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Abstract

We consider the problem of typestate verification for shallow programs; i.e., programs
where pointers from program variables to heap-allocated objects are allowed, but where
heap-allocated objects may not themselves contain pointers. We prove a number of results
relating the complexity of verification to the nature of the finite state machine used to specify
the property. Some properties are shown to be intractable, but others which appear to be quite
similar admit polynomial-time verification algorithms. Our results serve to provide insight
into the inherent complexity of important classes of verification problems. In addition,
the program abstractions used for the polynomial-time verification algorithms may be of
independent interest.

In solving a problem of this sort, the grand thing is to be able
to reason backward. ... In the everyday affairs of life

it is more useful to reason forward.

—Sir Arthur Conan Doyle, A Study in Scarlet.

1 Introduction

The desire for more reliable software has led to increasing interest in extended
static checking: statically verifying whether a program satisfies certain desirable
properties. A technique that has received particular attention is that of finite state or
typestate verification (e.g., see [27,26,21,6,8,3,9,13,12,17,1]). In this model, objects
of a given type exist in one of finitely many states; the operations permitted on an
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object depend on the state of the object, and the operations may potentially alter the
state of the object. The goal of typestate verification is to statically determine if the
execution of a given program may cause an operation to be performed on an object
in a state where the operation is not permitted.

Typestate verification can be used to check that objects satisfy certain kinds of
temporal properties; e.g., that an object is not used before it is initialized, or that a
file is not used after it is closed. In this paper, we will specify such properties using
regular expressions or finite state automata that define the set of valid sequences of
operations that can be performed on an object.

Our goal in this paper is to develop an initial understanding of how the difficulty of
performing typestate verification relates to the nature of the property being verified.
Among other things, we will show that not all finite state properties are equally
hard to verify. For example, given a shallow program (where pointers from program
variables to heap-allocated objects are allowed, but where heap-allocated objects
may not themselves contain pointers), we show that verifying that a file is not read
after it is closed can be done in polynomial time, while verifying that a file is not
read before it is opened is PSPACE-Complete.

While there has been much progress on many aspects of automated program veri-
fication, we are not aware of any previous work relating the difficulty of typestate
verification to properties of the finite state automaton. This work is part of a broader
effort to develop efficient program verification techniques that are tailored to the
property being verified [23].

Typestate Verification and Shallow Programs

In order to meaningfully compare the complexity of verification algorithms, we
need to make some baseline assumptions about the precision of the analysis. In this
paper, we will use the term verification to mean verification that is precise modulo
the widely-used assumption that all paths in the program are feasible. Specifically,
given a finite state property, a path in a program is said to be an error path, if execution
along that path would cause an invalid sequence of operations to be performed on
at least one object and the goal of typestate verification is to determine if a given
program has any error path.

Typestate verification can be done in polynomial time if the program to be verified
allows no inter-variable aliasing. Conversely, it is a straightforward consequence
of previous results [18,20] that if a program has two or more levels of pointers,
typestate verification is PSPACE-hard 2 . In this paper, we therefore concentrate on

2 In the presence of recursive data structures, typestate verification is undecidable [19,24].



understanding the class of shallow programs occupying a point in between these
extremes.

Assume we wish to perform typestate verification for objects of a type 7. A T-
shallow program is a well-typed procedure-free program where all variables are
pointers to 7-typed objects, and whose statements are allocations (creation of a new
object of type 1), copy assignments (copying the value of a variable to another), or
invocations of an operation on a variable. Note that shallow programs may contain
multiple pointers to objects of type 7', but allocated objects may not themselves
contain T-pointers. In other words, pointers in shallow programs are single-level
[20]. Our results also apply to programs that manipulate complex or recursive types
where allocated objects contain pointers, provided that those pointers cannot refer
to objects of type T'. Programs that are shallow with respect to a given type, e.g.
F1ile, are not uncommon in practice.

Example: Verifying File Operations

Consider the problem of checking that a closed file is never read or closed again,
which we will refer to as read*; c1ose. In general, we will use regular expressions
to designate sequences of valid operations on an object of a given type, where a
sequence is valid iff it is a prefix of a string in the language defined by the regular
expression. For example, read; read is a prefix of read; read; close and thus
a valid sequence.

The principal difficulty in doing precise verification arises from determining how
aliasing interacts with operations on objects. Some prior work on typestate verifica-
tion (e.g. [7]) has employed a two-step approach to the problem, in which an initial
phase performs a conservative heap analysis of the program, and a subsequent phase
uses the information from the heap analysis to do typestate analysis. However, we
can see from the program fragments in Figure 1 that such an approach can sometimes
lead to imprecise results. One can easily verify that in both Figures 1(a) and 1(b), all
sequences of file operations on a given object are prefixes of read*;close; i.e.,
that no read ever follows a close.

However, consider a two-phase analysis in which the heap analysis is separate from
the typestate analysis. In Fig. 1(a), a precise (and correct) heap analysis will deter-
mine that program variable z at program point s2 may point to the object created
at sO or the object created at s1. Furthermore, a precise typestate analysis will
determine that the object created at s1 could be in a closed state at s2. A two-phase
analysis must therefore erroneously conclude that the read could be performed on a
closed file. Similarly, in Fig. 1(b), any conservative heap analysis would determine
that objects created at program points s 3 and s5 could reach the read statement at
s4. In addition, a typestate analysis would also determine that the objects created



sO:x := new (); s3:f := new ();
sl:y := new (); while (7){
z =y, s4 : f.read();
if (7) { if (7) {

y.close(); f.close();

zZ = X; sb:f := new ();
} }
s2 : z.read(); }

(a) (b)

Fig. 1. Program fragments illustrating the effect of aliasing on typestate verification.

at program points s 3 and s5 could be in a closed state at s4. The analysis would,
however, not be able to discover that £ can never point to a closed object at s 4, and
would incorrectly indicate a possible error. In this paper we show that for a certain
class of problems (including read*; close), it is possible to formulate a precise
polynomial time verification algorithm for shallow programs.

Main Results

The main complexity results established in this paper are as follows (in all cases
except the last one, we assume that programs are shallow):

e Verificationisin P for omission-closed properties: a property is said to be omission-
closed if every subsequence of a valid sequence is also a valid sequence. (Example:
read*;close.)

e Verification is NP-Complete for acyclic programs (i.e., programs without loops)
and PSPACE-complete for arbitrary programs for properties with a repeatable
enabling sequence: a property is said to have a repeatable enabling sequence if
there is an automaton state where a particular sequence 7y of operations is invalid,
but sequences of the form 31~ are valid for some (3. Example: open™; read.

e An integer-valued function f is said to be a bound on the shortest error path
length for a typestate property if every erroneous program of size n is guaranteed
to have an error path of length f(n) or less. If PSPACE is not equal to NP, then
no polynomial bound exists for the shortest error path length for properties with
a repeatable enabling sequence. (In other words, it may not be possible to find
short, i.e., polynomial size error paths in the worst case.)

e Verification is in P for acyclic programs for almost-omission-closed properties: a
property is said to be almost-omission-closed if there is an integer k such that every



subsequence of a valid sequence of length greater than £ is also valid. Example:
open; read. Note that any property with only finitely many valid sequences is
trivially almost-omission-closed.

e Verification is in P for almost-omission-closed properties that have a polynomial
bound on the shortest error path length.

e A program is said to have a maximum aliasing width of k if there is no path in the
program that will produce an object pointed to by more than k different variables.
Arbitrary finite state properties for programs of size n with a maximum aliasing
width of k£ may be verified in time O(n**!) for programs of size n.

e Alias analysis and typestate verification are NP-hard for programs with maximum
aliasing width of three and aliasing depth of two. (A program is said to have
aliasing depth of two if the program contains pointers to pointers).

The results above are summarized in Fig. 2 in terms of the properties of regular
expressions which define the properties to be verified (the notation used there will
be defined in Section 2).

The polynomial-time verification results summarized above use program abstrac-
tions that may be of independent interest—in particular, they may prove useful as the
starting point for developing more general abstractions for non-shallow programs
(e.g., in a manner similar to [23]). The bulk of the abstractions we use are predicate
abstractions [15]; however we show in the sequel that the choice of predicates used
in a predicate abstraction can have a dramatic impact on the efficiency of the re-
sulting analysis. Our predicate vocabularies are carefully designed to yield efficient
analyses without sacrificing precision. In addition, in Section 5, we develop a novel
integer abstraction, which is based on counting the number of program paths along
which a simple property holds true; this in turn allows inferring whether a more
complex property holds.

Related Work

There has been significant recent interest in a variety of property verification tech-
niques, many of them focusing on typestate verification. While significant progress
has been made in improving the precision and efficiency of verification, developing
verification techniques that are sufficiently precise and scalable to handle industrial-
size applications for a wide variety of problems is still a challenge, and motivates
our work here.

One of the open challenges in typestate verification is an adequate treatment of
aliasing. Some approaches avoid the issue: e.g., the original work on typestate veri-
fication [27,26] did not allow any aliasing; more recent work on typestate verification
based on linear types [8] also restricts aliasing severely. Other approaches (e.g. [7])
perform alias analysis and typestate verification separately: an initial phase performs
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Fig. 2. An overview of our complexity results.

a conservative alias analysis for the program, and a subsequent phase uses the infor-
mation from the alias analysis to do typestate verification. However, this can lead to
imprecise results, as illustrated by the examples in Fig. 1.

A second challenge to practical verification is dealing with infeasible program paths.
Das et al. [7] address this issue using efficient path-sensitive algorithms (which
eliminate certain infeasible paths from consideration during analysis), but do not
track certain additional information, e.g., aliasing, precisely. Our algorithms do not
address the question of path sensitivity, but there could be merit in combining aspects
of our approach with those that eliminate infeasible paths.

One of the primary intuitions behind the algorithms presented in this paper (for
shallow programs) is that maintaining just the right correlation required between
“analysis facts” can be the key to efficient and precise verification: maintaining no
correlations (independent attribute analysis) can lead to imprecision, while main-
taining all correlations (relational analysis) can lead to inefficiency. The recent work
of [28], following this paper, shows one way to exploit this intuition for verification
of arbitrary (i.e. non-shallow) programs as well.

Several recent verification approaches [2,16] combine predicate abstraction [15],




counterexample-guided refinement of the predicate vocabulary [4], and exploration
of the resulting abstract state space using model-checking. These techniques use
symbolic and theorem-proving techniques to identify a set P of predicates relevant
to the problem of interest, then model-check the resulting finite state system over
a state space constructed from the powerset lattice 20— {174efalse} Thig process
iterates with increasingly larger sets of predicates until a satisfactory result is ob-
tained. In principle, these algorithms have the potential to avoid imprecision due to
both aliasing and path infeasibility. However, the worst-case complexity of a single
iteration is exponential in the number of predicates. By contrast, while most of the
algorithms we present are based on abstractions by a set of predicates (), our analysis
is based on the function-space lattice () — {false, maybe}, and runs in time linear
in the size of (). This approach yields polynomial-time algorithms, while none of
the techniques based on model-checking have a polynomial time worst-case com-
plexity for the same problems (even though they may utilize a smaller number of
predicates than our algorithm). Our selection of predicates ensures that the use of
the smaller function space lattice results in no loss of precision, i.e., we ensure that
our abstraction is complete (e.g., see [14]). Finally, the predicate abstractions we
use are dependent solely on the nature of the typestate problem being verified, and
do not require expensive predicate discovery at verification time.

Finally, we note that our lower bound results follow the tradition set by earlier
complexity results due to Landi and Ryder [18] and Muth and Debray [20].

2 Terminology and Notation

In this section, we provide some basic definitions that we will use in the rest of the
paper.

Definition 1 (Shallow Program) A shallow program is a <Stmt> defined by the
following context-free grammar, where the ? denotes a nondeterministic branch (i.e.,
an uninterpreted conditional). All variables <Var> in the language are references
to objects of type T. All operations <Op> in the language are methods supported by
type T.

<Stmt> ::= <Var> := <Var> | <Var> := new() | <Var>.<0p> ()
| <Stmt>; <Stmt> | if (?) <Stmt> [ else <Stmt> ]
| Label: <Stmt> | goto Label

We will make the simplifying assumption that when a program begins execution all
program variables point to separate objects (i.e., initialized to non-aliased values),
and all objects reside in their initial state. In other respects, the semantics of shallow
programs is completely standard, and we will not formalize it here. We will, however,
appeal to the intuitive notion of a path p through a program P (or P-path): a valid



read
{read { read,
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Fig. 3. A finite-state automaton for the property read*; close.

sequence of statements starting at P’s entry.

In this paper, we will study safety properties of shallow programs. Although safety
properties could be specified via temporal logics (e.g., LTL [5]), we will use finite
automata or regular expressions to simplify the presentation. Formally:

Definition 2 (Prefix-Closed Safety Automaton) A prefix-closed safety property F
is represented by a finite state automaton (FSA) F = (¥, Q, 9, init, Q\ {err}) where
Y. is the automaton alphabet consisting of observable operations, Q is the set of
automaton states, 0 is the transition function mapping a state and an operation to a
successor state, init € Q is a distinguished initial state, err € Q is a distinguished
error state for which for every o € %, 0(err,0) = err, and all states in Q \ {err}
are accepting states. We say that ' is the successor of a state q on operation op
when 6(q, op) = ¢'. Given a sequence of operations & = 0p;; OPs; . . . ; OP), We
write Validz(«) or « € Validy when o is accepted by F, and we write Invalidz(«)
when « is not accepted by F.

For brevity, we will refer to safety properties using a regular expression represent-
ing the language accepted by an automaton, rather than specifying the automaton
itself. When specifying a safety property using a regular expression, we will adopt
the convention that a regular expression o denotes the prefix closure of the set of
sequences of operations defined by «. For example, when we write read*; close
we also consider € (the empty sequence) and read to be valid sequences.

Example 3 Consider the property read®; close stating that a file may be read
an arbitrary number of times before it is closed (and should never be read after it
was closed and never be closed twice). The alphabet for this problem consists of
two operations 3 = {read, close}. The FSA for this property is shown in Fig. 3.

When verifying a safety property represented by an automaton (Q, init, err, 33, §) for
a shallow program P, we will assume that each method name used in P is mapped
to an element of Y. Given this convention, we will use names of operations in >
and methods in P interchangeably, i.e., we will say that a statement of the form
x.0p () invokes an operation op € X.. We can then relate method invocations to
sequences of operations in X as follows:

Definition 4 (Operation Sequences for Objects) Given a P-path p, U(p) denotes
the set of object instances created during this execution, and for any object o € U(p),
plo] denotes the sequence of operations performed on o during execution of p.



Given the definitions above, we can now formally describe the class of verification
problems we wish to solve:

Definition 5 (SV ) Given a safety property F, the shallow verification problem for
F, SV £, determines for any shallow program P whether there exists a path P-path
p such that p|o] € Invalidx for some o € U(p).

3 Omission-Closed Properties in Polynomial Time

In this section, we show that omission-closed properties can be verified in polynomial
time.

Omission-Closed Properties

Informally, a property is omission-closed if the set of all valid sequences of opera-
tions is closed with respect to omissions: any sequence obtained by omitting one or
more operations from a valid sequence of operations is also valid.

Definition 6 A property represented by an automaton F is said to be omission-
closed when for all sequences o, 3,y € ¥*, Validr(afpy) = Validr(ary).

The following theorem presents alternative characterizations of omission-closed
properties.

Theorem 7 Given an automaton F, the following are all equivalent, where all
sequences are elements of >.*:

(a) For all sequences «, 3,7, Validz(afv) = Validr(ay).

(b) If wy is a subsequence of ws, then Validz(ws) = Validr(wy).

(c) There exists a finite set of forbidden subsequences &1, &o, ..., & such that a
sequence « is in Invalidr iff o contains some &; as a subsequence.

PROOF. The equivalence of (a) and (b) is straightforward. As for, (c), consider
the forbidden subsequences &; corresponding to the acyclic paths in the automaton
JF from the initial state to the error state. Any sequence containing some ¢&; is in-
valid (from (b)), and it is clear that any invalid sequence must contain an acyclic
path from the initial state to the error state as a subsequence. (For example, the
forbidden subsequences for the automaton in Fig. 3 are £&; = close; read and
&5 = close; close.) The result follows.



Example 3.1 Consider the automaton F3 of Fig. 3. For this automaton, the sequence
read; read;close is in Validr,, and so is the sequence read; close obtained
by dropping the intermediate read operation. Moreover, for any valid sequence
read*; close, dropping any subsequence of reads, or dropping the c1ose yields
a valid sequence.

For Fs3, it is sufficient to consider the forbidden subsequences &, = close; read
and &, = close;close. Each sequence o containing & or & as a subsequence
is in Invalidr,, and each sequence in Invalidr, contains & or &, as a subsequence.

Background: Distributive Predicate Abstractions

The analysis we present will utilize a predicate abstraction that tracks the values of
a set of predicates P defined on the concrete program-state. (We will use the term
program-state to denote the state of the whole program in the concrete semantics, to
distinguish it from a state in a FSA specifying a property.) For efficiency reasons, we
will utilize an independent attributes analysis [22], an analysis that does not maintain
the correlation between different predicate values. Specifically, the set of concrete
program-states arising at a program point will be abstracted by a value in P —
{false,maybe}. We now summarize the conditions under which an independent
attributes analysis can be used for a predicate abstraction without losing precision.
Given a predicate ¢ and a statement St, we denote by WP(St, ) the weakest
precondition of ¢ with respect to St [10].

Definition 8 Given a finite set of predicates Base, we say that a finite set of predi-
cates P = {Py, ..., P;} is a distributive WP-closure of Base when Base C P and
foreach predicate P; € P, and for each statement St, WP(sSt, P;) = P, V...V F;,,
where P; P; € P. We also say that the set of predicates ‘P is distributively

IR
WP-closed.

Theorem 9 Given a distributively WP-closed set of predicates P for a program
Pgm, precise analysis (i.e., determining for every program point and every predicate
in ‘P whether there exists a path to the program point causing the predicate to be
true) is possible in time O(|P||Pgm|).

PROOF. Straightforward. E.g., the problem can be reduced to a reachability prob-
lem over a graph of size O(|P||Pgm|), as in the IFDS framework of [25]. We note
that the analysis can also identify paths that will cause a given predicate to become
true at a given point when such a path exists. O

10



A Polynomial Algorithm

We use a designated predicate Error that is true in a program-state if and only if
the program-state contains an object in the error state err. We will now show that
for omission-closed properties, a distributive WP closure of polynomial size can be
constructed for {Error}. In general, a distributive WP closure for {Error} needs
to include predicates that refer to aliasing relationships among variables as well as
the state of the objects pointed to by the variables. This motivates the following
definition of a family of predicates.

Definition 10 We write In,(x) to denote the fact that the object pointed to by the
variable % is in state 0 € Q. Given any S C Q, we use the shorthand Ing(x) =
Vees Ing(x) to denote that the object pointed to by the variable x is in one of the
states in S.

Definition 11 Let A be a non-empty set of variables (in a given program), S C Q
a set of states in JF. We use the predicate (A, S) to mean that all variables in A have
the same value (are aliases), and the object referred to by variables in A is in one
of the states in S. Formally,

(A,S) & Axeayealy = x) A Axealns(x)

The number of predicates of the form (A, S') is exponential in the number of program
variables. However, not all predicates of this form are relevant, i.e. need to be in
a distributive WP closure for {Error} . The key to obtaining a polynomial size
distributive WP closure for { Error} is to bound the size of the set A, for any relevant
predicate (A, S) by a constant. We will do this in two steps. First, we will show that
a predicate (A, S) is relevant only for certain S C Q. Then, we will show that for
each such set S, the predicate (A, S) is relevant for only A of cardinality less than
a specific constant.

We first present an algorithm for determining which S C Q are relevant for verifi-
cation. The algorithm shown in Fig. 4 is based on a backward traversal of the finite

. <=
state automaton. The algorithm constructs a graph F = (V<j—t, E<j—r), where each
vertex is a subset of Q, and an edge P — S denotes that P is a pre-image of S for
the transition function ¢ (see below).

Definition 12 Let ? denote the reverse transition re(l_ation of F, i.e., given a state
q € Q, anoperationa € ¥, andaset of states S C Q, 6 (q,a) = {¢' € Q|6(¢,a) =
q}, and %(S, a) = Uges ?(q, a). For S1,Sy C Q, Sy is said to be a pre-image of
Sy ifda € Z.?(Sl,a) = 9,.

11



Vie =0; Ee=10; workSet = {{err}};
while workSet # 0 {
select and remove S from workSet;
for each operation op €% {
— (S, 0p);
1f P ¢ Ve { Ve =VeU{P}; workSet = workSet U{P}; }
. Ee = E¢ U{P — S};

Fig. 4. Backwards exploration of the property automaton.

[ [

Fig. 5. The graph constructed by backward exploration of the automaton of Fig. 3.

Fig. 5 illustrates the graph constructed by backward exploration of the read™; close
automaton shown in Fig. 3. We now establish a result about the graph F.

Theorem 13 If F represents an omission-closed property, then for any S € Vi,

— -
and any operation a € ¥, § (S,a) D S. Further, the graph F is acyclic except for
self-loops.

PROOF. Forany S € V4 there exists a sequence of operatlons ¢ such that S is the
set of all states in which ¢ is invalid (by construction). Now, 6 (S, a) is the set of all

states in which a€ is invalid. Since F is omission-closed, ¢ (S,a) 2 S. Since any
predecessor P of S must be a superset of 5, it follows immediately that any cycle

in the graph ]—" must be a self-loop. O

Fig. 6 and Fig. 7 present weakest-precondition equations for predicates of the form
(A, S) and the special predicate Error. From these equations, we can determine
which predicates are relevant for verification. The equations reveal two things. First,
they show that it is sufficient if we restrict our attention to predicates of the form
(A, S) where S € Viz. Second, they show that a predicate (A, P) is relevant only if
there is a relevant predlcate (B, S) where S is a proper successor of P in the graph
.7-" and B has cardinality at least | A| — 1. In other words, we need to only consider
predicates of the form (A, P) where the cardinality of A is less than or equal to the

length of the longest acyclic path from P to {err} in .7-"

Definition 14 For any S € V<, define dist(S) to be the number of edges in the

12



Stmt WP(stmt, (A, S))

x =y |(Axoy)S)

x := new ()|(A,S) ifxg A
false ifxe ANA# {x}
true if A={x}Ainite€ S
false if A= {x} Ainit & S

x.0p () (4, ) if 9 (S, 0p) = S
(AU {2}, 5 (S,0p)) V (A,S) if 5 (S,0p) O S

At program true if |[Al=1Ainit € S

entry false if |A| #1Vinit ¢ S

Fig. 6. WP equations for predicates of the form (A, S). We denote by A[z — y]| the set
obtained by replacing any occurrence of x in A by y.

Stmt WP(stmt, Error)

X 1=y Error

x := new () |Error

x.op () Error if § ({err},op) = {err}

£%
<{x},<g({err},0p)> V Error if <g({err},op) D {err}

At program entry |false

Fig. 7. WP equations for the predicate Error.

%
longest acyclic path from S to {err} in F. Given a program with a set of vari-
ables Vars, we define a set of predicates P = {(A,S)|S € Vi, A C Vars, [A| <
dist(S)} U {Error}.

Theorem 15 The set PU{true, false} is a distributively WP-closed set of predicates
for {Error}.
PROOF. Follows from the above discussion.

Theorem 16 If F is omission-closed, then SV r is in P.

13



PROOF. Immediate from Theorem 15 and Theorem 9. Note that the cardinality
of P is O(|Vars|"), where Vars is the set of all variables in the program and k is

%
the length of the longest acyclic path in F . (Note, from Theorem 13, that £ is also
bounded by the number of states in F.)

Example 3.2 Consider the property read*close represented by the automaton of

Fig. 3. The graph F for this automaton is shown in Fig. 5. The derivation for this
property is as follows? :

=

P(x.read (), Error) = ({z},{err,q2}) V Error

£ =

P(y.close (), <{$}7 {err, QQ}>) = <{ZL‘, y}7 {err, a2, (]1}> \% <{IL‘}7 {err7 q2}>

(
P(x.close (), Error) = ({z},{err,q2}) \V Error
(
P(W° read(), <{$a y}? {errv q2, Q1}>) - ({x,y}, {err, q2, Q1}>

=

Thus, read*; close verification can be done in time O(|Vars|”[Pgm|).
Discussion

A logical formula can usually be simplified into a number of equivalent forms.
Hence, a weakest-precondition can often be expressed in many ways. The form
we chose to use in expressing weakest-preconditions above is critical to deriving a
polynomial time verification algorithm. As an example, consider the read”; close
example. The following is an alternative, correct, weakest-precondition equation,
which says that an object in the err state is possible after x . close () iff either x
points to an object in state g, or an object exists in the err state before the statement:

WP(x.close (), Error) = ({z},{q}) V Error. (1)

The actual formulation we used
WP(x.close (), Error) = ({z},{err,q}) V Error (2)

actually contains some redundancy. In particular, ({x}, {err,q2}) is equivalent to
({x},{err}) vV ({x},{q2}). But the disjunct ({x}, {err}) is redundant because it
implies Error, another disjunct in our formula.

However, equation 2 is preferable to equation 1. In particular, we have seen that we
can determine in polynomial timeif ({x}, {err, g2} ) is possible at any program point.

3 Note that the variables x, v, and w used in the derivation process are free variables and
not variables of a specific program.
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Fig. 8. An automaton for the property open™; read.

However, one can show that determining if ({x}, {¢2}) is possible at a program point
is PSPACE-hard, adapting the proof we present in Section 4. Thus, unless PSPACE
= P, a distributively WP-closed set containing ({x}, {¢2}) of polynomial size does

not exist! Note that the set {¢»} has a pre-image (namely ¢ ({¢2},close)={q})
that is not a superset of {g-}, thus not satisfying the requirements of Theorem 13.
This is why the proof used for omission-closed properties cannot be used for this
predicate.

4 Repeatable Enabling Sequence Properties

In this section we show that verification of Repeatable Enabling Sequence properties
(see Definition 17) is NP-complete for acyclic programs and PSPACE-complete in
general.

Definition 17 (Repeatable Enabling Sequence Properties) We say that a prop-
erty represented by an automaton F is a repeatable enabling sequence property if
there exist sequences of operations «, [3 and -y such that the set of sequences a3+~
are all valid but the sequence oy is invalid. (The sequence (3 may be thought of as
a repeatable sequence that enables +.)

For example, the property open™; read (see Figure 8) which requires that a read
be preceded by one or more open operations is a repeatable enabling sequence
property. (The more natural property open™; read* is also a repeatable enabling
sequence property, but we use open™; read as the running example to contrast
it with the omission-closed property read*; close.) We show that verification of
repeatable enabling sequence properties is PSPACE-complete by reduction from the
simultaneously false problem (see [20], [11]).

Definition 18 (Simultaneously False Problem) Given a program P with an initial
assignment of values (0 or 1) to a set x1, %o, ...,T, of boolean variables, where
the program P contains only assignments (of constants or variables), conditionals
or unconditional jumps, a simultaneously false problem for P is a problem of the
form: is there an execution path from the entry point of P to a program point p such
that x1 = 0,29 = 0, ... 2 = 0 when control reaches p ?
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Lemma 19 (1) The simultaneously false problem for acyclic programs is NP-
complete. (2) The simultaneously false problem for arbitrary programs is PSPACE-
complete.

PROOF. The binary simultaneous value problem can be easily reduced to the simul-
taneously false problem by following the construction used in the proof of Theorem
3.6 in Muth and Debray [20]. The idea is to transform a program P into a program P’
such that every variable x; in P corresponds to two variables X; and X;, every assign-
ment x; = 0is converted to X; = 0; X; = 1, every assignment z; = 1 is converted to
X; =1; X; = 0,and every assignment x; = z; is converted into X; = X;; X; = X.
Consider the simultaneous value problem xy = c1, 29 = ¢, ..., 2, = ¢ for P. It
can be easily shown that the simultaneously false problem for P’ obtained by re-
placing every conjunct z; = 0 with X; = 0 and z; = 1 with X; = 0 is equivalent.
Thus, the simultaneously false problem is also NP-complete and PSPACE-complete
for acyclic and arbitrary programs respectively. O

Let F be an automaton representing a repeatable enabling sequence property. We
show that SV r is PSPACE-hard by reduction from the simultaneously false problem.
If o, 3, v are such that sequences o3 are valid and sequence oy is invalid, then
(£ and v must be non-empty (although o may be empty). Given an instance of
the simultaneously false problem z; = 0,29 = 0,...,2; = 0 at program point
p in a program P, we construct a program P’ as follows. First, we create two
objects Zero and One which support methods corresponding to the sequences «, (3,
and ~. Next, we copy program P into P’ replacing every assignment of the form
x; = 0 by x; = Zero and x; = 1 by x; = One respectively. Then, at program point
p, we insert the statement if (7) goto p;. Let the sequence a be aq, as, . . ., a;, let
[ be by, by, ...by, and let v be c1,ca, ... c,. We insert the following sequence of
statements at the end.

goto exit;
p1: Zero.a;();Zero.a();...;Zero.a;();
One.a;(); 0ne.ay();. .. ; One.a;();

x1.b1();x1.02();5 ..+ ; X1 00();
X2.b1();%2.02(); . . . 5 X2.by();

Xie-b1(); % 02(); - -+ e o)
One.cy();0ne.cy();. .. ; One.cy();

exit :
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Note that control can reach program point p; only through the conditional branch
statement if (7) goto p; (because of the statement goto exit; just before p;).

Lemma 20 Assuming that the sequences of operations 3 and v are non-empty, the
simultaneously false problem x1 = 0,25 = 0,...x, = 0 at program point p in P
returns true if and only if program P’ violates the property represented by F.

PROOF. Program P’ creates only two objects Zero and One. Note that the only
sequence of operations performed on Zero is o3¢ where i is the number of vari-
ables in x1, zo, . . ., x), that are aliased to Zero at program point p. Thus, no illegal
operation is ever performed on Zero. The only sequence of operations performed
on One is a3’ where j is the number of variables in z1, 2, . . ., 7}, that are aliased
to One at program point p. This sequence is invalid iff j can be 0. In other words,
P’ violates the property represented by F iff the simultaneously false problem
1 = 0,29 =0,...2, = 0 at program point p in P returns true. O

The above lemma shows the hardness of typestate verification for repeatable en-
abling sequence properties. We now establish a straightforward completeness result.

Lemma 4.1 For any automaton F, SV is in NP for acyclic programs and in
PSPACE for arbitrary programs.

Proof: SV r 1s in NP for acyclic programs since we can non-deterministically choose
a path through the program and check to see if any object reaches the error state
during execution along that path. To show that SV & for an arbitrary program P is in
PSPACE, we construct a non-deterministic multi-tape polynomial-space-bounded
Turing Machine M to solve the problem. M simulates input program P, non-
deterministically choosing the branch to take at branch points. Let us refer to objects
pointed to by the variables in P as [ive objects. M keeps track of which variables
point to which (live) objects, and tracks the finite-state of each live object. The space
needed to maintain this information is trivially bounded by a polynomial in the size
of program P. If any of the relevant objects goes into the error state during simu-
lation, M halts and signals the possibility of an error. Conversely, if there is a path
that causes one of the objects to go into the error state, then M can guess this path
and will halt signalling the error. O

Theorem 21 Consider a repeatable enabling sequence property represented by an
automaton F. SV r is NP-complete for acyclic programs and PSPACE-complete for
arbitrary (cyclic) programs.

PROOQOF. The proofs of NP-hardness and PSPACE-hardness of acyclic and arbitrary
programs resepectively follows from Lemmas 19 and 20 respectively. Lemma 4.1
shows that the problem of shallow verification for all safety properties represented
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by an automaton are in NP for acyclic programs and in PSPACE for arbitrary pro-
grams. O

Theorem 21 shows that verification of repeatable enabling sequence properties is
difficult even for shallow programs. In fact, the situation is worse. We now show
that even the shortest error paths may be of exponential size in the worst case.

Definition 22 (Error Path) Let F be an automaton representing a property to be
verified. We say that a path (possibly cyclic) in the control flow graph of P from the
entry vertex to some vertex v is an error path if symbolic execution of the program
along this path (ignoring the conditionals) exhibits a violation of the property as-
sociated with F. The program P is said to be erroneous if there exists an error path
in P. An integer-valued function f is said to be a bound on the shortest error path
length if every erroneous program for size n is guaranteed to have an error path of
length f(n) or less.

Definition 23 (Loop Unrolling) Consider the control-flow-graph Gp = (Vp, Ep)
of program P. Let G, = (Vp, E') denote the acyclic graph obtained from G p by
removing all back-edges. We define Unroll(G p,n) to be the acyclic graph obtained
by making n + 1 copies of G'» (called G'»(1), G'»(2), ... G's(n + 1) respectively),
and for every back-edge (u,v) in Gp, adding an edge from vertex u in G'p(i) to
vertex v in G'p(i+ 1) for all i from 1 to v. More formally Unroll(Gp,n) = (V*, E*)
where

Vi={(vi) | veVp, 1<i<n+1}
E* = {[(u,i), (v,7)] | [u,v] € Ep, 1 <i<n+1}U
{[(u,3),(v,i+1)] | [u,v] € Ep — Ep,1<i<n}

It is easy to verify that Unroll(Gp, v) is acyclic and contains every path of length v
orless in Gp.

Theorem 24 [f NP # PSPACE, then there does not exist a polynomial bound on the
shortest error path length for repeatable enabling sequence properties.

PROOF. Let F be the finite state automaton associated with the repeatable enabling
sequence property. From Theorem 21 it follows that verification of F for acyclic
programs is in NP and for arbitrary (cyclic) programs is PSPACE-hard. We prove
Theorem 24 by showing that if there is a polynomial bound on the shortest error path,
then the verification problem for cyclic programs can be polynomial-time reduced
to the verification problem for acyclic programs, which would imply that NP =
PSPACE.

Let p(n) denote a polynomial bound on the size of the shortest error path where n
denotes the size of the program. Given an arbitrary program P with control flow
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fraph G p, we construct the acyclic program Unroll(G p, p(n)) which is acyclic and
contains all paths of length p(n) or less in G p. The size of Unroll(Gp, p(n)) and the
time taken to construct it are both polynomial in n. Thus, the problem of verification
of G'p is polynomially reduced to the problem of verifying Unroll(G p, p(n)), which
is a contradiction. O

Theorem 24 suggests that it may not be possible to find short counterexample paths
exhibiting the violation of properties like open™; read. This is important to know
because many approaches to verification (e.g., [3]) are inherently associated with
the generation of a counterexample path that exhibits the violation of the property
of interest. Theorem 24 suggests the possibility that even the shortest error path in
the program may be of size exponential in the size of the program.

5 Verification by counting

We have now seen that verification is intractable for repeatable enabling sequence
properties and polynomial for omission-closed properties. Unfortunately, there are
properties that fall into neither class. A simple example is the open; read property.
Note that open; read is similar to open™; read in that it requires that an object
be opened before it can be read, but it differs from it in that an object cannot be
opened multiple times. Does this make verification any easier?

5.1 The Intuition

The requirement that an object cannot be opened multiple times is a forbidden
subsequence problem (where open; open is the forbidden subsequence) (see The-
orem 7(c)). It follows that we can verify if the given program cannot open an object
multiple times in polynomial time. Thus, open; read verification is polynomial-
time equivalent to open™; read verification of a program guaranteed not to open
any object more than once. We will now show that, at least for acyclic programs,
this added restriction (that an object can not be opened multiple times) does make
polynomial time verification possible.

Letus begin by considering why read*; close verificationis easy while open™; read
verification is not. Consider the following code fragment:

.; pr-open(); ...; prp.open(); ...; g.read();

The open™; read property will be violated if there is an execution path such that
the value of g at the read statement is different from the values of each p; at the
corresponding open statements (assuming there are no open statements in the
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program other than those shown above). Determining if certain relationships can
simultaneously exist among a potentially unbounded number of program variables
is difficult.

In contrast, consider the following code fragment:
.; pp.close(); ...; pp.close(); ...; g.read();

The read”; close property will be violated here if there is an execution path such
that the value of g at the read statement is equal to the value of some p; at the
corresponding close statement. In other words, this requires independent answers
to k different questions, each about the value of only two program variables. This
turns out to be easy.

Let us now turn back to the earlier example above.

.; pi1-open(); ...; pgp.open(); ...; g.read();

If we now know that no object is opened twice, how can we exploit this for
opent; read (i.e., open; read) verification? For any given i, we know that it is
easy to determine if g. read () statement may read the same object that is opened
by the p; . open () statement. Imagine that we can count the number of execution
paths, n;, along which this can happen, for each i. Adding up all the n; would tell
us how many times (i.e., along how many execution paths) the g.read () state-
ment is a valid operation % . If this number does not equal the number of execution
paths to the g.read () statement, then there must be an execution path along
which g . read () will read an unopened object! Such indirect reasoning based on
counting is the basis for the algorithm presented in this section.

Obviously, counting the number of paths is not feasible in the presence of cycles. In
the rest of this section we will restrict our attention to acyclic, or loop-free, programs,
and show how the above approach can be used for a class of verification problems.

5.2 Definitions

We start by formally defining the quantities we want to compute. Given some pro-
gram P, consider a P-path p. Recall that U/ (p) denotes the set of object instances
created in p, and for any i € U(p), p[i] denotes the sequence of operations performed
on i. Let p[p| denote the value of variable p at the end of p. If s is a statement in the
program, we will use s;,, and s,,; to denote the program points just before and just
after the statement s.

4 This is where we exploit the fact that no object is opened twice. Otherwise, adding up n;
will end up counting some paths multiple times.
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Definition 25 Let o denote a sequence of operations, ™ a program path, and 11,
the set of all paths from entry to a program point u. Then, define ct(a,T) =

{ieU(r)|wli] =a}|andct(a,u) & X ep, ct(a, )

We now define auxiliary counts of the form ct((X, a),u), which we will subse-
quently use to compute cf(«, u), where X is a set of program variables. Informally,
the set X will constrain the counting to the object instance pointed to by all variables
in X. Second, while ct(«v,u) counts exact matches for «, ct((X, a), ) will count
subsequence matches for a.

Definition 26 Given two sequences aand (3, let ct(«, 3) denote the number of times
a occurs as a (not necessarily contiguous) subsequence of f3.

C/A\t(al."akybl"'bm)é |{(’L17 )lk)|1§21<'<lk§m /\a/la/k‘:bhbzk}l

In the special case where o is the empty sequence, ct(«, 3) is defined to be 1.

Definition 27 Givenaset ofvariables X, we definelU(m, X) = {i c U(m) | Vp € X.w[p] =i }.
Essentially, if X is empty, thenU(m, X ) isU (). If X is non-empty and all variables

in X point to the same object i then U(m, X ) is { i }. If all variables in X do not

point to the same object, then U(m, X) is empty.

Definition 28 Let o denote a sequence of operations, m a program path, and
I, the set of all paths from the entry vertex to a program point u. Then, define

ct({X, a), 7) = Ticur,x) ct(a, 7[i]) and ct((X, @), u) £ Tren, ct({X, a), 7)
Example 29 Consider the following program:

x = new (); y = new ();
x.open () ;
if (?) {
y.open();
}

x.read(); y.read();
Let u denote the program point after the last statement y . read (). Let p, denote
the path to u where the false branch of the if-statement is taken, and let p; denote the

other path to u. The table below shows the values of the various quantities defined
above. The fact that ct(read, u) is non-zero indicates that the program contains a
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Statement u Equations
ct((X, ), entry, ) = if (| X| > 1 or |a| > 0) then O else 1
ct((X, @), tin) = Yoepred(u) CH(X, @), Vour)
X 1=y ct((X, ), uour) = ct((X = { x }U{y } o), uin) (if x € X)
ct((X, @), tour) = ct((X, ), i) (if x ¢ X)
x = new () |ct(({x} € uou) =ct({{ = },€),uin)
(X, ), tgut) = 0 (if x € X and (|X| > 1 or|a| > 0))
ct((X, ), Uour) = ct((X, ), win) (ifx ¢ X and X # ¢)
x.0p () ct((X, @), Ugyt) = ct({X, ), us) (when « is not of the form Bop )
ct((X, a), toyt) = ct({X, Bop), win)+ (where o = Bop )
ct((XU{x},0), uin)

Fig. 9. Equations for computing the number of subsequence matches. Note that, in general,
the set X may be empty, or the sequence o may be the empty sequence ¢, but the equations
assume that both X and « can not be simultaneously empty. (We are not interested in the
value of ct({¢, €),u).)

violation of the open; read property.

X o ct((X, a), p1)|ct({X, a), pa)|ct({X, @), u) | ct(cx, u)
{x}| read 1 1 2 .
{x}|open; read 1 1 2 .
{v}| read 1 1 2 .
{y}|open; read 0 1 1 i}

[0) read 2 2 4 1

¢ |open;read 1 2 3 3

5.3 Counting Subsequences

We now show how the quantities defined above can be computed. Fig. 9 expresses
the relationships that must hold between the ct values at different program points.

Lemma 30 Forany sequence o and any acyclic program Pgm over a set of program
variables Vars, ct({¢, ), u) can be computed for all program points u in polynomial
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time.

PROOF. We compute the values of ct((¢, ), u) using the equations presented in
Fig. 9. Note that computing c#({(¢, ), u) at a program point u may transitively
require computing the value of ct((X, 3),v) at some vertex v, where (3 is a prefix
of o, and X is a set of variables of cardinality at most || — |3|. Hence, the number
of values (or equations) we need to compute at any program point is O(|Vars||a‘),
where Vars is the set of all variables in the program. The result follows. O

5.4 Counting exact matches

Earlier we argued how we could compute the number of exact matches for read
from the number of subsequence matches for read and the number of subsequence
matches for open; read. We now present a generalization of this idea.

Lemma 31 Let u denote any program point. We will use 3 > « to denote that 3 is
a proper supersequence of « (i.e., that « is a proper subsequence of 3). Then,

ct(o,u) = ct({p, o), u) — Y ct(a, B)ct(B, u).

Ba

PROOF. We will now show that ct(a, w) = ct({¢, o), 7) — 3 g o ct(cv, B)ct(B, )
for any execution path 7, from which the lemma follows immediately. Note that
ct(a, ) counts exact matches for a in 7, while ct((¢, @), 7) counts occurrences of
« as a subsequence in 7. Now, consider any supersequence (3 of . Every exact
match for 3 in 7 will give us ct(c, 3) subsequence matches for . Hence, the above
equality follows. O

A sequence « has infinitely many supersequences 3. So, how can we make use of
the above equation?

Definition 32 A property represented by an automaton F is said to be almost-
omission-closed if there exists an integer k such that for all sequences o, 3,y € %,
if |aBy|> k then Validr(afy) = Validr(ary).

Let us refer to (ay, a37) as an omission-violation if a3 is a valid sequence but ay
is not. An omission-closed property is one with no omission-violations. An almost-
omission-closed property is one with only finitely many omission-violations. Note
that open; read is an example of a verification problem where there is only one
omission-violation, namely read is invalid but open; read is valid. We will now
establish the following.
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Theorem 33 If F represents an almost-omission-closed property, then SV r for
acyclic programs is in P.

PROOF. Consider any « that is invalid. Then, any supersequence /3 of « of length
k+1mustbe a forbidden subsequence. Hence, we can check a program in polynomial
time to see if it contains any such f. If it does, we can stop since the program does
not satisfy the required property. Otherwise, we count the number of subsequence
matches in the program for a and every supersequence (3 of « of size k or less. We
can then compute the exact match count using Lemma 31. O

5.5 Verification of programs with loops?

How can we adapt the ideas described above to verify programs with loops? Given an
almost-omission-closed property, if we can come up with a polynomial bound p(n)
on the length of the shortest error path, then we can “unroll” loops in a given program
P sufficiently to generate a corresponding loop-free program P’ that includes all
paths of length p(n) or less in P, and apply the preceding verification algorithm
to P’. (Definition 23 shows how such unrolling can be done.) This gives us the
following theorem.

Theorem 34 [f F represents an almost-omission-closed property with a polynomial
bound on the shortest error path length, then SV £ is in P.

Unfortunately, we have not been able to identify polynomial bounds on the shortest
error path length for almost-omission-closed properties. We conjecture that such
polynomial bounds exist, at least for the open; read property.

6 Programs with Width-Limited Aliasing

In Section 4 we saw that, unless P = NP, verification of repeatable enabling sequence
properties will require exponential time in the worst-case. Is it, however, possible
to design verification algorithms that are efficient in practice, e.g., by exploiting
properties of programs that arise in practice? For example, one seldom sees programs
in which a very large number of variables point to the same object at a program point.
Let us say that a program has a maximum aliasing width of k if there is no execution
path in the program that will produce an object pointed to by more than & different
variables. In this section, we look at the complexity of typestate verification for
programs where the maximum aliasing width is bounded by a constant.

24



6.1 Polynomial Time Verification for Shallow Programs with Width-Limited Alias-
ing

In this section we present a verification algorithm motivated by the observation that
the aliasing width of programs tend to be small in practice. The algorithm runs in
time O(|Pgm|**1), where |Pgm]| is the size of the program and k is the maximum
aliasing width of the program: Unlike the polynomial solutions of previous sections,
the algorithm presented here works for any typestate property.

We note that naive verification algorithms do not achieve the above complexity,
i.e. they may take exponential time even for programs with a maximum aliasing
width of 2. In particular, consider the obvious abstraction where the program-state
is represented by a partition of the program variables into equivalence classes (of
variables that are aliased to each other), with a finite state associated with each
equivalence class. The number of such program-states that can arise at a program
point is exponential in the number of program variables even for programs with a
maximum aliasing width of 2.

Our algorithm uses predicates of the form [A, S| defined below.

Definition 35 Letr A C Vars be a non-empty set of program variables, and S C Q
a set of states of F.

[AS]= A (y=2) A AN (E#Fz) AN Ins(z))

zeAycA z€A,zeVars\ A z€A
When S contains a single state o € Q, we write [A, o|, rather than [A, {c}].

Intuitively, a predicate [A, S| means that all variables in A have the same value (are
aliases), every variable not in A has a different value from the variables in A, and
the object referred to by variables in A is in one of the state of S. The difference
between [A, S]and (A, S) (Definition 11) is noteworthy. The non-aliasing conditions
are implicitly represented in [A, S] by assuming that every variable not in A has a
different value from the variables in A, whereas in (A, S), the variables not in A
may or may not be aliased to the variables in A.

Fig. 11 presents our verification algorithm that computes, for all program points,
the set of predicates of the form [A, o] that may-be-true at the program point. (A
predicate p is said to be may-be-true at a program point u iff there exists a path to
u such that execution along that path will cause p to become true.) The algorithm
is based on a standard iterative collecting interpretation algorithm. The function
flow(st)(yp), defined in Fig. 10, identifies the set of predicates that may-be-true
after statement St given a predicate ¢ that may-be-true before statement St. For
any program point [, Succ(l) denotes the successors of [.
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Statement |flow(Statement)([A,o])

X 1=y {[AU{z}, 0]} ifye A
{[A\ {z}, 0]} ify ¢ A

x := new () |{[{z},init],[A\ {z},0]} ifz € A
{[A, o]} ifrg A

x.0p () {[A, 0(o,0p)]} ifreA
{IA, 0]} ifz ¢ A

Fig. 10. flow equations for predicates of the form [A, o].

workList = {}
for each program point I
results(l) = {}
for each program variable ux;
add (entry, [z;, {init}]) to workList
while workList # 0 {
remove (l,¢) from workList
for each ¢ € flow(stmt;)(¢) {
for I' € Suce(l) {
if Y & results(l') {
results(l') = results(l') U {¢'}
add (I',v¢') to workList

Pl

Fig. 11. An iterative algorithm using predicates of the form [A, S].

Theorem 36 The algorithm of Fig. 11 precisely computes the set of predicates
[A, S] that may hold at any program point in time O((3;<;<y, (’Z)) * |[Pgm|) =
O(n* x|Pgm|) where k is the maximum number of variables aliased to each other at
any point in the program Pgm, and n = |Vars| is the number of program variables.

PROOF. It can be shown that (a) U,epflow(St)(p) computes a precise abstract
transfer function for statement St with respect to the set of predicates P, and that (b)
this is a distributive function. It directly follows from these facts that the algorithm
computes the precise solution.

We now establish the complexity of the algorithm. Assume that the maximal size
of an alias-set occurring in the program is k. The algorithm may generate predi-
cates of the form [A, S| for all subsets of any size up to k of program variables
Vars. The number of predicates that may have a frue value in a program point is
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therefore O(> <, < (’;‘)) where n = |Vars| (we treat the number of FSM states as a
constant). The complexity of the chaotic iteration algorithm of Fig. 11 is therefore
O((X1<i<k (7;)) * |Pgm|). The expression is also bounded by O(n* x |Pgm|). The
above assumes that the step of computing flow(stmt;)(¢) takes constant time. O

Though the worst-case complexity of the algorithm is exponential, the exponential
factor k is expected to be a small constant for typical programs, since the number
of pointers simultaneously pointing to the same object is expected to be small (and
significantly smaller than |Vars|).

Note that using the set of predicates defined in Definition 35 is not sufficient to
achieve the desired complexity. The style of “forward propagation” used by our
algorithm is also essential, as it ensures that the cost of analysis is proportional to
the number of predicates that may-be-true (rather than the number of total predicates,
as is the case with alternative analysis techniques).

6.2 Width-Limited Aliasing in Non-Shallow Programs

We have now seen that typestate verification can be done efficiently for programs
where the aliasing is bounded in certain ways. Specifically, the results of the previous
subsection show that for shallow programs, typestate verification can be done in
polynomial time if the aliasing width is assumed to be bounded by a constant. A
natural question is whether any such result holds true for non-shallow programs.

Recall that shallow programs are programs where the aliasing depth is restricted to
be one: program variables may point to objects, but program contains no variables
that point to objects that contain pointers to objects.

Unfortunately, it turns out that typestate verification is hard for non-shallow pro-
grams even if aliasing width is bounded by a constant. It is known [18] that alias
analysis is intractable for programs where the aliasing depth is two. We now show
that the intractability result holds even if in addition the aliasing width is also re-
stricted to three.

Theorem 37 Alias analysis is NP-hard for programs with aliasing depth two and
aliasing width three.

PROOF. The proof is by reduction from 3-SAT. Consider a 3-SAT formula C; A
Cs - -- A C, over logical variables w; through w,,. We create a program with a type
T and a second type PT consisting of a field £ of type (pointer to) T. Corresponding
to every clause C;, the program consists of variables X;, Y; true, and Y; £a15¢ Of type
(pointer to) PT initialized as follows:
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Yi,true = new PT(); Yi,true-f = new T();
Yi,false = new PT(); Yi,false-f = new T();

X; = Yi,false
Both Y; trye and Y; .15 are constants in the program.

After the initialization code, the program consists of one if-then-else statement for
every logical variable w; in the 3-SAT formula. The then-branch of this statement
consists of an assignment statement X; = Y; ¢,y for every clause C; that contains
the literal w; as one of its disjuncts. The else-branch of this statement consists of
a similar assignment statement X; = Y; yrye for every clause C; that contains the
negated literal w; as one of its disjuncts.

Thus, there exists a one-to-one correspondence between execution paths through the
m if-then-else statements and possible truth assignments to the m logical variables,
where we associate the then-branch of the ¢-th if-statement with an assignment of
true to logical variable w;. It should be clear that after execution through any path,
X; points to the same object as Y; ¢rye iff the corresponding truth assignment makes
clause C; to evaluate to true.

We now append the following code fragment:

S = new T();
Yl,true-f = S;
Y2,1:rue-f = X.5; Yl,true-f = new T();

YS,true £ =X 5 Y2,true .f new T();

Yn,true £ = Xn—l . f; Yn—l,true .f = new T () ’
R = Yn,true .

Hh

.
14

Now, consider any execution path through the whole program that corresponds to
a truth assignment that makes the entire formula true. Then, a pointer to the object
created by the statement S = new T(); will be successively copied through every
Yi true-f and then finally to R, causing S and R to be aliased at the end of the
program. Conversely, it can be verified that an execution path will cause S and R to
be aliased to each other at the end of the program only if the path corresponds to a
truth assignment that makes the given 3-SAT formula true.

Hence, R and S may alias each other at the end of the program iff the given 3-SAT
formula is satisfiable.

Note that the program generated above has an aliasing width of three (i.e., no more
than three pointers point to the same object at any point during program execution).
In particular, the assignments Y; ¢rye.f = new T () ; guarantee that no more than
3 pointers could point to S at any given time. O
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The following theorem is a straightforward consequence of the above result.

Theorem 38 Typestate verification is NP-hard for programs with aliasing depth
two and aliasing width three.

7 Conclusion

In this paper we have shown that verification of omission-closed properties is in P
and that verification of repeatable enabling sequence properties is NP-complete for
acyclic programs and PSPACE-complete in general. We have shown that verification
of almost-omission-closed properties is in P for acyclic programs. However, many
questions still remain open. E.g., we do not know if verification of almost-omission-
closed properties is in P for cyclic programs. Moreover there are properties which
do not lie in any of these classes. E.g., consider the property open; read* which
generalizes open; read by allowing any number of read operations. We can adapt
the counting method of Section 5 to show that verification of open; read® is in
P for acyclic programs. However, we have not been able to formulate such a result
for a general class of properties that includes open; read®. Finally, there are also
other properties such as (1ock;unlock)” (any number of alternating 1ock and
unlock operations) for which we have neither been able to show a polynomial
bound, nor show an NP-hardness result.

On a more pragmatic note, we have presented a typestate verification algorithm, for
arbitrary typestate properties, that we expect will perform well based on the rea-
sonable assumption that programs tend to have small aliasing width. However, this
algorithm is restricted to shallow programs. A natural question is how these ideas
can be generalized to do verification for arbitrary programs. One of the primary in-
tuitions behind our verification algorithm (for shallow programs) is that maintaining
just the right correlation required between “analysis facts” can be the key to efficient
and precise verification: maintaining no correlations (independent attribute analysis)
can lead to imprecision, while maintaining all correlations (relational analysis) can
lead to inefficiency. The recent work of [28] shows one way to exploit this intuition
for verification of arbitrary (i.e. non-shallow) programs as well.
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