
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Leveraging Duality for Programming with zkSNARKs
Rahul Krishnan

University of Wisconsin–Madison
rahulk@cs.wisc.edu

Ethan Cecchetti
University of Wisconsin–Madison

cecche�i@wisc.edu

Extended Abstract
Non-Interactive Zero-Knowledge (NIZK) Proofs enable a
prover to cryptographically prove, for any polynomial-time
program ? , that ? evaluates to ~ on inputs G while hiding
any combination of inputs and outputs. NIZK proofs pro-
vide an immensely powerful abstraction, but for years were
only practical in bespoke cryptographic protocols. In the
last decade, however, the rise of practical Succinct Non-
interactive Arguments of Knowledge (zkSNARKs) has en-
abled numerous academic and industrial applications [e.g.,
7, 8, 10–13, 15].

E�cient proofs often require a witness that a claim holds.
The process of constructing this witness and verifying the
proof are extremely similar, yet current tools for specifying
zkSNARKs fail to address this inherent duality. They instead
require two separate pieces of code that are written inde-
pendently, often live in separate parts of an application, and
must be kept in sync, leading to maintenance nightmares.
For example, consider data inclusion proofs for Merkle

trees, an authenticated data structure used in numerous pro-
tocols [e.g., 3, 5, 9, 14]. A Merkle tree is a binary tree with
data associated with each leaf. Each node is given a value
by hashing the values of its two children (or the value of
the data for a leaf node). The “root hash” value assigned
to the root serves as an identi�er for the whole tree and
supports e�cient inclusion proofs, among other operations.
To prove inclusion of a value 3 , one can iteratively hash 3

together with the sibling of each node on the path from 3

to the root and then check that the result matches the root
hash. Generating such a proof requires computing the list of
sibling hashes—the witness—and iteratively hashing up the
tree, two very similar operations.
We present a new language feature, a compute_and_prove

block, that binds a new variable representing the witness,
and contains a single piece of code that both computes the
value of the witness and proves the witness is valid. The
block then returns a cryptographic proof object that other
parties in the system can independently verify.

Figure 1 shows how to use this feature to specify a Merkle
inclusion proof where the root hash of the tree is ROOT_HASH ,
the hash of the data is LEAF_HASH , and the leaf node containing
that data is LEAF . The code loops over each level of the tree,
going left or right as speci�ed by PATH—the path speci�ed
leaf-to-root. Line 12 places the value of the current node’s
sibling in sib_hashes , computing the current level of the
witness. Lines 14–16 use that value and the running hash
to compute the next value. Finally, line 19 checks that the

1 proof pf = compute_and_prove(witness sib_hashes) {

2 // Initialize hashes and current node to leaves

3 value = LEAF_HASH;

4 next_node = LEAF;

5 for(i = 0; i < depth; i++) {

6 // Update the next node

7 next_node = next_node.parent;

8 // Get the current node's sibling

9 sibling = (PATH[i] == LEFT ? next_node.right

10 : next_node.left);

11 // Set sibling hash (witness computation)

12 sib_hashes[i] = sibling.hash_value;

13 // Update the hash value (witness use)

14 value = (PATH[i] == LEFT

15 ? hash(value, sib_hashes[i])

16 : hash(sib_hashes[i], value));

17 }

18 // Verify root hash matches what is expected

19 assert value == ROOT_HASH;

20 }

Figure 1. Merkle Proof Combined Code

computed root hash matches the original root hash. Instead
of two separate code pieces, this block contains a single
loop (lines 5–17), reusing structural elements, and clearly
connects the de�nition of the witness (line 12) to its use
(lines 14–16).

To connect to existing tools for compiling zkSNARKs [2,
4, 6], compute_and_prove blocks compile to a lower-level lan-
guage with prove and verify primitives, representing basic
cryptographic operations of NIZK proofs. A prove statement
creates a cryptographic proof object proving that some ex-
pression evaluates to true on the supplied inputs—including
any witnesses that must be computed separately—while hid-
ing a subset of those inputs, and verify checks the validity of
that object.1 A compute_and_prove statement represents both
constructing the witnesses and the proof together.

Projecting Combined Code. Performing the computation
requires determiningwhich parts of the code belong towhich
operation. We support this separation by adding a label ℓ
to the type of each variable inside a compute_and_prove block,
indicating which operations utilize them. The possible labels,
C, P, and CP, encompass the possible options: computation,
proof, or both, respectively.

1The verify construct must already be available to verify the results of
compute_and_prove blocks.

1

Rahul Krishnan and Ethan Cecche�i

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

To separate a compute_and_prove block into its correspond-
ing pieces, we de�ne a projection operation È·Éℓ that extracts
the code for witness computation or proof generation, for
ℓ = C and ℓ = P, respectively. Projection uses the type la-
bels to determine which expressions to project in each case,
including CP expressions in both. The full translation for a
compute_and_prove block with expression 4 �rst de�nes the
witness variables, then runs È4ÉC to assign these witnesses,
and �nally uses a prove statement over È4ÉP to construct the
output proof.

To simplify de�ning and referencing them, the C-projection
encodes witness variables as mutable references. However,
other parties must be able to execute the proof code to ver-
ify a proof, so it cannot directly use mutable references it
does not create. We therefore project a witness variable G
di�erently in the two projections.

ÈGÉℓ =
{
deref (G) if ℓ = C

G if ℓ = P

To di�erentiate assignment to witness from assignment to
other references, we introduce a new syntactic form G ← 4 .
The type system requires G to be a witness variable and 4

to be available in the witness computation. The expression
then projects as follows.

ÈG ← 4Éℓ =
{
G := È4ÉC if ℓ = C

() if ℓ = P

That is, in witness computation it becomes an assignment,
while in proof generation it disappears entirely because it is
not part of that operation.
Other expressions are not inherently limited to one of

witness computation and proof generation. Projection thus
relies on the type labels of variables to determine whether
to project an expression to the speci�ed part of the computa-
tion. An included expression projects to the same operation,
with recursively projected subterms. An excluded expression
projects to unit.

Semantics. The compilation process using projection as de-
scribed above gives compute_and_prove blocks a semantics by
translation to a lower-level language using the prove oper-
ation. This semantics precisely describes how a compiler
should behave on our new language construct, but it per-
forms a highly non-local transformation on the body of
compute_and_prove blocks, making it extremely di�cult for
programmers to reason about. To make reasoning about the
source code directly simpler, we also include a second seman-
tics that directly describes the execution of the combined
program.

Because this second semantics is meant to simplify reason-
ing, it is critical that it behave identically to the projection-
based semantics of a compiler. Our ongoing work therefore
aims to prove the following powerful adequacy theorem.
Here we write 4 → 4′ to denote operational semantic steps

in the low-level language, 4 � 4′ for steps in the combined
language without �rst compiling, and FÈ4É to denote the
full compilation described above, using both projections.

Theorem 1 (Projection Preserves Semantics (Adequacy)).
Suppose that Γ ` compute_and_prove(F :g){4} : proof . Then for
any store f ,

〈F Ècompute_and_prove(F :g){4}É | f〉 →∗ 〈E | f ′〉
m

〈compute_and_prove(F :g){4} | f〉 �∗ 〈E | f ′〉

While this theorem says the source and compiled pro-
grams produce identical results, we also aim to prove that
the visible impacts of the computation itself are the same,
meaning the programs are deeply identical. To formulate
that statement, we look to language of robust compilation,
and demand that FÈ·É satisfy Robust Relational Hyperprop-
erty Preservation, the strongest correctness condition in the
robust compilation hierarchy [1].

A major challenge we are still addressing is how to prove
these theorems. First note that our compiler-based seman-
tics places all witness assignments in the computation phase,
while some uses will remain in the proof phase, which exe-
cutes later. The in-order semantics of the surface language
will necessarily behave di�erently if the proof code refer-
ences a witness before it is later (re)assigned. We therefore
restrict how code can interleave witness assignments and
references. Speci�cally, our type system tracks both and re-
quires that each witness variable is assigned before it is used,
and never after.

Even with this added restriction, proving Theorem 1 will
not be easy. Adequacy theorems are typically proven using a
lock-step bisimulation argument. That is, for each step taken
in one semantics, there is one or more corresponding steps in
the other. The structure of our FÈ·É compilation makes such
an argument impossible; the witness computation code exe-
cutes in its entirety before the proof generation code begins.
As these theorems are critical to proving the validity of our
dual-semantics, we are currently investigating alternative
proof strategies.

2

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Leveraging Duality for Programming with zkSNARKs

References
[1] Carmine Abate, Roberto Blanco, Deepak Garg, Cătălin Hriţcu, Marco

Patrignani, and Jérémy Thibault. 2019. Journey Beyond Full Abstrac-
tion: Exploring Robust Property Preservation for Secure Compila-
tion. In 32nd IEEE Computer Security Foundations Symposium (CSF ’19).
h�ps://doi.org/10.1109/CSF.2019.00025

[2] Marta Bellés-Muñoz, Miguel Isabel, Jose Luis Muñoz Tapia, Albert
Rubio, and Jordi Baylina. 2023. Circom: A Circuit Description Lan-
guage for Building Zero-Knowledge Applications. IEEE Transac-
tions on Dependable and Secure Computing 20, 6 (2023), 4733–4751.
h�ps://doi.org/10.1109/TDSC.2022.3232813

[3] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, MatthewGreen,
Ian Miers, Eran Tromer, and Madars Virza. 2014. Zerocash: Decentral-
ized Anonymous Payments from Bitcoin. In 35th IEEE Symposium on
Security and Privacy (S&P ’14). h�ps://doi.org/10.1109/SP.2014.36

[4] Cairo developers. 2024. Cairo v2.8. h�ps://www.cairo-lang.org/. Ac-
cessed November 2024.

[5] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nick-
olai Zeldovich. 2017. Algorand: Scaling Byzantine Agreements for
Cryptocurrencies. In 26th ACM SIGOPS Symposium on Operating Sys-
tems Principles (SOSP ’17). h�ps://doi.org/10.1145/3132747.3132757

[6] Gnark developers. 2024. gnark zk-SNARK library. h�ps://github.com/
ConsenSys/gnark. Accessed November 2024.

[7] Matthew Green, Mathias Hall-Andersen, Eric Hennenfent, Gabriel
Kaptchuk, Benjamin Perez, and Gijs Van Laer. 2023. E�cient Proofs
of Software Exploitability for Real-world Processors. Proceedings on
Privacy Enhancing Technologies (PETS) 2023 (2023), 627–640. Issue 1.
h�ps://doi.org/10.56553/popets-2023-0036

[8] Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau, andMichaelWal-
�sh. 2022. Zero-Knowledge Middleboxes. In 31st USENIX Security Sym-
posium (USENIX Security ’22). h�ps://www.usenix.org/conference/
usenixsecurity22/presentation/grubbs

[9] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash
System. h�p://bitcoin.org/bitcoin.pdf.

[10] Michael Rosenberg, Mary Maller, and Ian Miers. 2022. SNARKBlock:
Federated Anonymous Blocklisting from Hidden Common Input
Aggregate Proofs. In 43rd IEEE Symposium on Security and Privacy
(S&P ’22). h�ps://doi.org/10.1109/SP46214.2022.9833656

[11] Michael Rosenberg, Jacob White, Christina Garman, and Ian Miers.
2023. zk-creds: Flexible Anonymous Credentials from zkSNARKs and
Existing Identity Infrastructure. In 44th IEEE Symposium on Security
and Privacy (S&P ’23). h�ps://doi.org/10.1109/SP46215.2023.10179430

[12] Nitin Singh, Pankaj Dayama, and Vinayaka Pandit. 2022. Zero
Knowledge Proofs Towards Veri�able Decentralized AI Pipelines.
In 26th Financial Cryptography and Data Security (FC ’22). h�ps:
//doi.org/10.1007/978-3-031-18283-9_12

[13] StarkWare Industries. 2018. StarkWare. h�ps://starkware.co/. Ac-
cessed November 2024.

[14] Gavin Wood. 2014. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum Project Yellow Paper (2014).

[15] Zcash Foundation. 2016. Zcash. h�ps://z.cash. Accessed November
2024.

3

https://doi.org/10.1109/CSF.2019.00025
https://doi.org/10.1109/TDSC.2022.3232813
https://doi.org/10.1109/SP.2014.36
https://www.cairo-lang.org/
https://doi.org/10.1145/3132747.3132757
https://github.com/ConsenSys/gnark
https://github.com/ConsenSys/gnark
https://doi.org/10.56553/popets-2023-0036
https://www.usenix.org/conference/usenixsecurity22/presentation/grubbs
https://www.usenix.org/conference/usenixsecurity22/presentation/grubbs
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/SP46214.2022.9833656
https://doi.org/10.1109/SP46215.2023.10179430
https://doi.org/10.1007/978-3-031-18283-9_12
https://doi.org/10.1007/978-3-031-18283-9_12
https://starkware.co/
https://z.cash

	References

