the constraint needed is more com-
plex: g must remain in between blocks a2 and h2, whereas
e2 and c2 can be anywhere except between these two blocks.

We therefore need the following rules for generating con-
straints that preserve control dependences:

Rule 1: If a block j in a block sequence either contains a
jump whose target is outside the sequence or contains a
node that is the target of a jump outside the sequence,
then for every block p that precedes j in that same
block sequence, generate a constraint p < j (meaning
p must precede j), and for every block s that follows j

in the sequence generate a constraint j < s.

Rule 2: If e and g are blocks in a block sequence such that
e precedes g and there is a jump node in either one
whose target node is inside the other, then: (a) for
every block f that is in between e and g in that same
sequence, generate constraints e < f and f < g; (b)
for every block o in the same sequence that is not in
between e and g generate a constraint o 6∈ [e, g] (which
says that o cannot be in between e and g after the
permutation); (c) generate the constraint e < g.

3.2.2 Constraints for preserving data dependences
The data-dependence-based constraints ensure preserva-

tion of data dependences. The constraints are generated
according to a simple rule: if a block e precedes a block f

in a block sequence and if there is a flow, anti, output or
def-order dependence from some node in e to some node in
f then generate a constraint e < f .

3.2.3 Permuting the block sequences
So far we have generated a set of constraints for each block

sequence in the set of mapped block sequences currently be-
ing visited. The goal now is to find a permutation of each
block sequence such that the set becomes top-level in-order.
This can be achieved by creating a graph G whose vertices
represent top-level blocks, and whose edges represent con-
straints:

1. Create a graph G such that each set of mapped top-
level blocks in the given set of block sequences is rep-
resented by a vertex in G. A block in one sequence
that is not mapped to a block in any other sequence
gets its own vertex in G.

2. For each simple precedence constraint of the form b1 <

b2, add a directed edge to G from the vertex represent-
ing b1 to the vertex representing b2.

3. Obtain a topological ordering of the vertices in G that
also respects the “6∈” constraints. If no such ordering
exists, fail (the given block sequences cannot be made
top-level in-order while satisfying all the constraints).
More details on this step are provided below.

4. For each block sequence, obtain its final permutation
by simply taking the total ordering of the previous
step, and projecting out the vertices that represent
blocks not in the sequence.

Example: We return to the example in Figure 3. For illus-
tration, we pick the two mapped block sequences [g1, h1, i1]
and [h2, l, g2, i2]. The vertices of the graph G are g, h, i, l,
where g represents the mapped blocks g1 and g2, h rep-
resents mapped blocks h1 and h2, and so on. The data
dependence constraints, when translated into graph edges,
are: g → i, h → i, l → i, h → l. The edge h → i is caused
both by flow and def-order dependences, whereas the others
are caused by flow dependence only. The two constraints in-
volving l represent constraints for the second block sequence,
whereas the other two represent constraints for both block
sequences. Neither of these two block sequences requires any
control-dependence constraints.

One of the possible topological orderings that is consis-
tent with all constraints is [g, h, l, i]. Using this, we obtain
the following permutations for the two block sequences re-
spectively: [g1, h1, i1] and [g2, h2, l, i2]. Notice that the two
block sequences are now top-level in-order. 2

An observation that helps in defining a solution for Step 3
above is that any “6∈” constraint of the form a 6∈ [b, c] is log-
ically equivalent to the constraint (a < b) ∨ (c < a). There-
fore a straightforward way to implement this step is: for
each constraint a 6∈ [b, c] add one of the two edges a → b,
c → a to the graph G, and see if a topological ordering is
possible (i.e., see if the resulting graph is acyclic); use back-
tracking to systematically explore the choices until an order-
ing is found (and fail otherwise). This approach, although

simple, has worst-case time complexity exponential in the
number of “6∈” constraints. However, this is unlikely to be a
problem in practice because “6∈” constraints arise only when
the program contains gotos (excluding ones introduced by
Phase 1) and the complex condition described in Rule 2 in
Section 3.2.1 holds. In our experimental studies (Section 4),
there were no instances of a “6∈” constraint. Still, an inter-
esting open question is whether there is a polynomial-time
algorithm for Step 3.

4. EXPERIMENTAL RESULTS
This section describes the results of a study performed to

determine how often “difficult” clone groups arise in prac-
tice, and to evaluate the performance of our algorithm com-
pared both to an “ideal” extractor (a human), and to the
best previously reported automatic approach for clone-group
extraction [8]. Our dataset consisted of 56 clone groups, con-
taining a total of 185 individual clones. The median number
of clones per group was 2 while the maximum was 14; the
median size (number of simple statements and predicates)
of a clone was 6, while the maximum was 53. The dataset
was drawn from three programs: the Unix utilities bison

and make, and NARC1 [17], a graph-drawing engine devel-
oped by IBM. These programs range in size from 11 to 30
thousand lines of code.

To expedite the process of finding clone groups to extract,
we used the clone-detection tool reported in [11], which can
find clone groups that involve difficult aspects. From the
output of the tool we filtered away the clones that were not
good candidates for extraction (very small clones, which are
not beneficial to extract as well as clones that could not be
cleanly extracted by an “ideal” extractor).

4.1 Comparison to ideal extraction
As the first step in the comparison we extracted each clone

group in an “ideal” manner, using our own judgment. Some
of the techniques used during this process (e.g., moving
out intervening unmapped nodes, reordering out-of-order
matches) are also used by our algorithm; other techniques
not incorporated in the algorithm were also used as neces-
sary (this is discussed later). The second step in the com-
parison was to (manually) apply the algorithm to each clone
group. Figure 5 presents the results of the comparison.

Figure 5(a) summarizes the comparative performance of
our algorithm. The set of all clone groups is divided into four
disjoint categories, one per row. The first row shows that
29 clone groups (containing a total of 100 individual clones)
were “not difficult”; i.e., the clones in these groups were
contiguous, did not involve exiting jumps, and were in order.
Such groups are extractable to begin with, and therefore our
algorithm had nothing to do. The remaining 27 clone groups
in the dataset were difficult (i.e., required transformations
in at least one of the two phases of the algorithm).

The second row of Figure 5(a) shows that our algorithm
produced exactly the ideal output on 18 of the 27 difficult
clone groups (columns 2–5 characterize the difficult aspects
in all the 27 groups). The third and fourth rows of Fig-
ure 5(a) pertain to clone groups on which our algorithm
succeeded but produced non-ideal output, and failed, re-
spectively (more details on these later).

Note that our algorithm makes a clone group extractable,

1NARC is a registered trademark of IBM.

Groups Individual clones

Category

#

total

out-

of ord.

#

total
non-
contig.

exiting
jumps

Not difficult 29 - 100 - -

Difficult,
ideal output

18 7 58 15 12

Difficult, non
ideal output

7 - 19 9 9

Difficult,
failure

2 2 8 4 5

(a) Characterization of algorithm output

Technique
Ideal

output
Non-ideal
output

human algo
Phase 1

Moving out nodes 13 2 9
Promotion 2 6 3

Phase 2
Reordering out-of-
order clones

7 - -

(b) Techniques used on difficult clone groups, with number of
clones (Phase 1) and number of groups (Phase 2)

Figure 5: Comparison of algorithm to ideal extrac-

tion

but does not perform actual extraction; therefore, the com-
parison of the algorithm’s output to that of ideal extraction
involves verifying that the same nodes were moved out in
both cases with identical usage of predicate duplication, that
the same nodes were promoted, that out-of-order matches
were handled in one case if handled in the other, etc. Issues
pertaining to actual extraction (e.g., determining the pa-
rameters) are ignored during the comparison. (Note: when
we say that the algorithm performed ideally on a group,
we mean that Phase 1 performed ideally on every individ-
ual clone in the group, and Phase 2 subsequently performed
ideally on the entire group.)

Figure 5(b) shows, for each technique incorporated in our
algorithm, how often it was used by the algorithm as well as
by the ideal extraction (non-difficult clone groups, as well
as the two groups on which our algorithm fails, are omit-
ted from Figure 5(b)). Each technique appears in its own
row; in the rows pertaining to the techniques of Phase 1 the
counts given are for individual clones, whereas clone-group
counts are given in the row for Phase 2. The second column
(labeled “Ideal output”) pertains only to the clone groups on
which the algorithm performed ideally; therefore the num-
bers in this column pertain both to the ideal extraction and
the extraction performed by the algorithm. The third and
fourth columns pertain to the groups on which the algorithm
performed non-ideally; two separate sets of numbers are re-
quired here because the algorithm and the ideal extraction
do not use the exact same techniques on these groups.

As shown in Figure 5(a), the algorithm performs ideally
on 18 of the 27 difficult groups; however, it produces non-
ideal output on 7 difficult groups, and fails on 2. One reason
for the algorithm’s non-ideal behavior is that on some indi-
vidual clones Phase 1 over aggressively moves out unmapped

nodes (with predicate duplication), while the ideal extrac-
tion uses promotion (the numbers in Figure 5(b) bear this
out); this problem can likely be addressed by designing bet-
ter heuristics. Another issue is that the ideal extraction is
able to use more complex matches than the algorithm. For
example, in one case the ideal extraction matched a single
node outside an if block in one clone with two copies in each
of the two branches of the if in the other clone. In another
case, the ideal extraction matched a sequence of two sepa-
rate if blocks (with mutually exclusive conditions) in one
clone with a single “if..then..else..” block in the other
clone. The algorithm does not allow such matches (they
are prevented by the “mapped nesting parent” requirement,
discussed in the beginning of Section 3); thus those nodes
are unmapped in the input supplied to the algorithm.

The algorithm fails in one of the two cases because of
an out-of-order group that cannot be reordered because our
data-dependence constraints (Section 3.2.2) are conserva-
tive; human judgment in this case reveals that reordering
is actually safe. The other group is not strictly a failure
in this sense; here, the nesting structures of the clones are
so different that all but one of the nodes matched by the
ideal extraction have to be left out of the mapping provided
to the algorithm (the ideal extraction, in this case, involves
extensive rewriting). We therefore chose to place this group
in the “failure” category.

4.2 Comparison to a previous algorithm
The second part of our study involved comparing our al-

gorithm to the previously reported clone-group extraction
algorithm of Debray et al [8]. While the goal of that work
is to find and extract matching fragments of code in or-
der to compact assembly programs, the technique can also
be applied to source code. We chose that approach for
our comparison because it employs more techniques than
other assembly-code compaction approaches, is conceptu-
ally similar to the source-code based approach of [2], and is
likely to perform better than the other source-code based ap-
proach [10] (groups involving non-contiguous clones, whose
extraction is addressed by [8] but not by [10], occur more
frequently in our dataset than out-of-order groups that are
handled better by [10]).

The approach of [8] works as follows: For each proce-
dure, they build a CFG in which the nodes represent basic
blocks. They then find groups of isomorphic single-entry
single-exit subgraphs in the CFGs such that corresponding
basic blocks have similar instruction sequences, and then ex-
tract each group into a new procedure. If two corresponding
basic blocks in a group do not have identical instruction se-
quences (modulo register renamings), they walk down the
two sequences in lock-step and “promote” every mismatch-
ing instruction (i.e., it is included in the extracted proce-
dure with a guard). Thus, although inexact matches are
allowed, every mismatch is handled by their approach using
the guarding mechanism: every intervening non-matching
statement and every copy of an out-of-order matching state-
ment is placed in the extracted procedure with guarding.

In addition to the fact that they use guarding to handle all
mismatches, the approach of [8] has two important weak-
nesses compared with ours: One is the requirement that
the CFG subgraphs be isomorphic; e.g., they would fail to
extract the two clones in our running example (Figure 1),
because the presence of the intervening non-matching block

Category
clone-
groups

They fail (ours ideal) 8
Their output non-ideal (ours ideal) 10
They fail (our output non-ideal) 4
Both fail 1
Both outputs non-ideal 1
We fail (their output non-ideal) 1
Their output ideal (ours non-ideal) 2

Figure 6: Comparison of our algorithm to that of

Debray et al

labeled l makes the two subgraphs non-isomorphic. In other
words, they allow non-matching code only if it is inside a
basic block.

The other weakness is that, because they are restricted
to extracting single-entry single-exit structures, they cannot
handle exiting jumps. In the example of Figure 1, due to
the presence of the breaks, the smallest single-entry single-
exit structure enclosing each clone is the entire surrounding
loop. Therefore they could extract the entire loop, but not
just the desired clones. In this particular example that is
not a major problem since there is very little code in the
loops other than the desired clones. However, if there were
a significant number of unmatched statements in the loops,
then either they would do no extraction at all (if the non-
matching code in the two loops caused the CFG subgraphs
to be non-isomorphic), or they would place all non-matching
code from both loops in the extracted procedure with guard-
ing. Both of these alternatives are clearly less desirable than
just extracting the matching code.

Figure 6 provides data comparing the performance of our
algorithm and that of [8] on the 27 difficult clones in the
dataset. As in the comparison to ideal extraction, we re-
strict our attention to the transformations applied by the
two approaches; issues relating to actual extraction are ig-
nored (because we do not address them, and they address
the issues only at the assembly-code level). Therefore, for
example, if two matching nodes differ in some subexpression
that is parameterized away during the ideal extraction, we
treat the two nodes as non-problematic for both approaches.

The 27 difficult clone groups are divided into 7 disjoint
categories, with one per row in Figure 6. As shown in the
first six rows, the algorithm of [8] either fails or performs
non-ideally on almost all of the clone groups, 25 out of 27,
while our algorithm produces the ideal output on 18 of those
27 groups (the first two rows). The main reason for the
better performance of our algorithm is that, as discussed
earlier, it employs a variety of transformations to tackle dif-
ficult aspects whereas [8] uses only promotion. As shown
in the last two rows of the figure, their algorithm performs
better than ours on 3 clone groups. One of these is the
out-of-order group on which our algorithm fails; they suc-
ceed (non-ideally) on this one by using guarding. The other
two groups are ones where our algorithm over aggressively
moves unmapped nodes out, where guarding, which is their
solution, is the ideal alternative.

4.3 Summary of studies
Our algorithm performed ideally on two thirds of the dif-

ficult clone groups, while the algorithm of [8] performed ide-
ally on less than eight percent. Given that no automatic
algorithm is likely to be able to employ the full range of

transformation techniques used by a human (and thus 100%
ideal performance by an automatic algorithm is probably
not feasible) we consider the results of this study to be very
encouraging, indicating that our algorithm is likely to be
very useful in practice. The study also provides evidence
that previously reported approaches for assembly-code com-
paction are not powerful enough in our context where mean-
ingful clones need to be extracted at the source-code level.
However, it may well be the case that our techniques for
moving unmatched code and for handling exiting jumps will
be beneficial in the context of assembly-code compaction.

Acknowledgements

This work was supported in part by the National Science Foun-

dation under grants CCR-9970707 and CCR-9987435, and by

IBM.

5. REFERENCES
[1] B. Baker. On finding duplication and near-duplication

in large software systems. In Proc. IEEE Working

Conf. on Reverse Engineering, pages 86–95, July 1995.

[2] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Partial redesign of Java software
systems based on clone analysis. In Proc. IEEE

Working Conf. on Reverse Engineering, pages
326–336, 1999.

[3] T. Ball and S. Horwitz. Slicing programs with
arbitrary control flow. In Lecture Notes in Computer

Science, volume 749, New York, NY, Nov. 1993.
Springer-Verlag.

[4] S. Bates and S. Horwitz. Incremental program testing
using program dependence graphs. In Proc. ACM

Symp. on Principles of Programming Languages,
pages 384–396, Jan. 1993.

[5] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier. Clone detection using abstract syntax trees.
In Int. Conf. on Software Maintenance, pages
368–378, 1998.

[6] J. Choi and J. Ferrante. Static slicing in the presence
of goto statements. ACM Trans. on Programming

Languages and Systems, 16(4):1097–1113, July 1994.

[7] K. Cooper and N. McIntosh. Enhanced code
compression for embedded RISC processors. In Proc.

ACM Conf. on Programming Language Design and

Implementation, pages 139–149, May 1999.

[8] S. Debray, W. Evans, R. Muth, and B. D. Sutter.
Compiler techniques for code compaction. ACM

Trans. on Programming Languages and Systems,
22(2):378–415, Mar. 2000.

[9] J. Ferrante, K. Ottenstein, and J. Warren. The
program dependence graph and its use in
optimization. ACM Trans. on Programming

Languages and Systems, 9(3):319–349, July 1987.

[10] W. Griswold and D. Notkin. Automated assistance for
program restructuring. ACM Trans. on Software

Engineering and Methodology, 2(3):228–269, July
1993.

[11] R. Komondoor and S. Horwitz. Using slicing to
identify duplication in source code. In Proc. Int.

Symposium on Static Analysis, pages 40–56, July 2001.

[12] R. Komondoor and S. Horwitz. Effective, automatic
procedure extraction. Submitted to Int. Conf. on

Compiler Construction, 2003.

[13] K. Kontogiannis, R. Demori, E. Merlo, M. Galler, and
M. Bernstein. Pattern matching for clone and concept
detection. Automated Software Engineering,
3(1–2):77–108, 1996.

[14] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure,
and M. Wolfe. Dependence graphs and compiler
optimizations. In Proc. ACM Symp. on Principles of

Programming Languages, pages 207–218, Jan. 1981.

[15] S. Kumar and S. Horwitz. Better slicing of programs
with jumps and switches. In Proc. Fundamental

Approaches to Software Engineering, Apr. 2002.

[16] B. Lague, D. Proulx, J. Mayrand, E. Merlo, and
J. Hudepohl. Assessing the benefits of incorporating
function clone detection in a development process. In
Int. Conf. on Software Maintenance, pages 314–321,
1997.

[17] V. Waddle and A. Malhotra. An e log e line crossing
algorithm for leveled graphs. In Lecture Notes in

Computer Science, volume 1731, pages 59–71.
Springer-Verlag, 1999.

[18] M. Zastre. Compacting object code via parameterized
procedural abstraction. Master’s thesis, Department of
Computer Science, University of Victoria, British
Columbia, 1995.

