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Abstract. Weakly-typed languages such as Cobol often force program-
mers to represent distinct data abstractions using the same low-level
physical type. In this paper, we describe a technique to recover implicitly-
defined data abstractions from programs using type inference. We present
a novel system of dependent types which we call guarded types, a path-
sensitive algorithm for inferring guarded types for Cobol programs, and
a semantic characterization of correct guarded typings. The results of
our inference technique can be used to enhance program understanding
for legacy applications, and to enable a number of type-based program
transformations.

1 Introduction

Despite myriad advances in programming languages, libraries, and tools since
business computing became widespread in the 1950s, large-scale legacy applica-
tions written in Cobol still constitute the computing backbone of many busi-
nesses. Such applications are notoriously difficult and time-consuming to update
in response to changing business requirements. This difficulty very often stems
from the fact that the logical structure of the code and data manipulated by
these applications is not apparent from the program text. Two sources for this
phenomenon are the lack in Cobol of modern abstraction mechanisms, and the
fragmentation of the physical realization of logical abstractions due to repeated
ad-hoc maintenance activities. In this paper, we focus on the problem of recov-
ering certain data abstractions from legacy Cobol applications. By doing so, we
aim to facilitate a variety of program maintenance activities that can benefit
from a better understanding of logical data relationships.

Cobol is a weakly-typed language both in the sense that it has few modern
type abstraction constructs1, and because those types that it does have are for
the most part not statically (or dynamically) enforced. For example:

– Cobol has no notion of scalar user-defined type; programmers can declare
only the representation type of scalar variables (such variables are usually
character or digit sequences). Hence, there is no means to declaratively dis-
tinguish among variables that store data from distinct logical domains, e.g.,
quantities and serial numbers.

? Contact author: komondoo@us.ibm.com.
1 Modern versions of Cobol address some of these shortcomings; however, the bulk of

existing legacy programs are written in early dialects of Cobol lacking type abstrac-
tion facilities.



– Cobol allows allows multiple record-structured variables to be declared to
occupy the same memory. This “redefinition” feature can be used both to
create different “views” on the same runtime variable, or to store data from
different logical domains at different times, often distinguished by a tag value
stored elsewhere. However, there is no explicit mechanism to declare which
idiom is actually intended.

– Cobol programmers routinely store values in variables whose declared struc-
tures do not fully reflect the logical structure of the values being stored. One
reason why programmers do this is the one already mentioned: to simulate
subtyping by storing data from different logical domains (that are subtypes
of some base domain) in a variable at different times.

As part of the Mastery project at IBM Research our long-term goal is to
recover logical data models from applications at a level of abstraction similar
to that found in expressive design-level languages such as UML [8] or Alloy
[5], to alleviate language limitations, and to address the physical fragmentation
alluded to above. Here, we describe initial steps toward this goal by describing a
type inference technique for recovering abstractions from Cobol programs in the
form of guarded types. Guarded types may contain any of the following classes
of elements:

Atomic types: Domains of scalar values. In many cases, distinct atomic types
will share the same physical representation; e.g., Quantity and SerialNumber.
Atomic types can optionally be constrained to contain only certain specific
runtime values.

Records: Domains consisting of fixed-length sequences of elements from other
domains.

Guarded disjoint unions: Domains formed by the union of two or more log-
ically disjoint domains, where the constituent domains are distinguished by
one or more atomic types constrained to contain distinct guard or tag values.

The principal contributions of the paper are the guarded type system used to
represent data abstractions; a formal characterization of a correct guarded typing
of a program; and a path-sensitive algorithm to infer a valid guarded typing for
any program (path-sensitivity is crucial to inferring reasonably accurate guarded
union types). Although our techniques are designed primarily to address data
abstraction recovery for Cobol programs, we believe our approach may also be
applicable to other weakly-typed languages; e.g., assembly languages.

1.1 Introduction to MiniCobol and motivating example

We will illustrate our typing language and inference algorithm using the ex-
ample programs in Fig. 1. These examples are written in a simple language
MiniCobol, which contains the essential features of Cobol relevant to this pa-
per. Consider the fragment depicted in Fig. 1(a). The code for the program is
shown in TYPEWRITER font, while the type annotations inferred by our inference
algorithm are shown within square brackets. The initial part of the program



01 PAY-REC.
05 PAYEE-TYPE PIC X.
05 DATA PIC X(13).

01 IS-VISITOR PIC X.
01 PAY PIC X(4).

/1/ READ PAY-REC FROM IN-F. [’E’:Emp ⊗ EId ⊗ Salary ⊗ Unused ⊕
!{’E’}:Vis ⊗ SSN5 ⊗ SSN4 ⊗ Stipend]

/2/ MOVE ’N’ TO IS-VISITOR. [’N’:VisNo]
/3/ IF PAYEE-TYPE = ’E’ [’E’:Emp ⊕ !{’E’}:Vis]
/4/ MOVE DATA[8:11] TO PAY. [Salary]

ELSE
/5/ MOVE ’Y’ TO IS-VISITOR. [’Y’:VisYes]
/6/ MOVE DATA[10:13] TO PAY. [Stipend]

ENDIF
/7/ WRITE PAY TO PAY-F. [Salary ⊕ Stipend]
/8/ IF IS-VISITOR = ’Y’ [’N’:VisNo ⊕ ’Y’:VisYes]
/9/ WRITE DATA[6:9] TO VIS-F. [SSN4]

(a)

01 ID.
05 ID-TYPE PIC X(3).
05 ID-DATA PIC X(9).
05 SSN PIC X(9) REDEFINES ID-DATA.
05 EMP-ID PIC X(7) REDEFINES ID-DATA.

/1/ READ ID. [ ’SSN’:SSNTyp ⊗ SSN ⊕
!{’SSN’}:EIdTyp ⊗ EId ⊗ Unused]

/2/ IF ID-TYPE = ’SSN’ [’SSN’:SSNTyp ⊕ !{’SSN’}:EIdTyp]
/3/ WRITE SSN TO SSN-F [SSN]

ELSE
/4/ WRITE EMP-ID TO EID-F. [EId]

ENDIF
(b)

01 SSN.
01 SSN-EXPANDED REDEFINES SSN.

05 FIRST-5-DIGITS X(5).
05 LAST-4-DIGITS X(4).

/1/ READ SSN FROM IDS-F. [SSN5 ⊗ SSN4]
/2/ WRITE LAST-4-DIGITS. [SSN4]

(c)

Fig. 1. Example programs with guarded typing solutions produced by the inference
algorithm of Sec. 3.

contains variable declarations. Variables are prefixed by level numbers; e.g., 01
or 05. A variable with level 01 can represent either a scalar or a record; it is a
record if additional variables with higher level numbers follow it, and a scalar
otherwise. A variable with level greater than 01 denotes a record or scalar field
nested within a previously-declared variable (with lower level). Clauses of the
form PIC X(n) denote the fact that the corresponding variable is a character
string of length n (n defaults to 1 when not supplied). A REDEFINES clause after
a variable declaration indicates that two variables refer to the same storage. For
example, in the program fragment in Fig. 1(b), variables ID-DATA, SSN, and
EMP-ID all occupy the same storage. Note that the variable declarations reveal
the total memory size required by a program (19 bytes, in the case of the exam-
ple in Figure 1(a)), as well as the beginning and ending offset within memory of
each variable.

The code following the data declarations contains the executable statements.
MiniCobol contains MOVE statements, which represent assignments, READ and
WRITE statements, as well as the usual control-flow constructs such as statement
sequencing, conditional statements, loops, and go-to statements. During program
execution the value of each variable is a string of 1-byte characters, as is each



program constant and the contents of each file. (Cobol follows the same approach,
for the most part, e.g., representing numbers as strings of decimal digits). In
other words, the program state at any point during execution of a program P is
represented by a string of size |P| (in addition to the “program counter”), where
|P| is the total memory required by P. A program P’s execution begins with an
implicit READ of |P| characters which initializes the state of the program.

MOVE statements have operands of equal length. The statement READ var
FROM file reads |var | bytes from file, where |var | is the declared length of var, and
assigns this value to var (we assume in this paper that programs are always given
inputs that are “long enough”, so READ var FROM file always gets |var | bytes).
Similarly, WRITE var TO file appends the contents of var to file. In MiniCobol a
data reference is a reference to a variable, or to a part of a variable identified
by an explicit range of locations within the variable; e.g., DATA[8:11] refers to
bytes 8 through 11 in the 13 byte variable DATA. We will use the term variable
occurrence to denote an occurrence of a data-reference in a program.

The program in Fig. 1(a) reads a payment record from file IN-F and processes
it. A payment record may pertain to an employee (PAYEE-TYPE = ’E’), or to a
visitor (PAYEE-TYPE 6= ’E’). For an employee, the first 7 bytes of DATA contain
the employee ID number, the next four bytes contain the salary, and the last
two bytes are unused. For a visitor, however, the first 9 bytes of DATA contain a
social security number, and the next four bytes contain a stipend. The program
checks the type of the payment record and copies the salary/stipend into PAY
accordingly; it writes out PAY to file PAY-F and, in the case of a visitor, writes
the last four digits of the social security number to VIS-F.

1.2 Inferring guarded types

The right column of Fig. 1 depicts the guarded typing solutions inferred by the
algorithm in Sec. 3. For each line, the type shown between square brackets is
the type assigned to the underlined variable at the program point after the ex-
ecution of the corresponding statement or predicate. Guarded types are built
from an expression language consisting of (constrained) atomic types and the
operators ‘⊗’ (concatenation) and ‘⊕’ (disjoint union), with ‘⊗’ binding tighter
than ‘⊕’. Constrained atomic types are represented by expressions of the form
constr : tvar, where constr is a value constraint and tvar is a type variable. A
value constraint is either a literal value (in MiniCobol, always a string literal), an
expression of the form !(some set of literals) denoting the set of all values except
those enumerated in the set, or an expression of the form !{} denoting the set of
all values. If the value constraint is omitted, then it is assumed to be !{}. The
atomic type variables in the example are shown in sans serif font; e.g., Emp, EId,
Salary, and Unused. Our type inference algorithm does not generate meaningful
names for type variables (the names were supplied manually for expository pur-
poses); however, heuristics could be used to suggest names automatically based
on related variable names. The inference process assigns a type to each occur-
rence of a data reference; thus different occurrences in the program of the same
data reference may be assigned different types. By inspecting the guarded types



assigned to data references in Fig. 1, we can observe that the inference process
recovers data abstractions not evident from declared physical types, as follows:

Domain distinctions The typing distinguishes among distinct logical domains
not explicitly declared in the program. For example, the references to DATA[8:11]
in statement 4 and DATA[6:9] in statement 9 are assigned distinct type variables
Salary and SSN4, respectively, although the declaration of DATA makes no such
distinction.

Occurrence typing and value flow Different occurrences of variable PAY have
distinct types, specifically, type Salary at statement 4, Stipend at statement 6,
and Salary ⊕ Stipend at statement 7. This indicates that there is no “value flow”
between statements 4 and 6, whereas there is potential flow between statements
4 and 7 as well as statements 6 and 7.

Scalar values vs. records The typing solution distinguishes scalar types from
record types; these types sometimes differ from physical structure of the de-
clared variable. For example, PAY-REC at statement 1 has a type containing the
concatenation operator ‘⊗’, which means it (and DATA within it) store structured
data at runtime, while other variables in the program store only scalars. Note
that although DATA is declared to be a scalar variable, it really stores record-
structured data (whose “fields” are accessed via explicit indices). Note that an
occurrence type can contain information about record structure that is inferred
from definitions or uses elsewhere in the program of the value(s) contained in
the occurrence, including program points following the occurrence in question.
So, for example, the record structure of the occurrence of PAY-REC is inferred
from uses of (variables declared within) PAY-REC in subsequent statements.

Value constraints and disjoint union tags The constraints for the atomic types
inside the union type associated with IS-VISITOR in statement 8 indicate that
the variable contains either ’N’ or ’Y’ (and no other value). More interestingly,
constrained atomic types inside records can be interpreted as tags for the disjoint
unions containing them. For example, consider the type assigned to PAY-REC
in statement 1. That type denotes the fact that PAY-REC contains either an
employee number (EId) followed by a Salary and two bytes of of unused space,
where the PAYEE-TYPE field is constrained to have value ’E’, or a social security
number followed by a stipend, with with the PAYEE-TYPE field constrained to
contain ’E’.

Overlay idioms Finally, we observe that the typing allows distinct data ab-
straction patterns, both of which use the REDEFINES overlay mechanism, to be
distinguished by the inference process. Consider the example programs in Fig-
ures 1(b) and (c). Program (b) reads an ID record, and, depending on the value
of the ID-TYPE field, interprets ID-DATA either as as a social security number
or as an employee ID. Here, REDEFINES is used to store elements of a standard
disjoint union type, and the type ascribed to ID makes this clear. By contrast,
example (c) uses the overlay mechanism to to provide two views of the same



social security number data: a “whole” view, and a 2-part (first 5 digits, last 4
digits) view.

1.3 Applications

In addition to facilitating program understanding, data abstraction recovery
can also be used to facilitate certain common program transformations. For
example, consider a scenario where employee IDs in example Fig. 1(a) must be
expanded to accommodate an additional digit. Such field expansion scenarios
are quite common. The guarded typing solution we infer helps identify variable
occurrences that are affected by a potential expansion. For example, if we wish
to expand the implicit “field” of DATA containing EId, only those statements that
have references to Eid or other type variables in the same union component as Eid
(e.g., Salary) are affected. Note that the disjoint union information inferred by
our technique identifies a smaller set of affected items than previous techniques
(e.g., [7]) which do not infer this information.

A number of additional program maintenance and transformation tasks can
be facilitated by guarded type inference, although details are beyond the scope
of this paper. Such tasks include: separating code fragments into modules based
on which fragments use which types (which is a notion of cohesion); porting from
weakly-typed languages to object-oriented languages; refactoring data declara-
tions to make them reflect better how the variables are used (e.g., the overlaid
variables SSN and SSN-EXPANDED in the example in Fig. 1(c) may be collapsed
into a single variable); and migrating persistent data access from flat files to
relational databases.

1.4 Related work

While previous work on recovering type abstractions from programs [6, 3, 10, 7]
has addressed the problem of inferring atomic and record types, our technique
adds the capability of inferring disjoint union types, with constrained atomic
types serving as tags. To do this accurately, we use a novel path sensitive anal-
ysis technique, where value constraints distinguish abstract dataflow facts that
are specific to distinct paths. Since the algorithm is flow-sensitive, it also allows
distinct occurrences of the same variable to be assigned different types. To see
the strengths of our approach, consider again the example in Fig. 1(a). The al-
gorithm uses the predicate IF PAYEE-TYPE = ’E’ to split the dataflow fact cor-
responding to PAY-REC into two facts, one for the “employee” case (PAYEE-TYPE
= ’E’) and the other for the “visitor” case (PAYEE-TYPE 6= ’E’). As a result, the
algorithm infers that DATA[8:11] (at one occurrence) stores a Salary while the
DATA[10:13] stores a Stipend (at a different occurrence) even though these two
memory intervals are overlapping. We are aware of no prior abstraction inference
technique that is capable of making this distinction. Note that our approach can
in many cases maintain correlations between values of variables, and hence cor-
relate fragments of code that are not even controlled by predicates that have
common variables. For example, our approach recognizes that statements 5 and



9 in Fig. 1(a) pertain to the “visitor” case, even though the controlling predicates
for each statement do not share a common variable.

The flow-insensitive approach of [10] is able to infer certain subtyping rela-
tionships; these are similar in some respects to our union types. In particular,
when a single variable is the target of assignments from different variables at
different points, e.g., the variable PAY in statements 4 and 6 in Fig. 1(a), their
approach infers that the types of the source variables are subtypes of the type
of the target. Our approach yields similar information in this case. However, our
technique uses path sensitivity to effectively identify subtyping relationships in
additional cases; e.g., a supertype (in the form of a disjoint union) is inferred
for PAY-REC in statement 1, even though this variable is explicitly assigned only
once in the program.

Various approaches based on analysis techniques other than static type in-
ference, e.g., concept analysis, dynamic analysis, and structural heuristics, have
been proposed for the purpose of extracting logical data models (or aspects of
logical data models) from existing code [1, 2, 4, 9]. Previous work in this area
has not, to the best of our knowledge, addressed extraction of type abstractions
analogous to our guarded types (in particular, extraction of union/tag informa-
tion). However, much of this work is complementary in the sense that it recovers
different classes of information (invariants, clusters, roles, etc.) that could be
profitably combined with our types.

Our guarded types are dependent types, in the sense that they incorporate a
notion of value constraint. While dependent types have been applied to a number
of problems (see [11] for examples), we are unaware of any work that has used
dependent types to recover data abstractions from legacy applications, or that
combine structural inference with value flow information.

The rest of the paper is structured as follows. Section 2 specifies the guarded
type language and notation. Section 3 presents our type inference algorithm.
Following that, we present the correctness characterization for the guarded type
system in Section 4, along with certain theorems concerning correct type solu-
tions. We conclude the paper in Section 5 with a discussion on future work.

2 The Type System

Let AtomicTypeVar = ∪i>0Vi denote a set of type variables. A type variable
belonging to Vi is said to have length i. We will use symbols α, β, γ, etc., (some-
times in subscripted form, as in αi) to range over type variables. Type variables
are also called atomic types.

As the earlier examples illustrated, often the specific value of certain tag
variables indicate the type of certain other variables. To handle such idioms
well, types in our type systems can capture information about the values of
variables. We define a set of value constraints ValueAbs as follows, and use
symbols c, d, c1, d2, etc., to range over elements of ValueAbs:

ValueAbs ::= s | !{s1, s2, . . . , sk}, where s and each si are Strings



While the value constraint s is used to represent that a variable has the
value s, the value constraint !{s1, s2, . . . , sk} is used to represent that a variable
has a value different from s1 through sk. In particular, the value constraint !{}
represents any possible value, and we will use the symbol > to refer to !{}.

We define a set of type expressions T E , built out of type variables, and value
constraints using concatenation and union operators, as follows:

T E ::= (ValueAbs,AtomicTypeVar) | T E⊗T E | T E⊕T E

We refer to a type expression of the form (ValueAbs,AtomicTypeVar) as a
leaf type-expression. We refer to a type expression containing no occurrences of
the union operator ‘⊕’ as a union-free type expression.

We will use the notation α|i| to indicate that variable α has length i, and
the notation c :α|i| to represent a leaf type-expression (c, α|i|). In contexts where
there is no necessity to show the ValueAbs component we use the notation α|i|

to denote a leaf type-expression itself. Where there is no confusion we denote
concatenation implicitly (without the ⊗ operator).

A type mapping for a given program is a function from variable occurrences
in the program, denoted VarOccurs, to T E .

3 Type inference algorithm

3.1 Introduction to algorithm

Input: The input to our algorithm is a control flow graph, generated from the
program and preprocessed as follows. All complex predicates (involving logical
operators) are decomposed into simple predicates and appropriate control flow.
Furthermore, predicates P of the form “X == s” or “X != s”, where s is a
constant string, are converted into a statement “Assume P” in the true branch
and a statement “Assume !P” in the false branch. Other simple predicates are
handled conservatively by converting them into no-op statements that contain
references to the variables that occur in the predicate. The program has a single
(structured) variable Mem (if necessary, a new variable is introduced that contains
all of the program’s variables as substructures or fields). We assume, without loss
of generality, that a program has a single input file and a single output file.

Solution computed by the algorithm: For every statement S, the algo-
rithm computes a set S.inType of union-free types (see Section 2), which de-
scribes the type of variable Mem before statement S. Specifically, the set {f1, f2, · · · ,
fk}, where each fi is a union-free type, is the representation used by the algo-
rithm for the type f1⊕f2⊕ · · ·⊕fk. The algorithm represents each union-free type
in right-associative normal form (i.e., as a sequence of leaf type-expressions).
When the algorithm is finished each S.inType set contains the type of the vari-
able Mem at the program point before statement S. Generating a type mapping
for all variables from this is straightforward, and is based on the following char-
acteristic of the computed solution: for each variable X that occurs in S and each
union-free type f in S.inType, f contains a projection f [X] (i.e., a subsequence



of f , which itself is a sequence of leaf type-expressions) that begins (resp. ends)
at the same offset position as X begins (resp. ends) within Mem. We omit the
details of generating the type mapping due to space constraints.

Key aspects of the algorithm: We now describe the essential conceptual
structure of our inference algorithm. The actual algorithm, which is presented
in Figures 2 and 3, incorporates certain optimizations and, hence, has a some-
what different structure. Recall that READs and literal MOVEs (MOVE statements
whose source operand is a constant string) are the only “origin” statements:
i.e., these are the only statements that introduce new values during execution
(other statements use values, or copy them, or write them to files). For each ori-
gin statement S, our algorithm maintains a set S.readType of union-free types,
which represents the type of the values originating at this statement.

At the heart of our algorithm is an iterative, worklist-based, dataflow analysis
that, given S.readType for every origin statement S, computes S1.inType for
every statement S1 in the program. An element 〈S, f〉 in the worklist indicates
that f belongs to S.inType. The analysis identifies how the execution of S
transforms the type f into a type f ′ and propagates f ′ to the successors of S.
We will refer to this analysis as the inner loop analysis.

The whole algorithm consists of an outer loop that infers S.readType (for
every origin statement S) in an iterative fashion. Initially, the values originating
at an origin statement S are represented by a single type variable αS whose
length is the same as that of the operand of S. In each iteration of the outer loop
analysis, an inner loop analysis is used to identify how the values originating at
statement S (described by the set S.readType) flow through the program. During
this inner loop analysis, two situations (described below) identify a refinement to
S.readType. When this happens, the inner loop analysis is (effectively) stopped,
S.readType is refined as necessary, and the next iteration of the outer loop is
started. The algorithm terminates when an instance of the inner loop analysis
completes without identifying any further refinement to S.readType.

We now describe the two possible ways in which S.readType may be refined.
The first type of refinement happens when the inner loop analysis identifies that
there is a reference in a statement S2 to a part of a value currently represented by
a type variable β. When this happens, the algorithm splits β into new variables
of smaller lengths such that the portion referred to in S2 corresponds exactly
to one of the newly obtained variables. More specifically, let S be the origin
statement for β (i.e., S.readType includes some union-free type that includes
β). Then, S.readType is refined by replacing β by a sequence β1β2 or a sequence
β1β2β3 as appropriate. The intuition behind splitting β is that the reference to
the portion of β in S2 is an indication that β is really not an atomic type, but
a structured type (that contains the βi’s as fields).

The second type of refinement happens when the inner loop analysis identifies
that a value represented by a leaf type, say γ, may be compared for equality
with a constant l. When this happens, the leaf type is specialized for constant
l. Specifically, if the leaf type originates as part of a union-free type, say γδρ,
in S.readType, then γδρ is replaced by two union-free types (l :γ1)δ1ρ1 and



(!l : γ2)δ2ρ2 (consisting of new type variables) in S.readType. In the general
case, repeated specializations can produce more complex value constraints (see
Figures 2 and 3 for a complete description of specialization). The benefit of
specializing a type by introducing copies is that variable occurrences in the then
and else branches of IF statements cause the respective copies of the type to
refined, thus improving precision.

The algorithm infers a type mapping for every program. It always termi-
nates, intuitively because the inner-loop analysis is monotonous, and because
the memory requirement (and hence, the number of refinement steps) for any
program is fixed. The actual algorithm described in Figures 2 and 3 differs from
the above conceptual description as follows: Rather than perform an inner loop
analysis from scratch in each iteration of the outer loop, results from the previ-
ous execution of the inner loop analysis that are still valid are reused. Therefore,
the two loops are merged into a single loop.

3.2 Illustration of algorithm using example in Figure 1(a)

Figure 4 illustrates a trace of the algorithm when applied to the example in
Figure 1(a). Specifically, the figure illustrates (a subset of) the state of the al-
gorithm at selected seven points in time (t1, t2, . . . , t7). The second column in
the figure shows a statement S, the third column shows the value of S.inType,
while the last column shows the value of S.readType if S is an origin statement.

Initially, a type variable is created for each origin statement. As explained in
Section 1.1, a MiniCobol program has an implicit READ Mem at the beginning.
Though we do not show this statement in Figure 4, it is an origin statement,
with a corresponding type variable Initial|19|, representing the initial state of
memory, in its readType. In the figure /1/.inType represents the readType

of the implicit READ. Similarly, /1/.readType contains PayRec|14|, which is the
initial type assigned by the algorithm to PAY-REC. (We use the notation /n/ to
denote the statement labeled n in Figure 1(a).)

The first row shows the state at time point t1, when the worklist contains the
pair 〈/1/, Initial|19|〉. Notice that statement 1 (READ PAY-REC) has a variable oc-
currence (PAY-REC) that corresponds to a portion (the first 14 bytes) of Initial|19|,
which is the type variable for the entire memory. Therefore, as described in Sec-
tion 3.1, Initial|19| is “split” into Init

|14|
1 Init

|5|
2 . This split refinement updates the

readType associated with the implicit initialization READ M and terminates the
first inner loop analysis and initiates the second inner loop analysis.

In the next inner loop analysis, 〈/1/, Init
|14|
1 Init

|5|
2 〉 is placed in the work-

list. Processing this pair requires no more splitting; therefore, Init
|14|
1 is re-

placed by PayRec|14|, which is the type in /1/.readType. The resultant type
f = PayRec|14|Init

|5|
2 is placed in /2/.inType and is propagated to statement /2/

(by placing 〈/2/, f〉 in the worklist). The resulting algorithm state is shown in
Figure 4 at time point t2.

(In general, for any origin statement S that refers to a variable X, processing
a pair 〈S, f〉 involves replacing the portion of f that corresponds to X (f [X])



Procedure Main

Initialize worklist to { 〈entry, > :α|m|〉}, where entry is the entry statement of the program, α is
a new type variable, and m is the size of memory. Initialize S.inType to φ for all statements S.
for all statements S = READ Y do {X and Y are used to denote variable occurrences (see Sec. 1.1)}

Create a new type variable α
|l|
S

, where l is the size of Y. Initialize S.readType to {> :αS}.
for all statements S = MOVE s TO Y, where s is a string literal do

Create a new type variable α
|l|
S

, where l is the length of s (and of Y). From this point in the

algorithm treat S as if it were the statement “READ Y”. Initialize S.readType to {s :αS}.
while worklist is not empty do

Extract some 〈S, t〉 from worklist. Call Process(S, t).

Procedure Process(S : statement, ft : union-free type for Mem)

for all variable occurrences X in S do
if Subseq(ft, X) is undefined then

Call Split(ft, X). Call Restart. return.
if S = MOVE X TO Y then

Call Propagate(Succ, Subst(ft, Y, Subseq(ft,X))), for all successors Succ of S.
else if S = READ Y then

for all union-free types ftY in S.readType do
Call Propagate(Succ, Subst(ft, Y, ftY)), for all successors Succ of S.

else if S = ASSUME X == s then
Let ret = evalEquals(Subseq(ft,X), s).
if ret = true then

Call Propagate(Succ, ft), for all successors Succ of S.
else if ret = false then

do nothing {Subseq(ft,X) is inconsistent with s – hence no fact is propagated}
else {ret is of the form (α, si)}

Call Specialize(α, si). Call Restart. return.
else if S = ASSUME X != s then

Let ret = evalNotEquals(Subseq(ft, X), s).
if ret = true then

Call Propagate(Succ, ft), for all successors Succ of S.
else {ret = false}

do nothing {Subseq(ft,X) has the constant value s – hence no fact is propagated}
else {ret is of the form (α, si)}

Call Specialize(α, si). Call Restart. return.

Function Subseq(ft : union-free type for Mem, X : (portion of) program variable)

if a sequence ftX of leaf type-expressions within ft begins (ends) at the same position within ft
as X does within Mem then return ftX else Undefined

Function Subst(ft : union-free type for Mem, X : (portion of) program variable, ftX : union-free type)
{|ft| = |Mem|, |ftX| = |X|, and Subseq(ft, X) is defined. }

Replace the subsequence Subseq(ft, X) within ft with ftX and return the resultant union-free type.

Procedure Propagate(S : statement, ft : union-free type for Mem)

if 〈S, ft〉 6∈ S.inType then Add 〈S, ft〉 to worklist, and to S.inType.

Procedure Restart

for all READ statements S do
for all union-free types ftp in S.inType do

add 〈S, ftp〉 to the worklist

Fig. 2. Type inference algorithm – procedures Main,Process, Subseq, Subst,

Propagate, and Restart

with tX , for each type tX in S.readType, and propagating the resultant type(s)
to the program point(s) that follow S.)

Next, the worklist item 〈/2/, PayRec|14|Init
|5|
2 〉 is processed. As statement /2/

refers to IS-VISITOR, which corresponds to a portion of Init
|5|
2 , this type variable

is split into Init
|1|
3 Init

|4|
4 and a new inner loop analysis is started.

This analysis propagates the newly split type through statements /1/ and
/2/. The result is that the type PayRec|14|’N’ :VisNo|1|Init

|4|
4 reaches /3/.inType.



Procedure Split(ft : union-free type for Mem, X : (portion of) program variable)

Let a = α|l| be a leaf type-expr within ft and off be an offset within a such that the prefix or
suffix of a bordering off occupies an interval within ft that is non-overlapping with the interval

occupied by X within Mem. Create two new type variables α
|l1|
1 and α

|l2|
2 , where l1 = off and l2 =

l− off. Let S be the READ statement such that there exists a union-free type ftS ∈ S.readType such

that a leaf type-expr b = c :α|l| is in ftS.
if c is a string s then

Split s in to two strings s1 and s2 of lengths l1 and l2, respectively.

Let bsplit = s1 :α
|l1|
1 s2 :α

|l2|
2 .

else {c is of the form !some set}
Let bsplit = > :α

|l1|
1 > :α

|l2|
2 .

Create a copy ft′S of ftS that is identical to ftS except that b is replaced by bsplit.

Call Replace(S, ftS, {ft
′
S}).

Procedure Specialize(α|l| : type variable, s : string of length l)

Let S be the READ statement such that there exists a union-free type ftS ∈ S.readType such that
a leaf type-expr b = c :α is in ftS. Pre-condition: c is of the form !Q, where Q is a set that does
not contain s. Create two new copies of ftS, ft1S and ft2S, such that each one is identical to ftS
except that it uses new type variable names. Replace the leaf type-expr corresponding to b in ft1S

with s :α
|l|
1 , and the leaf type-expr corresponding to b in ft2S with !(Q + {s}) :α

|l|
2 , where α1 and

α2 are two new type variables. Call Replace(S, ftS, {ft1S, ft2S}).
Procedure Replace(S : a READ statement, ft : a union-free type in S.readType, fts : a set of union-free
types)

Set S.readType = S.readType− {ft}+ fts.
for all all type variables α occurring in ft do

Remove from S.inType, for all statements S, all union-free types that contain α. Remove from
the worklist all facts 〈Sa, fta〉, where fta is a union-free type that contains α.

Procedure evalEquals(ft : union-free type, s : string of the same length as ft)

Say ft = c1 :α
|l1|
1 c2 :α

|l2|
2 . . . cm :α|lm|

m .
Let s1, s2, . . . sm be strings such that s = s1s2. . .sm and si has length li, for all 1 ≤ i ≤ m.
if for all 1 ≤ i ≤ m: ci = si then

return true {ft’s value is s}
else if for some 1 ≤ i ≤ m: ci =!S, where S is a set that contains si then

return false {ft is inconsistent with s}
else {ft is consistent with s – therefore, specialize ft}

Let i be an integer such that 1 ≤ i ≤ m and ci is !S, where S is a set that does not contain si.
return (αi, si)

Procedure evalNotEquals(ft : union-free type, s : string of the same length as ft)

Say ft = c1 :α
|l1|
1 c2 :α

|l2|
2 . . . cm :α|lm|

m .
Let s1, s2, . . . sm be strings such that s = s1s2. . .sm and si has length li, for all 1 ≤ i ≤ m.
if for all 1 ≤ i ≤ m: ci = si then

return false {ft’s value is equal to s}
else

if m > 1 OR m = 1 and c1 =!(some set containing s1) then return true else return (α1, s1).

Fig. 3. Type inference algorithm – other procedures

The resulting state is shown as time point t3. Statement /3/ causes a split once
again, meaning a new inner loop analysis starts.

The next inner loop analysis eventually reaches the state shown as time point
t4, where the algorithm is about to process the pair 〈/3/, PayRec

|1|
1 PayRec

|13|
2 ’N’ :

VisNo|1|Init
|4|
4 〉 from the worklist. Because PAYEE-TYPE, which is of type PayRec

|1|
1 ,

is compared with the constant ’E’, the algorithm specializes the type variable
PayRec

|1|
1 by replacing, in its origin /1/.readType, its container type PayRec

|1|
1

PayRec
|13|
2 with two types {’E’ :Emp|1|PayRec

|13|
3 , !{’E’} :Vis|1|PayRec

|13|
4 }. A

new inner loop analysis now starts.



Time Statement S S.inType S.readType

t1: /1/ READ PAY-REC FROM IN-F. {Initial|19|} {PayRec|14|}

t2: /1/ READ PAY-REC FROM IN-F. {Init
|14|
1 Init

|5|
2 } {PayRec|14|}

/2/ MOVE ’N’ TO IS-VISITOR. {PayRec|14|Init
|5|
2 } {’N’ :VisNo|1|}

t3: /1/ READ PAY-REC FROM IN-F. {Init
|14|
1 Init

|1|
3 Init

|4|
4 } {PayRec|14|}

/2/ MOVE ’N’ TO IS-VISITOR. {PayRec|14|Init
|1|
3 Init

|4|
4 } {’N’ :VisNo|1|}

/3/ IF PAYEE-TYPE = ’E’ {PayRec|14|’N’ :VisNo|1|Init
|4|
4 }

t4: /1/ READ PAY-REC FROM IN-F. {Init
|14|
1 Init

|1|
3 Init

|4|
4 } {’E’ :Emp|1|PayRec

|13|
3 ,

!{’E’} :Vis|1|PayRec
|13|
4 }

/2/ MOVE ’N’ TO IS-VISITOR. {’N’ :VisNo|1|}
/3/ IF PAYEE-TYPE = ’E’

t5: /1/ READ PAY-REC FROM IN-F. {Init
|14|
1 Init

|1|
3 Init

|4|
4 } {’E’ :Emp|1|PayRec

|13|
3 ,

!{’E’} :Vis|1|PayRec
|13|
4 }

/2/ MOVE ’N’ TO IS-VISITOR. {’E’ :Emp|1|PayRec
|13|
3 Init

|1|
3 Init

|4|
4 , {’N’ :VisNo|1|}

!{’E’} :Vis|1|PayRec
|13|
4 Init

|1|
3 Init

|4|
4 }

/3/ IF PAYEE-TYPE = ’E’ {’E’ :Emp|1|PayRec
|13|
3 ’N’ :VisNo|1|Init

|4|
4 ,

!{’E’} :Vis|1|PayRec
|13|
4 ’N’ :VisNo|1|Init

|4|
4 }

t6: /3/ IF PAYEE-TYPE = ’E’ {’E’ :Emp|1|PayRec
|13|
3 ’N’ :VisNo|1|Init

|4|
4 ,

!{’E’} :Vis|1|PayRec
|13|
4 ’N’ :VisNo|1|Init

|4|
4 }

/4/ MOVE DATA[8:11] TO PAY. {’E’ :Emp|1|PayRec
|13|
3 ’N’ :VisNo|1|Init

|4|
4 }

ELSE

/5/ MOVE ’Y’ TO IS-VISITOR. {!{’E’} :Vis|1|PayRec
|13|
4 ’N’ :VisNo|1|Init

|4|
4 } {’Y’ :VisYes|1|}

Fig. 4. Illustration of algorithm using example in Figure 1(a)

Using the predicate PAYEE-TYPE = ’E’ to specialize /1/.readType is mean-
ingful for the following reason: since statement /1/ is the origin of PayRec

|1|
1 (the

type of PAYEE-TYPE), the predicate implies that there are two kinds of records
that are read in statement /1/, those with the value ’E’ in the their PAYEE-TYPE
field and those with some other value, and that these two types of records are
handled differently by the program. The specialization of /1/.readType captures
this notion.

Time point t5 shows the algorithm state after the updated /1/.readType is
propagated to /3/.inType by the new inner loop analysis. Notice that corre-
sponding to the two types in /1/.readType, there are two types in /2/.inType
and /3/.inType (previously there was only one type in those sets). The types
in /3/.inType are (as shown): f1 = ’E’ :Emp|1|PayRec

|13|
3 ’N’ :VisNo|1|Init

|4|
4 and

f2 =!{’E’} :Vis|1|PayRec
|13|
4 ’N’ :VisNo|1|Init

|4|
4 }.

The same inner loop analysis continues. Since f1 and f2 are now specialized
wrt PAYEE-TYPE, the algorithm determines that type f1 need only be propagated
to the true branch of the IF predicate and that type f2 need only be propagated
to the false branch. The result is shown in time point t6. This is an exhibition
of path sensitivity, and it has two benefits. Firstly, the variables occurring in
each branch cause only the appropriate type (f1 or f2) to be split (i.e, the
two branches do not pollute each other). Secondly, the correlation between the
values of the variables PAYEE-TYPE and IS-VISITOR is maintained, which enables
the algorithm, when it later processes the final IF statement (statement /8/),



to propagate only the type that went through the true branch of the first IF
statement (i.e., f1) to the true branch of statement /8/.

We finish our illustration of the algorithm at this point. The final solution,
after the computed inType sets are converted into a type mapping for all variable
occurrences is shown in Figure 1(a). Notice that each type in /1/.readType
(shown to the right of Statement 1) reflects the structure inferred from only
those variables that occur in the appropriate branch of the IF statements.

4 Type System: Semantics, Correctness, and Properties

In this section we define the notion of a “correct” type mapping, which we call
a typing solution. We state certain properties of typing solutions, and illustrate
that as a result typing solutions provide information about flow of values in
the program. Note that a program may, in general, have a number of typing
solutions; our type inference algorithm finds one of them.

4.1 An instrumented semantics for MiniCobol

Since we are interested in tracking the flow of values, we define an instrumented
semantics where every input-file- and literal-character value is tagged with an
unique integer that serves as its identifier. Let IChar denote the set of instru-
mented characters, and IString denote the set of instrumented strings (sequences
of instrumented characters). Thus, every instrumented string is contains a char-
acter string, charSeq(is), which is its actual value, as well as an integer sequence,
intSeq(is).

It is straightforward to define an instrumentation function that takes a pro-
gram P and an input string I and returns instr(P,I) – an instrumented program
and an instrumented string – by converting every character in every string lit-
eral occurring in P as well as every character in I into an instrumented character
with a unique id. Thus, instr(P,I) contains a set of instrumented strings, one
corresponding to I, and the others corresponding to the string literals in P.

We define a collecting instrumented semantics M with the following signa-
ture:

M : Program → String → VarOccurs → 2IString

Given a program P and an input (String) I, the instrumented semantics exe-
cutes the instrumented program and input instr(P,I) much like in the standard
semantics, except that every location now stores an instrumented character, and
the instrumented program state is represented by an instrumented string. The
collecting semantics M identifies the set of all values (IStrings) each variable
occurrence in the program can take.

4.2 Semantics for type expressions

We can give type-expressions a meaning with the signature

T : T E → (AtomicTypeVar → 2IString) → 2IString



as follows: this definition extends a given σ : AtomicTypeVar → 2IString that
maps a type variable to a set of values (instrumented strings) of the same length
as the type variable, to yield the set of values represented by a T E . Before
defining T , we define the meaning of value constraints via a function C which
maps ValueAbs to 2String:

C(s) = {s}
C(!{s1, s2, . . . , sk}) = {s | s ∈ String ∧ s 6∈ {s1, s2, . . . , sk}}

T [c :α]σ = {v | v ∈ σ(α) ∧ charSeq(v) ∈ C(c)}
T [τ1⊗τ2]σ = {i1@i2 | ii ∈ T [τ1]σ, i2 ∈ T [τ2]σ}

(@ represents concatenation)
T [τ1⊕τ2]σ = T [τ1]σ ∪ T [τ2]σ

4.3 Correct type mappings

Definition 1 (Atomization). An atomization of an instrumented string s is a
list of instrumented strings whose concatenation yields s: i.e., a list [s1, s2, · · · , sk]
such that s1@s2@ · · ·@sk = s. We refer to the elements of an instrumented
string’s atomization as atoms.

Definition 2 (Atomic type mapping). Given a program P and an input
string I, an atomic type mapping π for (P,I) consists of an atomization of each
instrumented string in instr(P,I), along with a function mapping every atom to
a type variable. We denote the set of atoms produced by π by atoms(π), and
denote the type variable assigned to an atom a by just π(a). Also, π−1 is the
inverse mapping, from type variables to sets of atoms, induced by π.

Definition 3 (Correct atomic type mapping). Let Γ be a type mapping for
a program P, and let π be an atomic type mapping for instr(P,I), where I is an
input string. (Γ, π) is said to be correct for (P,I) if for every variable occurrence
v in P,

T [Γ (v)]π−1 ⊇M[P ](I)(v).

For example, consider the given program P and type mapping Γb in Fig-
ure 1(b), and let input string I = ’EID1234567’. In this case instr(P,I) contains
two instrumented strings, ’SSN’ from P and ’EID1234567’ from I; we omit, for
brevity, the (unique) integer tags on the characters, and use an overline to in-
dicate their presence. A candidate atomization and atomic type mapping πb for
this example is [’SSN’: SSNTyp, ’EID’:EIdTyp, ’1234567’:EId]. (Γb, πb) is correct
for the given (P, I).

Definition 4 (Typing solution). A type mapping Γ for a program P is said
to be correct if for every input I there exists an atomic type mapping π such that
(Γ, π) is correct for (P,I). We will refer to a type mapping that is correct as a
typing solution.



Because π maps each atom in the input string and program to a single type
variable, it follows that in a typing solution distinct type variables correspond
to distinct domains of values (atoms).

4.4 Properties of correct type mappings

Theorem 1 (Atoms are indivisible). If (Γ, π) is correct for (P,I), then dur-
ing execution of P on I no variable occurrence ever contains a part of an atom
without containing the whole atom.

For example, recall the pair (Γb, πb) mentioned earlier, and recall that it was
correct for the program in Figure 1(b) with input string ’EID1234567’. Then,
the above theorem asserts that no variable occurrence in the program ever takes
on a value that contains a proper substring of any of the atoms ’SSN’, ’EID’, and
’1234567’ during execution of the program on the given input string. Thus, an
atomization helps identify indivisible units of “values” that can be meaningfully
used to talk about the “flow of values”. The indivisibility also implies that in a
typing solution each type variable corresponds to a scalar domain.

We now show how typing solutions tell us whether, for any two variable oc-
currences, there is no execution in which some instrumented value flows to both
occurrences. The following definition formalizes this notion of “disjointedness”.

Definition 5 (Disjointedness). Two variable occurrences v and w in a pro-
gram P are said to be disjoint if for any input I, for any s1 ∈ M[P ](I)(v) and
s2 ∈M[P ](I)(w), s1 and s2 do not have any instrumented character in common.

We now introduce the notion of overlap, and then show how typing solutions
yield information about disjointness.

Definition 6 (Overlap). (a) Two value constraints c1 and c2 are said to over-
lap if they are not of the form s1 and s2, where s1 6= s2 and not of the form s1

and !S, where s1 ∈ S. (b) Two leaf type-expressions c1 :α1 and c2 :α2 are said to
overlap if α1 = α2 and c1 and c2 overlap.

Theorem 2 (Typing solutions indicate disjointedness). Let Γ be a typing
solution for a program P and let v and w be two variable occurrences in P. If Γ (v)
and Γ (w) have no overlapping leaf type-expressions, then v and w are strongly
disjoint.

Consider the example program and typing solution in Figure 1(a). The two
occurrences of PAY in lines 4 and 6, respectively, have non-overlapping types
(Salary and Stipend, respectively). Theorem 2 thus tells us that these two oc-
currences are disjoint (even though they refer to the same variable). On the
other hand each of these two occurrences is non-disjoint with the occurrence of
PAY-REC in line 1; this is because the type expression assigned to the occurrence
of PAY-REC in line 1 contains both Salary and Stipend.



5 Future work

This paper describes an approach for inferring several aspects of logical data
models such as atomic types, record structure based on usage of variables in the
code, and guarded disjoint unions. In the future we plan to work on inferring
additional desirable aspects of logical data models such as associations between
types (e.g., based on foreign keys).

Within the context of the approach described in this paper, future work
includes expanding upon the range of idioms that programmers use to imple-
ment union types that the algorithm addresses, expanding the power of the type
system and algorithm, e.g., by introducing more expressive notions of value con-
straints, handling more language constructs (e.g., arrays, procedures), improving
the efficiency of the algorithm, and generating “factored” types in the algorithm
instead of sets of union-free types (e.g., α(β⊕γ)δ, instead of {αβδ, αγδ}).
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