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Abstract

Procedure extraction is an important program transforma-
tion that can be used to make programs easier to understand
and maintain, to facilitate code reuse, and to convert “mono-
lithic” code to modular or object-oriented code. Procedure
extraction involves the following steps:

1. The statements to be extracted are identified (by the
programmer or by a programming tool).

2. If the statements are not contiguous, they are moved
together so that they form a sequence that can be ex-
tracted into a procedure, and so that the semantics of
the original code is preserved.

3. The statements are extracted into a new procedure,
and are replaced with an appropriate call.

This paper addresses step 2: in particular, the conditions
under which it is possible to move a set of selected state-
ments together so that they become “extractable”, while
preserving semantics. Since semantic equivalence is, in gen-
eral, undecidable, we identify sufficient conditions based on
control and data dependences, and define an algorithm that
moves the selected statements together when the conditions
hold. We also include an outline of a proof that our algo-
rithm is semantics-preserving.

‘While there has been considerable previous work on pro-
cedure extraction, we believe that this is the first paper to
provide an algorithm for semantics-preserving procedure ex-
traction given an arbitrary set of selected statements in an
arbitrary control-flow graph.

1 Introduction

Legacy code can often be improved by extracting out code
fragments to form procedures (and replacing the extracted
code with procedure calls). This operation is useful in sev-
eral contexts:
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e Legacy programs often have monolithic code sequences
that intersperse the computations of many different
tasks [LS86, RSW96]. Such code becomes easier to un-
derstand and to maintain if it is replaced by a sequence
of calls (one for each task) [CY79]. This decomposition
may also facilitate better code reuse [SJ87, LV97].

e When the same code appears in multiple places, re-
placing each copy with a procedure call makes the code
easier to understand and to maintain (since updates
need only be performed on a single copy of the code).

e A code fragment can sometimes be recognized as per-
forming a (conceptual) operation on a (conceptual) ob-
ject. Making that idea explicit by extracting the frag-
ment into a procedure (or method) can make the code
easier to understand, and can be an important part
of the process of converting poorly designed, “mono-
lithic” code to modular or object-oriented code [Par72].

For the purposes of this paper, extracting a procedure is
defined by the following three steps:

1. The statements to be extracted are identified.

2. If the statements are not contiguous, they are moved
together so that they form a sequence that can be ex-
tracted into a procedure, and so that the semantics of
the original code is preserved.

3. The statements are extracted into a new procedure,
and are replaced with an appropriate call.

Although step 1 is very interesting, it is not the sub-
ject of this paper; we assume that the set of statements has
been identified, either by the programmer or some kind of
restructuring tool, such as those described in [LV97, BG98].

Step 3 involves deciding what the parameters to the pro-
cedure should be, which parameters should be passed by
reference, and whether the procedure should return a value.
These are straightforward issues (e.g., discussed in [LD98]).

Our interest is in step 2; in particular, we investigate the
conditions under which it is possible to move a set of selected
statements together so that they become “extractable”, and
so that semantics are preserved. To illustrate that this is a
non-trivial problem, consider the following code fragment,
represented by a control-flow graph (CFG):



Ezample 1: Although nodes 3 and 4 are contiguous in the
CFG, they cannot be extracted into a procedure because of
structural concerns: node 3 has an outgoing edge to node
8, and node 4 has an outgoing edge to node 5; if the two
nodes are replaced by a call node (with a single successor in
the CFG), either node 8 or node 5 will become unreachable,
leading to a malformed CFG.

Ezample 2: Nodes 2 and 4 cannot be extracted into a
procedure because of control dependence concerns. Moving
node 4 before the if node would cause the wrong value to
be assigned to variable sum when z is not positive; moving
node 2 after the if node would cause the wrong value of z to
be used to evaluate the condition. In either case, semantics
would not be preserved.

Ezample 3: Nodes 4 and 6 cannot be extracted into a
procedure because of data dependence concerns. This sit-
uation is similar to the one for nodes 2 and 4, discussed
above: Moving node 6 before node 5 causes the wrong value
of y to be used in the assignment to z, and moving node 4
after node 5 causes the wrong value of sum to be used in
the assignment to y.

Ezample 4: Nodes 5 and 7 can be extracted. Node 7
can be moved up before node 6, which makes 5 and 7 an
extractable sequence.

The chief contribution of this paper is an algorithm that
moves a selected set of CFG nodes together so that they
become extractable while preserving semantics. We believe
that this algorithm is the first to handle an arbitrary set of
selected nodes in an arbitrary (possibly unstructured) CFG.
Since semantic equivalence is, in general, undecidable, it is
not possible to define an algorithm for this problem that
succeeds iff semantics-preserving procedure extraction can
be performed for the given set of nodes. Therefore, we iden-
tify conditions based on control and data dependence that
are sufficient to guarantee semantic equivalence; our algo-
rithm succeeds iff those conditions hold. We also include an
outline of a proof of correctness for our algorithm (that it
performs only semantics-preserving procedure extraction).

A limitation of the algorithm is that it only moves CFG
nodes; no duplication is performed. In Example 1, for in-

stance, the indicated extraction can be done if the predicate
is duplicated and the code restructured as follows:

if x>0 then sum += x
if x>0 then y = sum*2; z = yJ10; w = y/10
else sum -= x

Nevertheless, we feel that the algorithm is useful as is; in
particular, it can be used as part of an automatic restruc-
turing tool, and in that context failure of the algorithm can
provide feedback indicating that code duplication is needed.

The remainder of the paper is organized as follows: Sec-
tion 2 presents basic assumptions and terminology. Section 3
presents our algorithm for performing step 2 of procedure
extraction. Section 4 discusses the algorithm’s theoretical
complexity, and Section 5 presents experimental results that
give some insight into how well the algorithm will perform
in practice. Section 6 states two theorems: the first the-
orem shows that the property we require to preserve con-
trol dependence is reasonable, and the second shows that
the algorithm is correct (only performs semantics-preserving
procedure extraction). Proof outlines for these theorems
are included in an appendix; detailed proofs are available
in [KH99]. Section 7 discusses related work. Finally, con-
clusions are presented in Section 8.

2 Assumptions and Terminology

‘We assume that each procedure in a program is represented
by a control-flow graph (CFG) that includes unique Enter
and Exit nodes. Other CFG nodes represent predicates or
simple statements (assignment, input, output, unconditional
branch, or procedure call). A return statement is modeled
as an unconditional branch to the Exit node. The Enter
node is a special pseudo-predicate; it has two outgoing edges:
one labeled “true” to the first statement or predicate in the
procedure, and one labeled “false” to the Exit node (these
edges are included so that all nodes in the body of the proce-
dure are control dependence descendents of the Enter node).
Normal predicate nodes also have two outgoing edges, one
labeled “true” and the other labeled “false”; other nodes
have one, unlabeled outgoing edge (for the purposes of this
paper, there is no need to represent call/return connections
among procedures; thus, a call node has one outgoing edge
whose target is the statement or predicate that follows the
call). Every node is reachable from the Enter node, and the
Exit node is reachable from every node. NV (G) denotes the
nodes of a CFG G and £(G) denotes the edges.

We assume that the program includes no uses of unini-
tialized variables, and no assignments to dead variables. We
also assume that appropriate static analyses (e.g., pointer
analysis and interprocedural may-use, may-mod analysis)
have been done so that the may-use and may-define sets are
known for each CFG node (including call nodes).

For the purposes of this paper, two procedures are se-
mantically equivalent iff when they are called in the same
state (i.e., with the same mapping of variables — including
the special stream variables input and output — to values),
they finish in states that agree on the values of all variables
that are (interprocedurally) live at Exit (with output con-
sidered to be live at all points in the program). A procedure
that does not terminate, or that causes an exception — e.g.,
a division by zero — is considered to finish in the state in
which all variables are mapped to L. Two CFGs are seman-
tically equivalent iff the procedures that they represent are
semantically equivalent.



‘We provide definitions of some standard concepts used
in this paper:

Definition(domination) : CFG node p dominates node g iff
all paths from Enter to ¢ go through p. By definition, no
node dominates itself. O

Definition(postdomination) : Node p postdominates node
q iff all paths from ¢ to Exit go through p. By definition,
every node postdominates itself. O

Definition(control dependence) : Node p is C-control de-
pendent on node g, where C is either “true” or “false”, iff
q is a predicate node, p postdominates the C-successor of ¢
but it does not postdominate q itself.00

Definition(flow dependence) : Node p is flow dependent on
node ¢ due to a variable v iff v is used by p and defined by ¢
and there is a CFG path from ¢ to p that includes no node
that must define v.0

Definition(anti dependence) : Node p is anti dependent on
node g due to variable v iff v is used by p and defined by ¢
and there is a CFG path from p to ¢.O

Definition(output dependence) : Node p is output depen-
dent on node g due to variable v iff both nodes define v and
there is a CFG path from ¢ to p.O

Definition(def-order dependence) : Node p is def-order de-
pendent on node g due to variable v iff both nodes define
v, there is a node u that is low dependent on both p and ¢
due to v, and there is a CFG path from ¢ to p.O

The definitions for flow, anti and output dependences
are based on the definitions in [KKP*81], while the defini-
tion of def-order dependence is from [BH93]. The following
additional terms are also used in the paper:

Definition(control dependence set) : The control dependence
set of node ¢ in CFG G is the set of predicate-node, truth-
value pairs (p, C) such that g is C-control dependent on p
in G. O

Definition(hammock) : A hammock is a subgraph of a CFG
that has a single entry node, and from which control flows
to a single outside erit node. More formally: A hammock
in CFG G is the subgraph of G induced by a set of nodes
H C N(G) such that:

1. There is a unique entry node e in H such that:
(m eN(G)—H)A(n € HYA((m,n) € £E(G)) = (n=
e).

2. There is a unique outside exit node ¢ in N(G) — H
such that:
(me H)A(neN(G)—H)A((m,n) € E(Q)) = (n=
t).

O

Definition(hammock chain) : A hammock chain
(H1,Hs,...,H,)in CFG G is a sequence of hammocks with
no incoming edges from outside the sequence to any node
other than Hi’s entry node. That is,

Vi€ 2...m]:

1. the entry node of H; is the outside exit node of H;_1,
and

2. (n € H;) A(m € N(G) — H) A ((m,n) € E(Q)) =
(m € Hifl)

m|

It can be seen that any hammock chain is itself a ham-
mock. The entry node of the chain is the entry node of the
first hammock H; and the outside exit node of the chain is
the outside exit node of the last hammock H,,.

Definition(atomic hammock) : An atomic hammock is a
hammock that is itself not a chain of smaller hammocks.
O

It can be shown that a hammock H with entry node e
is atomic iff for each hammock H; that is strictly contained
in H and also has entry node e, there exists a node n in
(H — H,) such that there is an edge from n to e (see [KH99]
for a proof of this characterization).

3 Semantics-Preserving Procedure Extraction

In this section we define an algorithm for reordering a given
set of CFG nodes so that they can be extracted into a pro-
cedure while preserving semantics.

We assume the following inputs to the algorithmn:

1. P, the control-flow graph of a procedure.

2. the set M of nodes in P that have been chosen for
extraction (M is a subset of N'(P) — {Enter, Exit})

The goal of the algorithm is to produce a CFG Py that
includes exactly the same nodes as P, so that:

e the nodes in M are extractable from Pa, and
e P, is semantically equivalent to P.

A very high-level description of our algorithm is as fol-
lows:

Step 1: Check whether the nodes in M are part of a chain
of atomic hammocks in P; if not, then fail (P cannot
be reordered to make the M nodes extractable while
preserving control dependences).

Step 2: Create a polygraph that represents the ordering
constraints imposed on the hammocks in the chain by
data dependence considerations. (A polygraph is a
graph with both “normal” edges and “either-or” edges.
This will be clarified in Section 3.2 below.)

Step 3: Create the set of acyclic graphs defined by the poly-
graph created in Step 2.

Step 4: If any of the graphs created in Step 3 has a simple
property (to be defined in Section 3.2), produce the
corresponding CFG Pj; otherwise, fail.

Subsection 3.1 explains the notion of extractability, and
then step 1 of the algorithm, which concerns extractability
and preserving control dependence. Subsection 3.2 elabo-
rates on Steps 2—4, which have to do with preserving data
dependence.



3.1 Extractability and Control Dependence

As stated earlier, a requirement is that the nodes in M be
extractable from Py(. What this means is that step 3 of pro-
cedure extraction — extracting the M-nodes from Py and
replacing them with a procedure call node — does not result
in a malformed CFG. In the example in the Introduction,
nodes 5 and 7 can be moved together to result in a new
CFG from which they are extractable, but this is not true
for nodes 3 and 4 although they are already together. In
essence, since the extracted procedure will have a single en-
try point, and the new procedure call node will have a single
CFG successor, the set of M-nodes must have the same two
properties in Py for the replacement to make sense: there
must be a single M-node that has incoming edges from out-
side the set, and all edges leaving the set must go to the
same CFG node. It is thus easy to see that the nodes in M
are extractable from P4 iff they form a hammock in Pay.

Example 2 in the Introduction illustrates that a part of
a sufficient condition to guarantee the semantic equivalence
of P and Py, is that each node in Py have the same control
dependence set as in P.

We have shown in [KH99] that both of these objectives
for the new CFG Pa; — extractability and control depen-
dence preservation — can be achieved iff in the original CFG
P the nodes in M are part of a chain C of atomic hammocks
(this result is stated as Theorem 1 in the appendix, and a
proof outline is given).!

Every hammock in C must be either an M-hammock - a
hammock in which all nodes are in M — or an O-hammock
— one that has no nodes in M. Figure 1(a) illustrates this
structure; the M-hammocks are shaded. If we look back
at Example 4 in the Introduction, (4,5,6,7) is the chain
that contains nodes 5 and 7 with each of the nodes being an
atomic hammock.

Algorithm Step 1 (finding chain C)
Step 1 of our algorithm determines whether there is such a
chain C in P as follows:

i. Identify the set of all hammocks in P:

for each node p in P
for each postdominator g of p
(a) do a depth-first search starting from p
and not going past g; let H be the set of
nodes visited by the depth-first search
(b) H is a hammock iff all edges coming into
H from outside H have p as their target.

ii. Eliminate from the set all hammocks that are neither
M-hammocks nor O-hammocks (i.e., all hammocks
that contain both M-nodes and non-M-nodes).

iii. Eliminate all non-atomic hammocks (see Section 2).

iv. Eliminate all non-maximal hammocks (a hammock is
non-maximal if all of its nodes are contained in another
hammock in the current set).

1A part of the proof also shows that P has such a chain iff the
following two control-dependence conditions are met:

1. For every predicate node p in M, all nodes that are control
dependent on p are also in M.

2. All nodes in M that are (directly) control-dependent on some
node outside M have the same control dependence set outside

M.

We say that M is well-formed in control dependence in P in this
case.

@ (b)

Figure 1: Chain containing M nodes

v. Check whether all M-nodes are included in the final
set of hammocks; if not, fail.

vi. Find the longest chain of atomic hammocks starting
with any M-hammock M as the current hammock: if
the outside exit node of the current hammock is the
entry node of some hammock H in the set, and all
edges to this entry node from outside H come from
the current hammock, then add H to the chain and
make H the current hammock.

vii. Extend the chain backwards from M, as far as pos-
sible: start with M, as the current hammock; if the
entry node of the current hammock is the outside exit
node of some hammock H in the set, and all edges
into the current hammock are from H, then add H to
the beginning of the chain, and make H the current
hammock.

viii. If all of the M-hammocks are in the chain then chain
C has been identified; if not, fail.

Example: For the CFG shown in Figure 1(a), step (ii)
would eliminate from the set all hammocks that are neither
M-hammocks nor O-hammocks (such as the entire CFG).
It would leave in the set any O-hammocks that occur in
the upper and lower “clouds” of code, and hammocks Oy,
Oz, M1, O3, M>, and M3, as well as the non-atomic ham-
mocks (0O1,03), and (M,, M3). Those non-atomic ham-
mocks would be eliminated in step (iii). Any non-maximal
hammocks inside the M;s or O;s or in the “clouds” would be
eliminated in step (iv). Such hammocks arise, for example,
in the context of a loop: the whole loop can be an atomic
hammock, as well as the individual statements inside the
loop; however, the individual statements are not maximal
hammocks. Continuing with the example, step (v) would



succeed, and step (vi) could start with M;, M,, or M;. If
it started with M>, it would find the chain (M,, M3). Step
(vii) would then extend that chain backward; the final chain
would be: (01, 02, Ml, 03, M2, Mg).

3.2 Data Dependence

The goal of Steps 2—4 of our algorithm is to determine
whether it is possible to permute the chain C into a chain
Cm by reordering its hammocks so that:

e the M-hammocks occur contiguously in Cr,, and
o the semantics of P are preserved.

If this can be done, then the CFG obtained by replacing C
with C,, — shown in Figure 1(b) - is our desired CFG Pa4.

To preserve the semantics, we must ensure that on every
execution, each node in P executes the same number of times
and in the same states as in Pxq. It can be shown that
permuting C in any way cannot alter the control dependence
set of any node (see Part 3 of the proof outline of Theorem 1
in the appendix). Intuitively then, a permutation preserves
semantics if it preserves the flow of values in the program:
for each execution, if a node n in P uses a value defined at
node m, then node n in Py must also use the value defined
at node m.

These observations lead us to define six kinds of ordering
constraints (imposed by chain C) that must be satisfied by
the permutation. Some of the constraints are simple con-
straints of the form “hammock A must come before ham-
mock B in the permutation.” Others are “either-or” con-
straints of the form “either hammocks A;...A; must all
come before hammock B in the permutation, or hammock
B must come before hammock C.”

We can show that these 6 kinds of ordering constraints
are sufficient: any permutation of the chain C that satis-
fies all of the constraints imposed by C preserves semantics.
Theorem 2 in the appendix states this result formally, and
a proof outline is included (see [KH99] for a more detailed
version).

Algorithm Step 2 (building the polygraph)

Step 2 of our algorithm involves building a polygraph that
represents the ordering constraints imposed by the chain C.
Each node of the polygraph corresponds to one atomic ham-
mock in C; each edge in the polygraph represents one order-
ing constraint. A polygraph has two kinds of edges: normal
edges (e.g., A — B), which represent simple constraints,
and either-or edges (e.g., {41, A2,...A;} =+ B || B—~ C),
which represent either-or constraints. A polygraph defines a
set of (normal) graphs. Each graph in the set has the same
nodes as the polygraph, and includes all of the polygraph’s
normal edges. For each either-or edge {Ai,As,... A;} —
B || B — C in the polygraph, a graph in the set either
includes the edges Ay -+ B, A» - B, ... A; = B, or it
includes the edge B — C. A polygraph that has k either-or
edges thus defines a set of 2* normal graphs.

The six kinds of ordering constraints are induced by in-
stances of flow, def-order, anti, and output dependences be-
tween the hammocks in C. The constraints are defined be-
low and are illustrated using the chain shown in Figure 2,
in which each node represents one atomic hammock, and
the shaded nodes are M-hammocks. Note that because of
our assumptions that there are no uninitialized uses and no
dead assignments, there must be a definition of variable v
outside the chain that reaches chain entry, and v must be
live at chain exit. For the purposes of this example, we will

Figure 2: Chain used to illustrate ordering constraints (each
node represents one atomic hammock)

assume that the definition of v in hammock 8 does not reach
the chain entry, and that z is not live at chain exit.

1. Constraints induced by flow dependence: Normal edge
A — B is in the polygraph for chain C if

(a) hammock A comes before hammock B in C, and
(b) there is a definition of a variable v in A that
reaches a use of v in B.

Example: For the chain in Figure 2, flow depen-
dences induce the normal polygraph edges 1 — 3,
2—53,3—+43—>5,and6— 7.

2. Constraints induced by def-order dependence: Normal
edge A — B is in the polygraph for chain C if

(a) A comes before B, and

(b) there are definitions of a variable v in both A and
B, and

(c) there is a use of v somewhere in the program that
is reached by the definitions in both A and B.

Example: Def-order dependences induce the normal
polygraph edge 1 — 2 (because of the use of v in ham-
mock 3).

3. Constraints induced by anti dependence: Normal edge
A — B is in the polygraph for chain C if

(a) A comes before B, and

(b) there is a use of a variable v in A that is reached
by a definition outside C, and there is a definition
of v in B.



Example: Anti dependences induce the normal poly-
graph edge 3 — 8 (because of the definition of v outside
the chain that reaches chain entry).

4. More constraints induced by anti dependence: Either-
or edge {A1,As,...,A;} - B || B — C is in the
polygraph for chain C if

(a) C comes before any of the A hammocks, which
all come before B, and

(b) there is a non-empty set of variables V' that are
defined in both B and C, and

(c) every A; includes at least one use of a variable
v € V that is reached by a definition in C, and

(d) the set Ai,..., A; is maximal: every hammock U
that comes after C' and before B, and that in-
cludes a use of a variable v € V' that is reached
by a definition in C is in the set.

Example: Anti dependences induce the either-or poly-
graph edges ({4,565} =6 || 6 =+ 3), ({3} =8 || 8 =
1), and ({3} — 8 || 8 — 2). However, note that the
second and third edges are redundant, since normal
edge 3 — 8 is also included in the polygraph because
of a type 3 constraint.

5. Constraints induced by output dependence: Normal edge
A — B is in the polygraph for chain C if

(a) A comes before B, and

(b) there is a definition of a variable v in both A and
B, and

(c) v is live at the exit of the chain C, and

(d) the definition in B reaches the exit of the chain
but the definition in A does not reach the exit of
the chain.

Example: Output dependences induce the normal
polygraph edges 1 — 8 and 2 — 8 (because v is live at
chain exit).

6. More constraints induced by output dependence: Either-
or edge {A1,A4s,...,A;} - B || B — C is in the
polygraph for chain C if

(a) B comes before C, which comes before any of the
A hammocks, and

(b) there is a non-empty set of variables V' that are
defined in both B and C, and

(c) every A; includes at least one use of a variable
v € V that is reached by a definition in C but is
not reached by any definition in B, and

(d) the set Ai,..., A; is maximal: every hammock U
that comes after C' and that includes a use of a
variable v € V that is reached by a definition in
C but is not reached by any definition in B is in
the set.

Example: Output dependences induce the either-or
polygraph edge {7} —+ 3 || 3 — 6.

Note that because we have assumed that input and out-
put are implemented using stream variables, there is no need
to include special cases for constraints induced by I/O. For
example, the statement input z is treated as both a use and

Figure 3: Polygraph built for the chain of Figure 2

a definition of the stream variable input (as well as a defi-
nition of x); therefore, if two hammocks in the chain each
include an input statement, there will be a flow dependence
from one hammock to the other, and the constraints defined
above will ensure that the order of the input statements in
the chain is maintained.

Example: The polygraph built for the example chain in
Figure 2 is shown in Figure 3 (only the two non-redundant
either-or edges are included). Normal edges are shown using
plain arrows; either-or edge {Ai, As,...,A;} > B || B—»C
is indicated by enclosing the A; nodes in a dashed circle,
connecting that circle to node B with a heavy dashed arrow,
connecting node B to node C with a second heavy dashed
arrow, and linking the two dashed arrows with an arc.

Algorithm Step 3 (creating the acyclic graphs de-
fined by the polygraph)

It is easy to see that a permutation C’ of C satisfies all the
constraints imposed by C iff C’ is consistent with the edges
of (at least) one of the graphs defined by the polygraph for C
(which was created in step 2). Moreover, no permutation of
C can be consistent with the edges of a cyclic graph defined
by the polygraph. Therefore, to find permutations of C that
satisfy all constraints imposed by C, step 3 of our algorithm
creates all acyclic graphs defined by the polygraph. This
can be done with a recursive routine CreateGraphs whose
inputs are a graph G and a set of either-or edges E. The
inputs to the top-level call of this routine are: a graph that
contains all the polygraph’s normal edges, and the set of
all non-redundant either-or edges defined by the polygraph.
The steps of the routine are:

1. If E is empty, return {G} (G is one of the acyclic
graphs defined by the polygraph).

2. Select an either-or edge e = {41, As,...A;} — B ||
B — C from E.

3. Let G’ be equal to G augmented with edge B — C; if
G' is acyclic then call CreateGraphs recursively with



Figure 4: Acyclic graphs defined by the polygraph of Fig-
ure 3

G’ and E — {e} as inputs. Let S1 be the set returned
by this recursive call.

4. Let G” be equal to G augmented with edges A; —
B,Ay = B,...,A; — B. If G" is acyclic then call
CreateGraphs recursively with G” and E — {e} as in-
puts. Let S2 be the set returned by this recursive call.

5. Return S1U S2.

Example: Two acyclic graphs are defined by the poly-
graph shown in Figure 3. They are shown in Figure 4. Heavy
dashed arrows indicate the edges that were added to account
for the polygraph’s either-or edges; plain arrows correspond
to the polygraph’s normal edges.

Algorithm Step 4 (creating the goal CFG Px,)

Step 4 of our algorithm determines whether it is possible to
move the nodes in M together so that they are extractable,
without violating any of the constraints imposed by data
dependence. This is accomplished by determining whether
there is a permutation of the chain C in which all of the
M-hammocks are contiguous, and that is consistent with
the edges of (at least) one of the acyclic graphs created in
step 3. If such a permutation C,, is found, we can clearly
produce Py (in which all the M nodes form a hammock,
and are thus extractable) by replacing C with C,, in P.

It is easy to see that permutation C,, exists iff there is
an acyclic graph G created in step 3 such that there are
no paths in G that run from an M-node to an O-node to
an M-node? (the existence of such a path would preclude
moving the endpoint M-hammocks together).

This property can be easily checked for each graph G
created in step 3 by using depth-first search as follows:

For each O-node n in G:

2Here we use O-node to mean a node in G that represents an
O-hammock, and M-node to mean a node in G that represents an

M-hammock.

1. Use depth-first search from n to determine whether
there is a path to an M-node.

2. If yes, use reverse depth-first search from n to
determine whether there is also a path from an
M-node.

3. If yes, reject G

Once an acyclic graph G has been identified that has no
such “illegal” paths, a final ordering C,, of the hammocks of
the chain C can be produced by finding topological orderings
of three subgraphs of G:

1. The subgraph induced by the set of O-nodes from
which there ¢s a path to an M-node.

2. The subgraph induced by the set of M-nodes.

3. The subgraph induced by the set of O-nodes from
which there is not a path to an M-node.

The final ordering is the concatenation of the three topo-
logical orderings. Since G is acyclic, and there are no paths
from an M-node to an O-node to an M-node, the orderings
are guaranteed to exist, and the concatenation is guaranteed
to be consistent with the edges of G, thus satisfying all of
the constraints imposed by the original chain C.

Example: The first graph shown in Figure 4 would be
rejected by step 4 of the algorithm because O-nodes 3, 4 and
5 are all reachable from M-nodes 1 and 2, and can reach
M-nodes 6 and 7. The second graph has no such illegal
paths; in fact, there are no paths from an O-node to a M-
node. Therefore, there are only two topological orderings to
concatenate to form the final ordering (the ordering of the
M-nodes, followed by the ordering of the O-nodes). One
such final ordering is shown below.

4 Algorithm Complexity

The space complexity of the algorithm is polynomial in the
length of chain C, provided we make a minor change to the
algorithm: instead of creating all the acyclic graphs in step
3 and then checking each of them in step 4, we need to
merge the two steps. Thus, when an acyclic graph is created,
step 4 should be applied on it. If the graph is rejected for
having a bad path then it can be thrown away; otherwise,
the algorithm can generate final ordering C,, and stop.
The time complexity of the algorithm is dominated by
the combined steps 3 and 4. To see why, we begin by ob-
serving that finding the chain C (step 1 of the algorithm)



takes time polynomial in the size of the CFG. Building the
polygraph for chain C (step 2 of the algorithm) takes time
polynomial in n, where n is the number of hammocks in C
(n itself is polynomial in the size of the CFQG).

The total time required to generate the acyclic graphs
defined by the polygraph and find one without a bad path
(combined step 3 and 4 of the algorithm) is determined by

the total number of calls to the recursive routine CreateGraphs

(described in Section 3.2). An individual call to this routine
can make up to two recursive calls of its own, and there-
fore the total number of activations at any given depth k
from the top-level activation is < 2*. Since the maximum
depth of recursion is equal to the number of either-or edges,
which we refer to as e, and since k < e, the total number of
calls to routine CreateGraphs is bounded above by e x 2°.
Thus the time requirement of combined steps 3 and 4 is
bounded above by ((e x 2°) x (some polynomial in n)). e
itself is O(n”) in the worst case, as for any either-or edge
{A1,As,...A;} = B || B = C, there are O(n?) distinct
pairs of hammocks for B and C and the set A1, Aa,... A; is
fixed for any particular B and C.

‘We can improve this upper bound by recognizing that the
number of activations of CreateGraphs at any given depth
k from the top-level activation is also bounded above by
n! (n! could be smaller than 2* as k could be equal to e
which itself is O(n?)). The reason for this can be seen by
considering the set of acyclic graphs received as inputs by
the activations at this depth: each acyclic graph in the set
has (at least) one permutation of C that is consistent with
its edges, no permutation of C can be consistent with more
than one graph in the set (because any two graphs differ
on at least one either-or edge and no permutation can be
consistent with both alternatives of an either-or edge), and
there are only n! different permutations of C. Therefore
an improved upper bound on the total time requirement of
steps 3 and 4 is ((e x min(n!, 2°)) x (some polynomial in n)).

This upper bound on the algorithm’s time requirement
is not surprising, since we have been able to show that the
problem of finding a permutation C., of C (if one exists)
such that the M hammocks occur contiguously in C,,, and
C satisfies all the constraints imposed by C, is NP-Hard
in n. We omit the NP-Hardness proof in this paper due
to space constraints; it involves a reduction from the NP-
Complete problem of determining whether a given schedule
of database transactions is view-serializable (see [Pap86]).

Although this upper bound looks prohibitive, there is
some evidence that the algorithm will work well in practice:
We have measured n and e for all chains of atomic hammocks
in a set of benchmark programs, and the results of the study
(reported in the next section) are very encouraging. The
bottom line is that in all of the programs, fewer than 1% of
the chains have polygraphs with more than 5 either-or edges
(i.e., have e > 5). Thus, it seems likely that the algorithm
will usually have a reasonable running time.

Furthermore, the values of both n and e will be known
by the end of step 2 (creating the polygraph), after doing
work only polynomial in the size of the CFG; if both values
are large, heuristics can be used in place of step 3. Two
possible heuristics are:

1. Instead of generating the acyclic graphs defined by the
polygraph, generate the permutations of C in which
the M-hammocks occur contiguously, and in which
the relative ordering of the M-hammocks and the rel-
ative ordering of the O-hammocks are the same as in
C (there are only O(n) such permutations). For each
generated permutation, check whether it satisfies the

constraints of the polygraph. If so, use that permuta-
tion in place of C to obtain the CFG Pxy.

2. Limit the number of graphs defined by the polygraph
by arbitrarily converting some or all of its either-or
edges to normal edges, then generate the correspond-
ing acyclic graphs.

Of course, these heuristics will fail in some cases where the
actual algorithm succeeds, but they may work well in prac-
tice.

5 Experimental Results

To provide some insight into the actual running time of our
algorithm, we analyzed all chains of atomic hammocks in a
set of benchmark programs. The steps carried out by the
analysis for each program are listed below:

1. Use the SUIF compiler infrastructure front-end
[WFW™'94] to build an intermediate form for the pro-
gram.

2. Build a CFG for each procedure from its intermediate
form.

3. Perform pointer analysis on the entire program. This
provides information on the variables that might be
pointed to by pointer variables, which in turn helps us
in determining the variables that might be defined/used
by statements that dereference pointers.

4. Compute summary information for each procedure.
This information consists of the set of variables that
might be defined, and the set of variables that might
be used, as a result of a call to the procedure. This
summary information is used to compute data depen-
dences between call nodes and other nodes.

5. For each procedure in the program:

(a) Identify all atomic hammocks. Compute the may-use-
before-defined set — the set of variables that might be
used in a hammock before being defined — for each
hammock by performing a backward dataflow analysis
within the hammock. Compute the may-define set —
the set of variables that may be defined by a hammock
— for each hammock by unioning the may-define sets of
all nodes in the hammock. Compute the must-define
set of each hammock by unioning the must-define sets
of all nodes in the hammock that postdominate the
entry node.

(b) Identify all maximal-length chains of atomic hammocks
in the CFG, as described in Algorithm Step 1 (in Sec-
tion 3.1).

(c) For each chain, use the may-use-before-defined, may-
define and must-define sets of the hammocks to com-
pute the normal edges and either-or edges in the chain’s
polygraph.

The normal edges in the polygraph induce a transitive
precedence relation on the hammocks in the chain. If
A and B are hammocks in a chain, then the presence
of a normal edge A — B implies that A precedes B
in the relation. An either-or edge {A1, As,... A;} —
B || B — C is redundant if one of the A;’s precedes
or is preceded by B, or if B precedes or is preceded
by C. Every redundant either-or edge is eliminated



Number of

Program procedures Program size
No. of lines | Total No. of
of source CFG nodes
agrep 65 6220 20725
allroots 6 449 724
anagram 16 655 1348
bc 101 8576 16146
bison-1.2.2 150 7852 27769
flex-2.4.7 147 8459 21975
football 57 2327 19383
gzip-1.2.4 99 7624 17886
ispell-4.0 121 7768 16484
simulator 110 5307 12049

Figure 5: Information about benchmark programs
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and replaced by a set of normal edges; for instance
if C is known to precede B, then {A;, As,...A;} —
B || B — C is replaced by the set of normal edges
{A1 —)B,Ag —)B,...,AJ‘ —)B}

Figure 5 gives some statistics for the benchmark pro-
grams we analyzed; bc, bison, flex, gzip and ispell are Gnu
Unix utilities; agrep is described in [WM92]; anagram has
been used in the experiments of [ABS94], while allroots, foot-
ball and simulator were used in the experiments of [LRZ93].

Figure 6 gives the distribution of chains by length in each
program. The taller bar gives the percentage of chains that
have length < 10, while the solidly shaded portion indicates
the percentage of chains that have length < 5. It can be
observed that from 50 to 65% of chains have length < 5.
Figure 7 gives the cumulative number of chains over all pro-
grams for various chain lengths.

Figure 8 gives the distribution of chains by the number of
either-or edges they have. The taller bar gives the percent-
age of chains that have < 5 either-or edges, while the solidly
shaded portion indicates the percentage of chains that have
0 either-or edges. It can be observed that from 91 to 99%
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Figure 7: Chain lengths over all programs

of chains have no either-or edges, and virtually all the re-
maining ones have < 5 edges. Figure 9 gives the cumulative
number of chains over all programs that have a given num-
ber of either-or edges.

Recall that the algorithm’s worst case time bound is pro-
portional to min(n!, 2°) X (some polynomial in n) (where n
is the length of the chain and e is the number of either-or
edges in it). Our experimental results indicate that chain
lengths tend to be short, and that the number of either-or
edges tends to be very small; this is a strong indication that
the running time of the algorithm will actually be polyno-
mial in n for most chains in real programs, thus making it
a feasible one in practice.

We also studied whether many either-or edges were made
redundant by normal edges. The results were in the nega-
tive; in each program over 98% of the chains had < 5 either-
or edges even if redundant ones were not eliminated. We
believe this further validates our conclusions.

Finally, Figure 10 gives for each program the total num-
ber of chains, length of the longest chain, and the maximum
number of either-or edges in any single chain.

5.1 Factors Affecting the Experimental Results

Although our experimental results are quite encouraging,
there are a number of factors that, if changed, might cause
somewhat different results to be produced. These factors
are discussed below.

Using the SUIF intermediate form: The SUIF inter-
mediate form is a low-level representation. Since we build
the CFG from the SUIF representation, each source level
statement can correspond to many CFG nodes (this can be
observed from the data in Figure 5). As an example, the
single source level statement “*p++ = 0” becomes a series
of CFG nodes that first save the original value of p into a
temporary, then increment p, and finally store 0 into the lo-
cation pointed to by the temporary. A result of this low-level
representation is that we will tend to have longer chains than
if we had worked at the source level, and we may have more
normal and either-or edges per chain. On the other hand,
the low-level representation has the advantage of flexibility;
in the above example, it allows an extracted procedure to
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include just the increment of the pointer, or just the storing
of the value 0.

Handling of pointers: For the sake of efficiency, we per-
form the flow-insensitive pointer analysis defined by Ander-
sen [And94]. This in general gives less accurate results than
a flow-sensitive analysis, which in turn could increase or de-
crease the number of normal and either-or edges in a chain.

Live Variable Analysis: Computing the normal edges in-
duced by output dependence (the fifth type of constraint de-
scribed in Step 2 of the algorithm, Section 3) for a chain re-
quires knowing which variables are live at chain exit. Rather
than performing a whole-program live-variable analysis we
assume that no variables are live at chain exit. This as-
sumption can only increase the number of either-or edges
reported for any chain.

Computing summary information for procedures: As
mentioned earlier, we need to compute may-define and may-
use sets for each procedure so that data dependence infor-
mation for call nodes is known. We let the may-define (may-
use) set of a procedure be equal to the set of variables that
may be defined (used) by the procedure itself and by other
procedures that could be (directly or indirectly) called by
it.

‘We might have gotten different sets of normal and either-
or edges if we had computed may-use-before-define summary
information rather than just may-use information, but that
would require an expensive whole-program analysis which
we left out for the sake of efficiency.

Another issue is which variables are included in the may-
define and may-use sets for a call node. Including all vari-
ables in the called procedure’s may-define and may-use sets
— even variables that are not visible to the calling procedure
— can cause extra normal and either-or edges to be included
in the polygraph (e.g., if a hammock chain includes two calls
to the same procedure, and that procedure both defines and
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Figure 9: either-or edge counts over all programs
Total number | Longest | Max. num. of
Program of chains chain | either-or edges
agrep 1821 99 86
allroots 47 93 3
anagram 104 70 4
bc 1514 169 8
bison-1.2.2 2487 80 35
flex-2.4.7 2151 194 179
football 1169 346 12
gzip-1.2.4 1680 127 133
ispell-4.0 1589 1030 6
simulator 1236 60 1

Figure 10: Measured statistics about benchmark programs

uses a local variable z, then there will be a flow dependence,
and therefore a normal edge, between the two call nodes,
since the definition of z at the first call will be considered
to reach the use at the second call).

In our implementation we include in a call node’s may-
define (may-use) set all variables in the called procedure’s
may-define (may-use) set that are global, static, arrays, or
structures, or whose addresses are taken. Including (local)
structures is probably overly conservative; however, SUIF
provides a single boolean function that identifies arrays,
structures, globals, and variables whose addreses are taken;
using that function provides a safe approximation to the set
of variables in the called procedure’s may-define and may-
use sets that should be in the call node’s sets.

Handling calls to library functions: Since source code
for library functions is unavailable for analysis, we provided
summary functions for most library functions. These sum-
maries simulate definitions and uses of all variables that
are not local to the library function (our summaries were
based on the summaries that were used in the experiments
reported in [WL95]). Use of different summary functions
could lead to different sets of polygraph edges.



6 Key Theorems

Here we state two key theorems; proof outlines are given in
the Appendix. The first theorem shows that it is possible to
move the nodes in M together so that they are extractable
(they form a hammock) while preserving control-dependence
sets for all nodes in P iff the nodes in M are part of a chain
C of atomic hammocks in P. This demonstrates that Step
1 of our algorithm (which fails if the nodes in M are not
part of a chain of atomic hammocks) is reasonable. The
second theorem demonstrates that our algorithm is correct,
by showing that any permutation of the hammocks in C that
satisfies the ordering constraints imposed by C (as defined
in Section 3.2) preserves semantics.

Theorem 1 : Given CFG P and set of nodes M, it is
possible to create a new CFG P. with the same nodes as P,
with each node having the same set of control dependences as
in P, and in which the M nodes form a hammock iff there
is a chain C of atomic hammocks in P such that:

1. C includes all of the nodes in M, and

2. every hammock in C is either an M-hammock — a ham-
mock in which all nodes are in M — or an O-hammock
- one that has no nodes in M.

Theorem 2 : Given:

1. Chain C of atomic hammocks in CFG P, such that all
nodes in M are in the chain, and every hammock is
either an M-hammock (containing only M nodes) or
an O-hammock (containing no M nodes), and

2. C', a permutation of C such that C' satisfies the or-
dering constraints imposed by C (as defined in Sec-
tion 8.2), and

3. P', the CFG obtained by replacing chain C with the
chain C' in P

then: P and P' are semantically equivalent.

7 Related Work

Related work falls into two main categories: work related to
procedure extraction (including [GN93, LD98, LV97, BG98]),
and work on semantics-preserving transformations (includ-
ing [BD77, LMW79, Ram88, PP96, Fea82, LV97, BGOS,
BDFH97, CLZ86, FOW87]).

[GN93] describes a tool that supports a set of meaning-
preserving transformations on Scheme programs, including
one that extracts a given contiguous sequence of expressions
into a new function and replaces the sequence by a call to
the function. If the user wishes to extract non-contiguous
expressions into a function, the expressions must first be
moved together using a transformation that moves a given
expression to a given point if this does not change the pro-
gram’s meaning. The user is respnsible for identifying the
correct program point and the correct ordering for the ex-
pressions. Our algorithm automates the aspect of bring-
ing non-contiguous code together while preserving meaning.
Additionally, our algorithm works on general unstructured
programs whereas their transformations are limited to struc-
tured programs.

[LD98] also addresses the problem of procedure extrac-
tion, but their goal and approach are quite different from
ours. Their goal is to discover and extract a meaningful com-
putation surrounding a programmer-specified “seed” set of

statements, within a programmer-specified bounding ham-
mock. Their approach is to take the backward slice of the
seed within the hammock, and then attempt to extract the
slice as a procedure. The use of slices implicitly imposes the
second part of our control dependence well-formedness con-
dition. Their data dependence condition is quite restrictive:
there can be no data flow from the extracted computation
to the remaining computation in the bounding hammock,
and vice versa, and no variable can be defined in both com-
putations if the definitions reach uses outside the bound-
ing hammock. In effect, they perform extraction only when
there is no data dependence interaction between the code
to be extracted and the rest of the code in the bounding
hammock. In our approach, code can be extracted success-
fully in many situations where there are complex data de-
pendence interactions between the extracted code and the
remaining code. This flexibility comes at the price of a high
worst-case time requirement; however, our experimental re-
sults indicate that this may not be a problem in practice.
On the other hand, their approach allows predicate nodes to
be duplicated, which may allow some procedure extractions
that would not be possible using our approach. It may be
possible to combine the advantages of both approaches: ap-
plying our procedure extraction algorithm on the backward
slice of the seed will allow it to be extracted in some situ-
ations where their approach fails. Conversely, we might be
able to make our data dependence condition more restric-
tive to reduce the time complexity of our algorithm, and to
extend our algorithm to permit automatic code duplication
when that is necessary to prevent the algorithm from failing.

Both [LV97] and [BG98] describe tools that identify sets
of statements to be extracted into a procedure based on
some user input. In [LV97], the programmer identifies a set
of program variables as input variables, and another set of
program variables as output variables. The tool then iden-
tifies the statements that make up the computation that
defines the output variables using the values of the input
variables. In the approach described in [BG98], the pro-
grammer specifies a set of variables, and the tool provides
a visualization of the data flow graph of the computations
that depend on or define any of the specified variables. The
programmer then uses the visualization to select a “root”
node, and the tool identifies the set of nodes on which the
root node depends as a candidate for procedure extraction.
Both of these tools can identify statements that are widely
separated from each other or are not extractable unless the
program is restructured to some extent. They do not address
the extractability issue in general, however, and presumably
leave actual extraction to be performed by the programmer.
Our work is complementary to theirs in the sense that our
procedure-extraction algorithm could be applied after one
of these tools identifies the statements to extract.

Automatic transformations on programs are discussed
in [BD77, Fea82, PP96, BDFH97]. [Fea82] proposes a sys-
tem that accepts a set of recursion equations, a starting ex-
pression and a goal pattern. The system determines if there
is a way to rewrite the starting expression into an expression
that satisfies the goal pattern by a series of simple trans-
formation steps, where each transformation step is a use of
the recursion equations to perform an operation like folding,
unfolding, instantiation or abstraction on the expression in
hand. Although procedure extraction was not an explicit
goal of these transformation systems, it is likely that simi-
lar techniques could be used to move the statements in M
together via a series of simple meaning-preserving transfor-
mation steps.



Much has been reported in the literature about con-
verting unstructured programs to structured programs by
eliminating goto’s (e.g.,[LMW79, Ram88]). Our work is re-
lated to this work in the sense that it involves meaning-
preserving program transformations, although the goals of
the transformations are different. In a similar sense, our
work is related to work done on optimizing transformations
such as code motion out of loops and other program regions
(e.g., [CLZ86]). A notable similarity in fact exists between
the necessary condition checked by the “strict” approach
(one that guarantees an improvement in execution time) de-
scribed in [CLZ86] and the condition checked by step 1 of
our algorithm; they too stipulate that a node be moved out
only if its control dependence ancestors can also be moved
out.

[FOWS87] mention the use of chains of hammocks in an
approach to enable easy generation of sequential code from
a Program Dependence Graph. They suggest factoring the
control dependence subgraph of the PDG into hierarchical
chains of hammocks, and say that code can be generated for
a chain in any order consistent with the data dependences
between the hammocks. Their concern however being pro-
gram optimization and vectorization, they do not talk about
procedure extraction or how the main problem therein of
moving together a given set of nodes can be mapped to the
problem of finding a certain chain and permuting it under a
certain set of constraints.

8 Conclusions and Future Work

We have defined an algorithm that moves a selected set of
nodes in a CFG together so that they become extractable
while preserving program semantics. The algorithm places
no restrictions on the structure of the CFG or on the selected
set of nodes. Although the algorithm has a worst-case expo-
nential time complexity, experimental results indicate that
it may work well in practice.

The algorithm succeeds in moving the selected nodes to-
gether if and only if certain data and control dependence
properties hold. These properties guarantee that semantics
will be preserved; however they do not necessarily hold in all
instances where semantics preserving extraction is possible.
Our future research plans include studying how often the
algorithm succeeds in extracting meaningful methods from
real programs.

A Appendix: Correctness Proofs

This appendix includes proof outlines for the two theorems
stated in Section 6. (The full proofs are available in [KH99].)
The first proof shows that it is possible to move the nodes
in M together so that they are extractable (they form a
hammock) while preserving control-dependence sets for all
nodes in P iff the nodes in M are part of a chain C of
atomic hammocks in P. This demonstrates that Step 1 of
our algorithm (which fails if the nodes in M are not part
of a chain of atomic hammocks) is reasonable. The second
proof demonstrates that our algorithm is correct, by showing
that any permutation of the hammocks in C that satisfies the
ordering constraints imposed by C (as defined in Section 3.2)
preserves semantics.

A.1 Necessity of a chain containing M

Theorem 1 : Given CFG P and set of nodes M, it is
possible to create a new CFG P. with the same nodes as P,

with each node having the same set of control dependences as
in P, and in which the M nodes form a hammock iff there
is a chain C of atomic hammocks in P such that:

1. C includes all of the nodes in M, and

2. every hammock in C s either an M-hammock — a ham-
mock in which all nodes are in M — or an O-hammock
— one that has no nodes in M.

Proof Outline:

The proof is in three parts. First we show that if CFG
P. with the specified properties exists, then the following
two conditions must hold for P:

1. For every predicate node p in M, all nodes that are
control dependent on p are also in M.

2. All nodes in M that are (directly) control-dependent
on some node outside M have the same control depen-
dence set outside M. In other words, if ¢ and s be-
long to M, and both are control dependent on nodes
outside M, and p is some predicate node outside M,
then q is C-control dependent on p if and only if s is
C-control dependent on p, where C' is either “true” or
“false”.

We say that M is well-formed in control dependence in P in
this case.

Next we show that if M is well-formed in control de-
pendence in P, then a chain C with the specified properties
exists in P.

Finally, we show that if the chain C exists in P then the
CFG P. can be obtained from P by permuting C. Clearly
the three parts together prove the theorem.

A.1.1 Proof Part 1

‘We assume there exists a CFG P, with the same nodes as P,
with each node having the same set of control dependences
asin P, and in which the M nodes form a M-hammock H,.
The strategy is to first show that M is well-formed in control
dependence in P.. In P., all the M nodes are inside Haq
and all the nodes not in M are outside Ha¢. It can be shown
that no node outside a hammock can be control dependent
on any node inside a hammock, and hence the first part of
the control dependence well-formedness condition follows.
For the second part, let ¢ and s be nodes in M such that
both are control dependent on nodes outside M, and let p
be a predicate outside M such that g is C-control dependent
on p. It can then be shown that both ¢ and s postdominate
the entry node of Haq, and that the entry node of Haq is
C-control dependent on p. These in turn lead to the result
that s too is C-control dependent on p, which gives us the
second part of the condition for M being well-formed in
control dependence in P..

Since control dependence well-formedness is a property
based only on the control dependence sets of nodes, and we
know that each node has the same control dependence set
in P, as in P, we can infer that M is also well-formed in
control dependence in P.

A.1.2 Proof Part 2

Let M be well-formed in control dependence in P. We show
that there then exists a chain of atomic hammocks C in
P such that C includes all of the nodes in M, and every
hammock in C is either an M-hammock or an O-hammock.



We define a node e € M to be an entry node of M if
there is an edge into e from a node outside M. We define
Region(e) — the region of e — to be the set of nodes in M that
can be reached from e along CFG paths that include only
nodes in M. By definition, e € Region(e). Our goal is to
show that the region of each entry node is an M-hammock
in P, that these M-hammocks belong to a chain, and that
every M node belongs to one of the regions. First, we make
the following observation about M and P, which follows
from M being well-formed in control dependence: If e is an
entry node and d is any of the predecessors of e not in M,
then any path from Enter to d includes a predicate node p
not in M (p could be equal to d) such that e is control de-
pendent on p. An implication of this is that all entry nodes
have the same non-empty set of control dependences outside
M, which in turn leads to a result that there is a total or-
dering Ord(€) on the set of all entry nodes £ such that an
entry node dominates all entry nodes after itself in Ord(€)
and is also postdominated by them.

Existence of M-hammocks:

Let e be an entry node of M. Any node outside Region(e)
that has an edge coming into it from a node in Region(e)
is said to be a first node outside Region(e). It can be
shown that any first node outside Region(e) postdominates
all nodes in Region(e) (this is because the first node out-
side Region(e) cannot be control dependent on any node
in Region(e) — an implication of control dependence well-
formedness). If there were more than one first node out-
side Region(e) each of them would have to postdominate the
other which is not possible. As aresult, there is a unique first
node outside Region(e), which we will refer to as outside(e).

The regions of different entry nodes cannot intersect (and
this implies that all edges into the region of an entry node
from outside the region go into the entry node). For the sake
of argument assume that two different entry nodes e; and e;
have intersecting regions. Since any region has a unique first
outside node, intersecting regions must have a common first
outside node. Let d> be a predecessor of ez outside M. Say
e1 precedes e; in Ord(€), which means e, postdominates e;
and e; dominates e;. This implies the existence of a path
S from ey to d» that does not pass through e; and all of
whose nodes are postdominated by e>. One of the nodes ¢
on this path is surely equal to outside(e1) (and hence equal
to outside(ez)), which implies a contradiction, namely ¢ and
es postdominate each other.

We have thus shown that if e is an entry node of M,
then Region(e) is an M-hammock with e being its entry
node and outside(e) being its outside exit node. Since each
M node is either an entry node itself or is reachable from
an entry node along a path that goes through only nodes in
M, each M node belongs to the region of some entry node.

Consecutive regions and the nodes in between them
form a chain:

Let e; and e; be two distinct nodes in € such that e; im-
mediately follows e; in Ord(£). InBetween(e;,e;) is defined
to be the set of all nodes that are outside M, and that can
be reached from outside(e;) along CFG paths that include
only nodes that are outside M. By definition, outside(e;) €
InBetween(e;,ej). Our goal is to show that InBetween(e;, e;)
is an O-hammock.

An important property that is a consequence of the fact
that all entry nodes have the same non-empty set of control
dependences outside M is that:

1. there exists a direct path (explained below) from

outside(e;) to e;, and

2. there does not exist a direct path from outside(e;) to
any entry node other than e;, nor does one exist from
any first outside node other than outside(e;) to e;, and

3. outside(e;) dominates e;

where a direct path is one that does not include any en-
try nodes other than e;. From this property we can derive
three lemmas. The first is that any edge from a node in
InBetween(e;, ej) to a node outside it goes into e; (otherwise
there would be a direct path from outside(e;) to an entry
node that is not e;); the second is that all edges coming into
e; are either from Region(e;) or from InBetween(e;,e;) (oth-
erwise there would exist a direct path from outside(ex), k #
i, to e; — this would be because outside(e;) dominates the
node that has the edge to e; but any path from outside(e;) to
that node will have to pass through outside(e;)). The third
lemma says that any edge coming into a node in
InBetween(e;, e;) from outside InBetween(e;, e;) comes from
a node in Region(e;) (the reason is similar to the one given
for the second lemma).

From the first and third lemmas it is clear that
InBetween(e;, e;) is an O-hammock with its entry node be-
ing the same as Region(e;)’s outside exit node, namely
outside(e;), and its outside exit node being e; (which is the
entry node of Region(e;)). (Region(e;), InBetween(es,e;),
Region(e;)) in fact form a hammock chain, as the second
and third lemmas say that all edges coming into e; and
outside(e;) are from their respective previous hammocks in
the chain.

Finding the chain C:

Since any two consecutive regions and the nodes in be-
tween form a chain, we may conclude that (Region(e1),
InBetween(ei,e2), Region(e2),..., InBetween(em—1,€em),
Region(em)) is the chain we seek, where Ord(€) = e1,€2...em.
(If any of the hammocks in the chain are non-atomic, they
can be decomposed into chains of atomic hammocks.)

A.1.3 Proof Part 3

‘We assume that CFG P has a chain C such that each atomic
hammock of C is either an M-hammock or an @-hammock
and all the M nodes are contained in C. Let C,, be a per-
mutation of C such that the M-hammocks of C occur con-
tiguously in C,,. Let P. be the CFG obtained by replacing
C in P with C,,. We show that P. has the properties that
we seek:

1. Since P. is obtained from P by permuting the chain
C in P, clearly the node sets of the two CFGs are the
same.

2. All the M nodes are contained in the M-hammocks of
C (that is given), and these M-hammocks form their
own contiguous subchain in C,,. Since any chain of
hammocks is itself a hammock, the M nodes form a
hammock in P..

3. We show informally that each node has the same con-
trol dependence set in P. as in P. Let p be a predicate
node and g be any node such that g is C-control de-
pendent on p in one of the CFGs P or P.. We consider
two cases for p. If p is inside C (and hence inside C.,),
then ¢ must belong to the same atomic hammock as p
as no node outside a hammock can be control depen-
dent on a node inside the hammock. Since each atomic



hammock in C appears as such in C,, and vice versa, q
will be C-control dependent on p in both CFGs. If p is
outside the chain, then there are two subcases: if q is
inside the chain then it must postdominate the entry
nodes of both chains; if ¢ is outside the chain then per-
muting the chain should have no effect on paths from
p to q or p to Exit. Therefore in either subcase g will
be C-control dependent on p in both CFGs.

A.2 Ordering constraints guarantee semantics preserva-
tion

Theorem 2 : Given:

1. Chain C of atomic hammocks in CFG P, such that all
nodes in M are in the chain, and every hammock is
either an M-hammock (containing only M nodes) or
an O-hammock (containing no M nodes), and

2. C', a permutation of C such that C' satisfies the or-
dering constraints imposed by C (as defined in Sec-
tion 8.2), and

3. P', the CFG obtained by replacing chain C with the
chain C' in P

then: P and P’ are semantically equivalent.
Proof Outline:

The proof depends on two key lemmas. The first says that
the sets of live variables at chain exit and at chain entry
are the same for P and P’. The second says that if control
enters C in P and C' in P’ in the same state (as defined in
Section 2), then:

e at the entry point of every hammock H in C and C’,
the states in the two programs will be identical with
respect to all variables that are upwards-exposed in
H (variables that might be used in H before being
defined), and

e at the chain exits, the states in the two programs will
be identical with respect to all live variables.

Since P and P’ differ only in the chains, these two lemmas
can be shown to ensure identical semantics.

The proof of the first lemma involves first showing that C
and C' have the same set of upwards-exposed uses (this fol-
lows from the constraints imposed by the data dependences).
Given that fact, we argue that the sets of live variables at
chain exit and chain entry must be the same: A variable is
live at chain exit because there is a definition-free path to
a use either outside the chain (and in that case, the same
path exists in both P and P’) or to a use inside the chain
(and in that case, the fact that the two chains have the
same sets of upwards-exposed uses ensures that such a path
exists in both CFGs). A variable is live at chain entry be-
cause there is a definition-free path to a use either inside the
chain (again, the fact that the two chains have the same sets
of upwards-exposed uses ensures that such a path exists in
both CFGs), or after the chain (in which case the variable is
live at chain exit, and that case has already been covered).

The first part of the second lemma is proved using induc-
tion on the position of hammock H in C. The second part
is proved as follows: Consider constructing a new dummy
hammock F' such that F’s upwards-exposed uses include all
variables that are live just before the exit node ¢ of the two
chains. Given that C' satisfies the constraints imposed by C,

the chain C' + F satisfies the constraints imposed by chain
C+ F. C' + F is obtained by appending hammock F to the
end of the chain C’, and C + F is obtained analogously. Now
consider appending hammock F' to the end of chain C in P
and to the end of C’ in P’. Using the property just stated
and using part 1 of this lemma we infer that control enters
F in both CFGs with the same values for all variables with
upwards-exposed uses in F'; i.e., all variables that are live at
chain exit. This inference must clearly hold even if F were
not there at the end of the two chains, and thus we have
shown that control leaves C in P and in C’' in P’ with the
same values for all variables that are live at that point.

The proof of the theorem concludes by arguing that the
two key lemmas guarantee that P and P’ are semantically
equivalent; i.e, starting execution of P and P’ in the same
state, both procedures end with the same values of the vari-
ables that are live at the Exit node. The argument is as
follows: It is clear that if for some starting state the path of
execution does not flow through the chain C in P, then the
path of execution would not flow through C’ in P’. That
is because the two procedures are identical except for the
chain. Therefore the state when control reaches the Exit
node will be identical in the two CFGs.

If the path of execution from Enter to Exit in P does
flow through C for the given starting state S, then we can
decompose the path into a sequence of subpaths as follows:

1. a path from Enter to e, the entry node of C

2. a path through C from e to ¢, the outside exit node of
C

3. zero or more occurrences of the following sequence:

(a) a path from ¢ to e
(b) a path through C from e to ¢

4. a path from ¢ to Exit

Consider the execution path in P’ for the same starting
state S. It is clear that P’ will initially follow a subpath
from Enter to €', where €’ is the entry node of C'. Moreover
this subpath is identical to subpath 1 above with identical
changes resulting to the state. Control then follows a path
through C’ and this could be different from subpath 2 above.
But the first lemma says that the set of live variables at
chain entry is the same for both CFGs, and the same is true
at chain exit. Using this fact and the second lemma, it is
clear that although subpath 2 through the chain could be
different in the two CFGs, in both cases control leaves the
chain with the same values for the variables that are live
at chain exit. Therefore, by repeating the argument on the
rest of the execution path to Exit, it follows that execution
reaches Exit in P and P’ with identical values for variables
live at that point.
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