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Abstract. One of the continuing challenges in abstract interpretation is the cre-
ation of abstractions that yield analyses that are bratttableandprecise enough

to prove interesting properties about real-world programs. One esafrdiffi-
culty is the need to handle programs with different behaviors along elifferx-
ecution paths. Disjunctive (powerset) abstractions capture such distidtia
natural way. However, in general, powerset abstractions incrgase sind time
costs by an exponential factor. Thus, powerset abstractions aezafjgrper-
ceived as very costly.

In this paper, we partially address this challenge by presenting and eatlgiric
evaluating a new heap abstraction. The new heap abstraction worksrgingne
shape descriptors according to a partial isomorphism similarity critegaltireg

in a partially disjunctive abstraction.

We implemented this abstraction in TVLA—a generic system for implementing
program analyses.We conducted an empirical evaluation of the nevactimn
and compared it with the powerset heap abstraction. The experimentsisét
analyses based on the partially disjunctive heap abstraction are az@sdtie
ones based on the powerset heap abstraction. In terms of perfenaaralyses
based on the partially disjunctive heap abstraction are often superioalygsas
based on the powerset heap abstraction. The empirical results sinsides
able speedups, up tborders of magnitude, enabling previously non-terminating
analyses, such as verification of the Deutsch-Schorr-Waite scanigiogttam,

to terminate with no negative effect on the overall precision. Indeqakrence
indicates that the partially disjunctive shape abstraction improves perfaen
across all TVLA analyses uniformly, and in many cases is essentiahéting
precise shape analysis feasible.

1 Introduction

One of the continuing challenges in abstract interpretdBpis the creation of abstrac-
tions that yield analyses that are bathctableandprecise enouglo prove interesting
properties about real-world programs. In this paper weighriaddress this challenge
by presenting and empirically evaluating a new heap alifirgé.e., an abstraction for
the (potentially unbounded) dynamically allocated steratpnipulated by programs
(e.q., see [7,9, 2,8, 16, 14, 15]). Heap abstractions arermmfadmental importance to
static analysis and verification of programs written in nmodanguages. Heap abstrac-
tions have been used, for instance, in the context of shaglgsis (e.g., for proving that
a program fragment preserves certain tree structure avia), as well as in verifying
that a client program satisfies certain conformance cansdréor the correct usage of
a library.



We present our abstraction in the context of the paramebstract interpretation
framework of [15], which is based on the idea of represenpiragram states usingy
valued logical structures. While it is very natural to vieve thbstraction we present as
a heap abstraction, it can be used for abstracting otherideraa well.

The TVLA framework presented in [15] uses a disjunctive (poset) heap abstrac-
tion: the abstract value at every program point g&of shape descriptors (of bounded
size) and set union is used as the join operation. In paatictilis abstraction does not
attempt to combine (or merge) different shape descriptdosane and relies on the fact
that there are only finitely many shape descriptors (as theypBbounded size). This
leads to powerful and sophisticated analyses for provitgy@sting program proper-
ties but is usually too expensive to be applied to real-wprtthrams. (The number of
distinct shape descriptors is doubly exponential in the sizhe program in the worst
case.)

The heap abstractions most commonly used in practice, ieigeghen scalabil-
ity is important, tend to baingle-shapeheap abstractions, which use a single shape
descriptor to describe all possible program states at argmogpoint [9, 2, 14]. The
current TVLA implementation provides options to utilizechusingle-shape heap ab-
stractions. However, our experience has been that for thek &f applications that we
have used TVLA for (mostly verification problems), the sexghape abstraction tends
to be imprecise and causes a number of “false alarms” (iegification fails for cor-
rect programs). Hence, this abstraction is not widely use@\WL_A users. (A detailed
discussion of the single-shape abstractions is beyondcthgesof this paper, because
of the complexity of formalizing the single-shape absiats within the framework of
3-valued-logic.)

This paper presents artially disjunctiveheap abstraction which, in our experi-
ence, is significantly more efficient than the powerset hdegpraction, but has turned
out to be precise enough for all the applications we haveraxpated with. Indeed,
this abstraction has turned out to be the abstraction otehor all TVLA users. The
main idea behind this abstraction is to reduce the set ofesdepcriptors arising at a
program point by merging “similar” shape descriptors butpiag “dissimilar” shape
descriptors apart.

1.1 Running Example

Figure 1 shows a method implementing the mark phase of a aratlsweep garbage
collector. The challenge here is to show that this procedupartially correct, i.e., to
establish that “upon termination, an element is markeddfamly if it is reachable from
the root.” This simple program serves as a running examgleismpaper.

The patrtial correctness of this program was establishedyadistract interpretation
in [13]. This abstract interpretation was created using Avta generic system for
implementing program analyses [10]. The default implemgéon of TVLA uses the
powerset heap abstraction. Verification of the above ptgpesing the powerset heap
abstraction took84 cpu seconds and generate’y, 772 different shape descriptors—
definitely too many for such a simple program and simple ptgp@he situation is
worse for verifying a similar property for an implementatiof the Deutsch-Schorr-



/1 @nsures nmarked == REACH(root)
voi d mark(Node root, NodeSet narked) {
Node x;
if (root !'=null) {
NodeSet pendi ng = new NodeSet ();
pendi ng. add(root);
mar ked. cl ear () ;
while (!pending.isEnpty()) {
x = pendi ng. sel ect AndRenove();
mar ked. add(x) ;
if (x.left !'=null)
if (!marked.contains(x.left))
pendi ng. add(x. | eft);
if (x.right '= null)
if (!marked. contains(x.right)
pendi ng. add(x. ri ght);
}
}
}

Fig. 1. A simple Java-like implementation of the mark phase of a mark-and-sgexdyage col-
lector

Waite scanning procedure [11]. This verification tobkours when the powerset heap
abstraction was used.

Powerset heap abstractions are costly since they mayglissimbetween too many
shape descriptors, which may not be necessary in order iy pyeogram properties.
In this paper, we define a partially disjunctive heap abstracwhich is coarser than
the powerset heap abstraction. The main idea is to reducsethef shape descriptors
arising at a program point by merging “similar” shape degsors. In the mark ex-
ample, verification using the partially disjunctive heagtadiction took3 cpu seconds
and generated, 133 shape descriptors—a two orders of magnitude improvememt ove
verification using the powerset heap abstraction—with tmeesprecision. Similarly,
the verification of an implementation of the Deutsch-SciWiaite scanning procedure
terminated successfully itb8 cpu seconds using the partially disjunctive heap abstrac-
tion.

1.2 Main Results

A New Abstraction. We define a new heap abstraction, which we refer to as the
partial-isomorphismheap abstraction. The new abstraction is coarser than tve po
erset heap abstraction and yet keeps certain shape descapart. Our abstraction is
parametric. It allows the user to specify which heap progerre of importance for a
given analysis, and this guides the abstraction in deténgiwhich shape descriptors
are merged together.



Robust Implementation. We implemented our abstraction in TVLA. This abstraction
has turned out to be the abstraction of choice for all TVLArage.g., see [19]). We
believe that it is simple enough to be implemented in othstesys besides TVLA (e.g.,
[17D).

Empirical Evaluation. We empirically evaluated our abstraction by comparing thwi

the powerset heap abstraction. In the largest benchngfdkExecut er , powerset
heap abstraction did not terminate withif, 000 cpu seconds. In contrast, the new
abstraction toold, 673 cpu seconds and proved correct usage of JDBC objects and
absence of null-dereferences.

1.3 Ouitline

In Section 2, we give an overview of 3-valued-logic basedypam analysis. In Sec-

tion 3, we describe the partial-isomorphism heap abstmactn Section 4, we provide

an empirical evaluation of the partial-isomorphism heagtralction and powerset heap
abstraction. In Section 5, we outline several other heapradi®ns that we are investi-

gating as ongoing work. In Section 6, we discuss related work

2 3-valued Shape Analysis Primer

We now present an overview difst order transition system@QOTS), the formalism
underlying the parametric analysis framework of [15]. FQW&y be thought of as an
imperative language built around an expression sub-lagegbased on first-order logic
with transitive closure.

Concrete Program Configurations
In FOTS, program states are represented uginglued logical structures.

Definition 1. A 2-valued logical structure over a set of predicatBsis a pair C? =
(US, I%) where:

— U"is the universe of the-valued structure.
— I%is the interpretation function mapping predicates to thrith-value in the struc-

ture: for every predicate € P of arity k, I%(p) : Ut" — {0, 1}.

In the context of shape analysis, a logical structure is asedshape descriptor, with
each individual corresponding to a heap-allocated objet{aedicates of the structure
corresponding to properties of heap-allocated objects.

In the following, we use®” (v) as alternative notation faf(p)(v), omitting the
superscripC®, when no confusion is likely. We denote the set of2ailalued logical
structures over a set of predicatBdy 2-STRUCT,. We will mostly assume that the
set of predicate® is fixed and abbreviate 2-STRUGT0 2-STRUCT.



Table 1. Predicates used to verify the running example

Predicates Intended Meaning
z(v) Does reference variablepoint to objectv?
root(v) Does reference variableot point to objecw?

| ef t (vi,v2) Does field eft of objectv: point to objecty,?

right (vi,v2) Does fieldri ght of objectv: point to objectv,?
r[root](v) Is objectv heap-reachable from reference varialbet?
set[marked](v) s objectv a member of thenarked set?
set[pending](v) Is objectv a member of theending set?

Table 1 shows the predicates used to record propertiesigfdndls for the analysis
of our running example. A unary predicatef (v) holds when the reference (or pointer)
variabler ef points to the object; in our example ef € {z,root}. Similarly, a binary
predicatefld(vy,v2) records the value of a reference (or pointer-valued) fidld;
in our examplef I d € {l eft ri ght }. A unary predicateset[s|(v) holds when the
objectv belongs to the set in our examples € {marked, pending}.

In this paper, program configurations (i.2-yalued logical structures) are depicted
as directed graphs. Each individual of the universe is drasva node. A unary pred-
icatep(u), which holds for a node, is drawn inside the node. If a unary predicate
represents a reference variables it is shown by having awatrawn from its name to
the node pointed by the variable. A binary predicate; , u) which evaluates tad is
drawn as directed edge from to us labelled withp.

Figure 2(a) shows a concrete configuration arising at thidabel of the mark pro-
cedure, where all the individuals that are reachable froon are marked, as indicated
by the value of theset[marked] predicate. The individuals represented by the empty
nodes correspond to garbage objects.

Operational Semantics

In FOTS, program statements are modelledaationsthat specify how statements
transform an incoming logical structure into an outgoingjdal structure. This is done
primarily by defining the values of the predicates in the oirtg structure using first-

order logical formulae with transitive closure over thedning structure [15].

Abstract Program Configurations

We now describe the abstractions used to create a finite @eol)rrepresentation of

a potentially unbounded set @fvalued structures (representing heaps) of potentially
unbounded size. The abstractions we use are bas8evalued logic [15], which ex-
tends boolean logic by introducing a third valug, denoting values that may Ifleor

1. In particular, we utilize the partially ordered st 1,1/2} with the join operation

L, defined byr Ly = z if # = y and1/2 otherwise.

Definition 2. A 3-valued logical structure over a set of predicatBsis a pair C =
(U, I) where:
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Fig. 2.(a) A concrete program configuration arising at the exit label of th&marcedure, where
all non-garbage nodes have been marked; (b) An abstract pnogpafiguration that approxi-
mates the concrete configuration in (a)

— U is the universe of thg-valued structure.
— I is the interpretation function mapping predicates to thaith-value in the struc-
ture: for every predicate € P of arity k, I(p) : U* — {0,1,1/2}.

A 3-valued logical structure can be used as an abstractioraofer2-valued logical
structure. This is achieved by letting an abstract confiiumgi.e., a3-valued logical
structure) includsummary individualg.e., an individual which corresponds to one or
more individuals in a concrete configuration representethayabstract configuration.
In the rest of the paper, we assume that the set of predifatesdudes a distinguished
unary predicatemto indicate if an individual is a summary individual.

In this paper3-valued logical structures are also depicted as directaply, where
binary predicates with /2 values are shown as dotted edges and summary individuals
are shown as double-circled nodes.

We denote the set of all-valued logical structures over a set of predicateby
3-STRUCTp, usually abbreviating it to 3-STRUCT. We define a preordestonctures,
denoted by, based on the concept embedding

Definition 3. LetS and S’ be two structures and let: US — US’ be surjective. We

say thatf embedsS in S’ (denoted bys T/ ') if (i) for every predicate (including
sm) of arity k, and everyk — tuple of individualsu, ... ,u, € US,

ps(ula"' 7“16) EpS/(f(ul)’ s 7f(uk)) (l)



and (i) for all ' € US’
({u | f(u) =} > 1) T sm¥ () 2)

We say that' can be embedded in5’ (denoted bys' C 5”) if there exists a function
f such thats C7 §'.

Bounded Program Configurations

Note that the size of 3-valued structure is potentially unbounded and that 3-SCRU
is infinite. The abstractions studied in this paper rely omralmental abstraction func-
tion for converting a potentially unbounded structureheit-valued or3-valued) into
a bounded-valued structure, which we define now. This abstractiorction 5., 4

is parameterized by a special set of unary predicdtesferred to as thabstraction
predicates.

Let A be a set of unary predicates. An individual in a structureS; is said to
be A-compatible to an individuaks in a structureS; iff for every predicatep <
A, p1(uy) T p%2(uz) or p2(ug) T pi(uy). (Recall that the partial order on
{0,1,1/2} is defined by C y iff z =y ory = 1/2.)

A 3-valued structure is said to eebounded if no two different individuals in its
universe aré\-compatible. A structure that i-bounded can have at mast!! individ-
uals. We denote the set of @livaluedA-bounded structures over a set of predicates by
B-STRUCTp 4, and, as usual, omit the subscripts when no confusion iylike

The abstraction functiofiy;,,- : 3-STRUCT— B-STRUCT, which converts a (po-
tentially unbounded3®-valued structure into a bound@dvalued structure, is defined
as follows: we obtain am-bounded structure from a given structure by merging all
pairs of A-compatible individualsSy,((U1,I)) = (Ua, J), whereUs, is the set of
A-compatible equivalence classedaf, and the interpretatiod is defined by:

pl(c1y. s ck) = Uneer ... upeerD (U1, ... ,ug) forp # sm
sm?(c) =1/2 if le] >1
sm?(c) = sm! (u) if c={u}.

Figure 2(b) shows aA-bounded structure obtained from the structure in Figuag 2(
with A = {x, root, r[root], setimarked), set|pending]}.

The abstraction functiofi,;,,.- serves as the basis for abstract interpretation in TVLA.
In particular, it serves as the basis for defining varioutediht abstractions for the (po-
tentially unbounded3et of2-valued logical structurethat arise at a program point.

2.1 Powerset Heap Abstraction

This abstraction is based on the fact that there can only beta fiumber of bounded
structures that are n@@omorphicto one another. (Two structures are isomorphic when
there is a bijection between their universes that presemitgsredicate values.) The
powerset abstraction function operates by boundivglued structures with respect to
a subset of the unary predicates, and removing duplicaesrphic structures).



For the sake of simplicity we will work witlzanonicbounded structures. Note that
the individuals of arA-bounded structure are uniquely identified by the set ofesbf
the predicates inl; we refer to such a set of predicate values as the indivisiaation-
ical name For example, the individual pointed byot in Figure 2(b) has the canoni-
cal namejf{x:(),root:1,r[root]:1,set[m,arked]:1,set[pending]:O} . A canonic bounded struc-
ture is a bounded structure in which the individuals are tified by their canonical
names. We refer to the set of all canonic bounded structyr&B8STRUCTp 4. Note
that for a givenP and A, CB-STRUCTp 4 is finite. Thecanonicabstraction function
Beanonic : 2-STRUCT— CB-STRUCT is defined as followgl..,.onic(S) is obtained
by renaming the individuals gf,;,.-(S), giving them canonic names.

The powerset heap abstraction functigg,,, : 22-STRUCT , 2CB-STRUCT|g defined

by

aPOw(XS = {/BCanonic(S) | S e XS} .

3 The Partial-lsomorphism Heap Abstraction

The idea behind partial-isomorphism heap abstractioniily faimple. The powerset
heap abstraction keeps all the canonic bounded structumearise at a program point
separate. Single-shape heap abstraction merges all cammnided structures arising
at a program point into one structure. The partial-isomisphheap abstraction, in
contrast, merges canonic bounded structures into ondwteuanly when they have the
same universe.

We say that a pair of canonic bounded structuresiareerse congrueriff the two
structures have the same universe. Universe congruengeds@dn equivalence relation
over sets of canonic bounded structures. This equivaleslatian lets us define an
abstraction functiomy,,; : 22 STRUCT _, 9CB-STRUCT that merges all universe congruent
structures. Given a set of canonic bounded structfasith the same universg, we
define the merged structuy¢ XS = (U, I) that has the same universe as all structures
in XSand the following interpretation of predicates. For evasdicatep of arity k£ and
tuple of individuals(uy, . .. ,u) € U*:

puxs(ula"' 7“1@) = |_| ps(ula"' 7uk) .
SeXs

We are now ready to define the partial-isomorphism heapaigin functiono,,;:

0pi (X9 = {|_| C' | C C a0 (XS is a universe congruence equivalence c}ass

Thus, partial-isomorphism heap abstraction is less peetbian the powerset heap
abstractiod. As the empirical results presented later show, the pastahorphism
heap abstraction seems to work as well as (i.e., is as prasjsthe powerset heap
abstractionin practice The following propositions may help explain why.

3 Here, precision is used in the sense of a Galois Connection between &gfsstract domains.



Proposition 1. If a pair of bounded structureS; and.S; are universe congruent, then
the merged structurg; | | S is the least bounded structure that approximates (embeds)
bothS; and Ss.

When partial-isomorphism abstraction is applied to a pastafcturesS; and.Ss,
there are two possibilities:

— StructuresS; and S, are not universe congruent. In this case, the result of the
abstraction isw,; ({S1, S2}) = {51, 52}, which is the least upper-bound of the
powerset abstraction—the most precise approximation ¢f &totictures.

— StructuresS; andS, are universe congruent. In this case, the result of theatstr
tion is a,,; ({S1, S2}) = S1 || S2, which is the most precise upper bound among all
(singleton sets of) bounded structures.

Proposition 2. Partial-isomorphism heap abstraction preserves the \ahfeabstrac-
tion predicates.

In other words, partial-isomorphism heap abstraction ¢wggs the same kind of dis-
tinctions that can also be lost iy;,,,—Vvalues of non-abstraction predicates.

In terms of worst-case complexity, partial-isomorphisnaphebstraction has the
same complexity as powerset heap abstraction—doubly-expiah in the number of
abstraction predicates. This is due to the number of setarafrical names, which is
the dominant factor in the worst-case complexity. Howepartial-isomorphism heap
abstraction can save an exponential factor due to binadiqates, which is the domi-
nant factor in many cases, in practice.

3.1 lllustrating Example

To illustrate the operation of partial-isomorphism heagtedztion, consider the abstract
program configuration shown in Figure 2(b) and the abstremjram configuration
shown in Figure 3(a). Both configurations represent casesendll of the non-garbage
nodes have been marked and non-garbage nodes have not blked,me., the program
property we want to verify holds for those configurationse Tifference between the
configurations is in the position of the node pointedxbin the part of the heap that
has been marked. In this case, the partial-isomorphism &lestpaction results in the
structure shown in Figure 3(b), which ignores the precisstjpm of the node pointed
by x inside the part of the heap that was marked.

The mark program non-deterministically selects an objadtr@moves it from the
pending set. This non-determinism allows many differengsaf traversing the set of
objects reachable fromoot , which results in many different abstract program config-
urations that sustain the program property we want to verify only differ by values of
binary predicates. Partial-isomorphism heap abstragiwoores the values of the binary
predicates, but keeps precise the overall property for atradi configuration of having
sets of nodes with the same garbage/non-garbage and nmaddked properties. This
allows the analysis to merge many similar structures withosing the information
needed to prove the partial correctness of the mark program.



root
X A,’Ieft . riroot]
@' ’ @ '.leﬂ X
eft T left Do ket R
rfroot] C : L troot] -
;Eﬂ ‘.Ieft: right
r[root] L ' Hroof] S " 5 _
(a) (b)

Fig. 3.(a) An abstract program configuration arising at the exit label of thé& pracedure, where
all non-garbage nodes have been markedxapdints to a node adjacenttmot ; (b) The result
of merging the structure in (a) and the structure in Figure 2(b)

4 Implementation and Empirical Evaluation

We implemented the partial-isomorphism abstraction diesdrin the previous section
in TVLA, and the implementation is publicly available [10)Ne applied it to verify
various specification for the Java programs described iteTabTlo translate Java pro-
grams and their specifications to TVP (TVLA's input langugagee used a front-end
for Java, which is based on the Soot framework [18]. For alichenarks, we checked
the absence of null dereferences in addition to the praggediscribed in Table 2. Our
specifications include correct usage of JDBC objects, cougage of Java I/O streams,
correct usage of Java collections and iterators, and additsmall but interesting spec-
ifications.

The experiments were conducted using TVLA version 2, rummiith SUN's JRE
1.4, on al GHZ Intel Pentium Processor machine with GB RAM. We optimized for
precision and simplicity by using TVLA's Focus and Coercemgtions in all bench-
marks. We compared partial isomorphism to the full poweabstraction in terms of
time and space performance and precision.

The results of the analyses are shown in Table 3. In all thetivearks the analysis
based on the partial-isomorphism heap abstraction aahignesame precision as the
analysis based on the powerset heap abstraction, and ohex Wisers reported the
same phenomena. In all but one example, the analysis baspdrtigl-isomorphism
heap abstraction achieved significant performance impnewngs.



Table 2. Benchmarks and properties used for comparing the analysis bagea@nset heap
abstraction with the analysis based on partial-isomorphism heap abstraog@mess means
preservation of tree structure invariants

Benchmark Description Property

GC.mark Figure 1 Partial correctness

DSW Deutsch-Schorr-Waite Partial correctness of tree scanningendss
ISPath Input streams Correct usage of Java I0Streams
InputStream5  Input stream holders Correct usage of Java IOStream
InputStream5b Input stream holders with error Correct usage afl@Streams
InputStream6 Input stream holders Correct usage of Java I0OStream
SQLExecutor A JDBC framework Correct usage of JDBC objects
KernelBench.1 CMP benchmark [12] Absence of concurrent nuadifin exceptions
InsertSorted  Insertion into sorted trees Tree sortedness + Treeness
DeleteSorted Deletion from sorted trees Tree sortedness

Table 3. Time, space and number of errors measurements. Rep. Err. isrit@enof errors re-
ported by the analysis, and Act. Err. is the number of errors that indieatproblems. Time and
space measurements for non-terminating benchmarks are prefitted-\o indicate the mea-
surements taken when the analysis timed out. The number of repontes isrthe same for both
the analysis based on the powerset heap abstraction and the analgdisipaartial-isomorphism
heap abstraction on all (terminating) benchmarks. For benchmatididhzot terminate with the
powerset heap abstraction, the numbers are taken from the analysisdrapartial-isomorphism
heap abstraction

Benchmark Time in seconds Space in Mb. Rep. Err. / Act. Err.
PowersetPartial iso.|PowersetPartial iso.
GC.mark 584 3 56 14 0/0
DSW 14,364 157 116.3 5.6 0/0
ISPath 79 79 2.8 2.9 0/0
InputStream5| 4,530 1,706 14.0 11.9 1/0
InputStream5b 3,492 1,394 9.8 9.1 1/0
InputStream6| 15,558 | 3,929 23.6 15.9 1/0
SQLExecutor| >20,000 9,673 | >109.3| 104.8 0/0
KernelBench.l 7,393 5,355 13.3 10.8 1/1
InsertSorted 264 37 4.5 2.4 0/0
DeleteSorted | >20,000 3,271 >62.6 21.8 0/0




4.1 Implementation Independent Results

Although the results shown in Table 3 measure the time antkspansumption of anal-
yses using different abstractions, they are also influebgelde various implementation
details of the abstractions.

In Table 4, we supply implementation independent measuntand/e measured the
total number of abstract configurations generated by thigsinand the maximal num-
ber of abstract configurations that exist in the transitigsiesm at any given time during
the analysis. The total number of abstract configuratiomstaa maximal number of
abstract configurations are always the same with the potveesg abstraction, since
structures are only accumulated in the transition systemtte partial-isomorphism
heap abstraction, the maximal number of abstract configmsts often lower than the
total number of abstract configurations, indicating thatcttires discovered in different
iterations were merged together.

The results show a consistency between the improvemenisiénand space per-
formance of the partial-isomorphism heap abstractioratike to the powerset heap
abstraction, and the reduced number of abstract configusati

Table 4.Implementation independent measurements. Total #structs is the totaénafabstract
configurations that arose during the analysis, and Max #structs is thenalaumber of abstract
configurations that existed in the transition system at any time during theseale results of
non-terminating benchmarks are prefixed withto indicate the measurements taken when the
analysis timed out

Benchmark Total #structs Max #structs
PowersetPartial iso.| PowersetPartial iso.
GC.mark 189,772 1,133 | 189,772 748
DSW 320,387| 6,480 | 320,387 2,986
ISPath 2,168 2,168 2,168 2,168
InputStream5| 8,164 3,366 8,164 2,204
InputStream5p 5,973 2,598 5,973 1,729
InputStream6| 24,461 6,678 24,461 4,411
SQLExecutor| >8,824 | 4,107 >8,824| 2,164
KernelBench.l 12,594 9,296 12,594 5,748
InsertSorted 7,487 1,318 7,487 905
DeleteSorted |>158,780 30,386 |>158,780 25,673

5 Extensions and Future Work

The partial-isomorphism heap abstraction has so far pagdrquite satisfactorily in
our experience with TVLA. However, we cannot assume tha will always be ad-
equate. Analysis and verification of larger programs mayiregnore aggressive ab-
stractions, while in some cases we may require more preloggeaations. In this section



we describe various other abstractions that may be of vélfeare currently in the pro-
cess of evaluating the effectiveness of some of the ab&trasaiescribed below.

Parametric Partial Isomorphism

We now present a parametric abstraction that includes betpawerset heap abstrac-
tion and the partial-isomorphism heap abstraction as apeases.

Definition 4. We say that a pair of bounded structur€s = (U, ;) and Sy =
(Ua, I2) are partially isomorphic with respect to a set of predicatd®, denoted by
S1 =g So, iff there exists a bijectiorf?” : U; — Us,, such that, for every predicate
p € R of arity k and tuple of nodeéu,, ... ,u;) € UF, the following holds:

PP (uny e ug) = pP (P (), P ()

Note that=g is an equivalence relation amoBfgvalued structures. Given any set
of predicatesk that includes the set of all abstraction predicatesve define an ab-
straction functionw,; ) : 22 STRUCT —, 2CB-STRUCT a5 follows:

Qpi[r) (XS = {|_|C | C C apow (XS is a=p equivalence cla%s .

This function defines a whole family of abstractions. Furthg,,, = o, p) (WhereP
is the set of all predicates) is the most precise among thidyfaof abstractions, and
api = ayp4) 1S the least precise among this family of abstractions.

The reason we restrict ourselves to sAtshat contain the set of all abstraction
predicatesA is the following. If R includesA, then for any twe= z-equivalent bounded
structures, the bijection between the universes of the twuetsires that preserves the
values of predicates iR is uniquely determined, and this bijection is used to deieem
which individuals should be “merged” together.

This parametric definition allows users to choose abstmastin a more fine-grained
fashion, by specifying the set of predicatesThe parametric abstraction could also be
used by an appropriate iterative refinement technique, iwstiarts withkR = A and
iteratively adds predicates 18, until a sufficiently precise abstraction is obtained or
R=P.

Deflating Reductions

Deflating reductions can potentially yield performance iayements without a loss
of precision. A very simple deflating reduction is the foliog. consider a set of 3-
valued structure’ containing structures; and.S,, such thatS; C S,. Clearly, the
setX’ = X — {S;} is semantically equivalent t&, and removingS; involves no
loss of precision (even when the abstract transformer shaséd is not the best). This
reduction is referred to as “non-redundancy” in [1]. Makthgs reduction feasible re-
quires testing for the partial order relation over 3-valsadctures, which can be done



in polynomial time for bounded 3-valued structures. The ¢egstion with this reduc-
tion is whether the subsequent (performance) benefits afjdbie reduction outweigh
extra cost of performing the reduction. Our initial expade shows that this reduc-
tion is worth using. This reduction transforms TVLA's prder over sets of 3-valued
structures into a proper (Hoare powerdomain) partial ander

6 Related Work

A substantial body of literature exists on abstractions/éoious different domains and
for creating new abstractions from existing abstractidie distinguishing aspect of
our work is its focus on heap abstractions and its focus omapirecal evaluation of
the effectiveness of the proposed heap abstraction.

Function Space Domain Construction. Function space domain construction is one
way of creating abstractions that are “partly disjunctiiekamples of previous work
using such a domain construction include [5], where therabisbn is composed of two
components—a lattice of symbolic access paths and a paiemeinerical lattice. In
this abstraction, abstract elements with the same symhotiess path component are
merged by joining the numerical lattice component. The BE&fesn [4] also utilizes a
similar function space domain construction, but not forghabstractions.

Least Disjunctive Basis. In [6], a technique is defined for obtaining the “least digjun
tive basis”, which is the most abstract domain inducing #maedisjunctive completion
as another domain. Unfortunately, this may result in lasggs of abstract elements, as
abstract elements are substituted by sets of other absteswénts, causing inflation.

Deflating Operators and Widening Operators. In [1], different widening operators
and congruence relations are considered for the powerdghquiva domain, and in
more general settings.
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