Effective Typestate Verification in the Presence of Aliasin g

Stephen Fink* Eran Yahav~

Nurit Dort G. Ramalingam*

Emmanuel Geay*

* |IBM T.J. Watson Research Center

{sjfink,eyahav,grama,egeay}@us.ibm.com

ABSTRACT

This paper addresses the challenge of sound typestateataifi,
with acceptable precision, for real-world Java programs.

We present a novel framework for verification of typestateppr
erties, including several new techniques to preciselyt éiases
without undue performance costs. In particular, we preadiaw-
sensitive, context-sensitive, integrated verifier thdizets a para-
metric abstract domain combining typestate and aliasifayrima-
tion. To scale to real programs without compromising pieois
we present a staged verification system in which faster gesifin
as early stages which reduce the workload for later, moreigge
stages.

We have evaluated our framework on a number of real Java pro-

grams, checking correct API usage for various Java staridard
braries. The results show that our approach scales to himadie
thousands of lines of code, and verifies correctness for %3¥teo
potential points of failure.

Categories and Subject Descriptors:D.2.4[Software Engineer-
ing]: Software/Program Verification

General Terms: Algorithms, Verification
Keywords: Typestate, Program Verification, Alias Analysis

1. INTRODUCTION

Statically checking if programs satisfy specified safetyperr-
ties can help identify defects early in the developmenteyitius
increasing productivity, reducing development costs, iamatov-
ing quality and reliability.

Typestate [32] is an elegant framework for specifying a<las
of temporal safety properties. Typestates can encodeatarse
age rules for many common libraries and application prognarg
interfaces (APIs) (e.g. [33, 2]). For example, typestate eg-
press the property that a Java program should not read daia fr
j ava. net. Socket until the socket is connected.

This paper addresses the challenge of typestate verificatith
acceptable precision, for real-world Java programs.

We focus on sound verification; if the verifier reports no prob
lem, then the program is guaranteed to satisfy the desi@uepr

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ISSTA'06 July 17—-20, 2006, Portland, Maine, USA.

Copyright 2006 ACM 1-59593-263-1/06/0007$5.00.

' IBM Hgifa Rgsearch Lab
nurit@il.ibm.com

ties. However, if the verifier reports potential problenteyt may
or may not indicate actual program errors. Imprecise aimten
lead a verifier to produce “false positives”™: reported peoi that
do not indicate an actual error. Users will quickly rejecteaifier
that produces too many false positives.

While the most sophisticated and precise analyses caneaeduc
false positives, such analyses typically do not scale tb pea
grams. Real programs typically rely on large and complexpettp
ing libraries, which the analyzer must process in order tsoa
about program behavior.

This paper presents several new typestate verificationigobs,
ranging from the simple but imprecise, to the fairly precime
somewhat expensive. We also present a staged typestdieareri
tion approach, which exploits verifiers with varying cosgfgision
trade-offs. Early stages employ the efficient but impreeisaly-
ses; subsequent stages employ progressively more expersiv
precise techniques. Each progressively more precise &iagses
on verifying only “parts” of the program that previous stadailed
to verify.

The key technical challenge facing typestate verificat@mrléva
concerns pointer aliasing. Since all structured data in Iakeap-
allocated, almost all interesting operations involve paimerefer-
encing. Further, Java libraries encourage layers of entapn
around data, which leads to multiple levels of pointer denexfic-
ing. In order to prove that a program manipulates an object co
rectly, the verifier must cut through the tangle of aliastiefeships
by which the program manipulates the object of interest.

Researchers have developed a variety of efficient flow-sitea
may-alias (pointer) analysis techniques (e.g. [10, 21]nfoctu-
nately, may-alias analysis is inadequate for most typesttfica-
tion problems, which require strong updates [6]. To supgmang
updates and more precise alias analysis, we present a frakew
to check typestate properties by solving a flow-sensitioatext-
sensitive dataflow problem on a combined domain of typestiade
pointer information. As is well-known [9], a combined domai
allows a more precise solution than could be obtained byiraplv
each domain separately. Furthermore, the combined doritaivsa
the framework to concentrate computational effort on aizelysis
only where it matters to the typestate property. This cotraéion
allows more precise alias analysis than would be pracfiegiplied
to the whole program.

1.1 Contributions
The main contributions of this paper are:

o aflow-sensitive, context-sensitive, integrated verifiat uti-
lizes a parametric abstract domain that combines typestate
and points-to abstractions.

e two new techniques to handle destructive updates, utijizin

close()

getinputStream(),
getOutputStream()

connect() CQ close()

N

la getinputStream()

Figure 1: Partial typestate specification for
j ava. net . Socket .

init @

getinputStream();
getOutputStream()

information from a preceding flow-insensitive may poiras-t
analysis. Specifically,

— auniquenessnalysis that can strengthen the results of
the may points-to analysis to support “strong updates”
under certain conditions, and

— afocusoperation, similar in spirit to the one used in
shape analysis [31], that enables the analysis to use
strong updates in certain cases.

Though inspired by shape analysis techniques, our focus op-
eration applies to a more efficient, abstract domain, and re-

class Sender {
public static Socket createSocket() {
return new Socket ();

public static Collection createSockets() {
Col l ection result = new LinkedList();
for (int i =0; i <5; i++t) {
resul t. add(new Socket ());

return result;

public static Collection readMessages() throws | OException {
Col l ection result = new ArraylList();
FilelnputStreamf = new FilelnputStream("/tnp/foo.txt");
...
f.read();
...
return result;

}
public static void tal k(Socket s) throws | OException {
Col | ection messages = readMessages();
PrintWiter o = new PrintWiter(s.getQutputStrean(),true);
for (lterator it=nmessages.iterator();it.hasNext();) {
Obj ect nmessage = it.next();
0. print(nessage);

o.close();

public static void exanmple() throws |OException {
I net Addr ess ad=I net Addr ess. get ByNane("ti nyurl.conicqaje");
Socket handShake = createSocket();
handShake. connect (new | net Socket Addr ess(ad, 80));
I nput Stream i np = handShake. get | nput Strean();

Col | ection sockets = createSockets();

for (lterator it = sockets.iterator(); it.hasNext();) {
Socket s = (Socket) it.next();
s. connect (new | net Socket Addr ess(addr, 80));
tal k(s);

}
t al k(handShake) ;

sults in analyses that are orders of magnitude more scalable; }

than typical shape analyses.

e an empirical evaluation of the efficiency and precision af va
ious verification techniques. The empirical results shglatli
on the relative importance of various techniques for treati
aliases, and demonstrate the validity of a staged approach.

Our implementation handles the full Java language, exctudi
concurrency, subject to caveats described regarding dgriam-
guage features such as reflection. The experimental reshdts
that the staged solver verifies correctness for 93% of thenpot
tial points of failure, running in under 10 minutes acrossligesof
moderately-sized programs.

The rest of this paper is organized as follows: Sec. 2 pravéte
informal overview of the various challenges in typestatdfica-
tion, and sketches our solutions. Sec. 3, Sec. 4 and Secsénre
the abstractions and techniques formally. Sec. 6 preskeatsr-
pirical evaluation, and Sec. 7 reviews related work.

2. OVERVIEW
2.1 Typestate Verification

A typestate property can be specified using a finite stateveato
ton. States in the automaton correspond to typestates \ahici-
ject can occupy during execution. The automaton also qusii
designated typestatr corresponding to an erroneous state of the
object. Transitions in the automaton correspondtservable op-
erationsthat may change the object’s typestate. In this paper, we
focus on observable operations corresponding to methaztaav
tions. The goal of typestate checking is to statically yetiifat no
object reaches its error typestate during any program éxecu

Figure 2: Program with correct usages of common APIs.

Fig. 1 shows a finite state automaton providing a partial iipec
cation for thej ava. net . Socket API. This automaton shows,
for example, that callinget | nput St r eamn() is only legal after
a preceding call taonnect () .

Fig. 2 presents a program that exercises Java Socketsré¢@rs,
and Iterators. Our goal is to verify that the program

e never callget | nput St r ean() orget Qut put St rean()
on aSocket unless it isconnected

e never cally ead() on aclosedstream, and

e always callshasNext () on anl t er at or before calling
next ().

In the example program, some typestate properties (gajdts)
could be verified relatively easily by local, intra-procealueason-
ing. Unfortunately, any local alias analysis can be easifigdted
by unknown side effects from procedure calls.

Other properties require more powerful (and costly) teghes.
In particular, socket usage in the example requires argraeedu-
ral analysis with relatively precise alias analysis, sittee socket
objects flow across procedure boundaries and through carople
lection data structures.

2.2 Outline of our Algorithm

Our verification system is@ompositeverifier built out of several
composableerifiers of increasing precision and cost. Each verifier

Initial
verification
scope

Possible failure
points

Unique
verifier

Flow-ins. Intra- -
feasibility procedural gre
o verifier
check verifier

Figure 3: Overview of framework stages.

can run independently, but the composite verifier stageysemin
order to improve efficiency without compromising precisidrhe
early stages use the faster verifiers to reduce the worklwddter,
more precise, stages.

All of our verifiers use the results of a preceding flow-inseves,
selectively context-sensitive subset-based pointeryaisal This
analysis produces a conservative approximation of the, lzeghin-
duces a partition of concrete objects iatastract objectsas is typi-
cal, the pointer analysis creates names for abstract sli)ased on
static allocation sites and the governing context-sevitsitpolicy *.
The flow-insensitive alias analysis can be performed redbtieffi-
ciently, and scales to large programs (e.g. [21, 24]).

Given a program and a typestate property, we consider albepe
tions in the program that may cause a transition to an erabe sis
points of potential failure (PPF)We consider a paifo, p) where
o is an abstract object, anda point of potential failure, as a sepa-
rate verification problem. We refer to such pairpatential failure
pairs. We define averification scopéo be a set of potential failure
pairs.

Our verification system starts by initializing the verificat scope
to contain all matching pairs of abstract typestate objants po-
tential points of failure. The verification scope is thendyrally

reduced by a sequence of stages, as shown in Fig. 3. Each stage

may successfully eliminate potential failure pairs by fyéng for
a pair(o, p) that a failure cannot occur for objects represented by
at the pointp.

Each composable verifier exploisgeparation[11, 35]: it per-
forms the typestate checking separately for each abstbgettoof
the appropriate type in the program. It accepts as a parameés-
ification scope which holds information from the preceditapss
about which potential failure pairs remain unverified.

Each verifier restricts its attention to the verificationsgoand
produces an updated verification scope for the subsequeseph
The system reports any potential failure pairs that remfier the
last stage as potential errors.

In the following discussion we briefly describe each of these
stages. Later, we present a more detailed description altee
rithms.

2.2.1 Flow-Insensitive Feasibility Checking

Prior to any flow-sensitive analysis, the first stage pruheveér-
ification scope using an extremely efficient flow-insensitarror-
path feasibility check. The flow-insensitive pointer arsiypro-
vides the set of observable operations that may occur fdr abe
stract object. The flow-insensitive verifier determineg isipos-
sible for the abstract object to reach the state in the typestate
automaton, using this set of operations.

Any abstract object that does not exhibit a feasible erathp
could be considered as verified.

In our running example, thEi | el nput St r eamobject allo-
cated inr eadMessages() is pruned at this stage, as the pro-
gram never invokes| ose() for this abstract object, and thus it
can never reach an error state (foe‘ad() aftercl ose()”).

1 Sec. 6 gives details on our implementation’s context-sigitgi
policy.

This stage, however, is unable to verify the correct usagheof
Iterators or Sockets in the example program.

2.2.2 Intraprocedural Verifier

The intraprocedural verifier is a flow-sensitive verifiertthe-
stricts the scope of each verification attempt to a singleqaiare.
The verification starts at the beginning of each proceduseras
ing an arbitrary unknown initial context (state). Methodlcare
treated conservatively, without analyzing the method.s®ssen-
tially works well for “local” objects, which are pointed-toy local
variables only. The intraprocedural verifier uses the saosérac-
tion as the integrated verifier (see Sec. 2.2.4 and Sec. 5).

When the intraprocedural verifier is able to verify all uséam
abstract object in the program, we can avoid interproce i
fication for that object. This is often the case for typestdifects
that do not escape the method in which they are allocated.

For example, the intraprocedural verifier can verify thatital
erators in our running examples are used correctly. Apglyire
intraprocedural verifier as an early stage eliminates thesl rier
verification of the Iterators in the running example by thiteia
more expensive interprocedural solvers.

2.2.3 Strong Updates: Uniqueness Analysis

While a flow-insensitive alias analysis suffices to checlsifea
bility of an error-path (as in Sec. 2.2.1), it generally does suf-
fice for verifying typestate properties. A flow-insensitizealysis
produces onlymay aliasinformation and nomust aliasinforma-
tion. Therefore, an analyzer that directly uses the resflsflow-
insensitive analysis must use “weak updates” to handlgasents
and operations via a pointer.

Using “weak updates” precludes verification of many typesta
properties. For example, itis insufficient for verifyingettypestate
property of Fig. 1. Using onlynay aliasinformation, the analyzer
cannot guarantee that@annect () operation occurs on the same
concrete object as a subsequgat | nput St r ean() operation.
Hence, such analysis cannot verify this property.

We now present a verifier that is still based on flow-insevesiti
alias analysis, but uses a nougliqueness analysts allow strong
updates in some scenarios.

Consider the invocation of a method, via a pointethat may
alter the typestate of the receiver object. If the followtag con-
ditions hold, then the analysis can apply a strong updatbdage
the typestate of the receiver object:

(a) the points-to set fgy consists of a singlabstractobject
(b) thisabstractobject represents a singtencreteobject.

Consider an abstract objeStrepresenting a particular (context-
sensitive) allocation sit@l. This abstract object represents all con-
crete objects that are allocatedAt The Unique solver performs
a flow- and context-sensitive analysis with a simple abtbado
determine if more than one object allocateddatan be simultane-
ously alive. If not, then the abstract objettepresents at most one
concrete object at that program point, and the verifier cqohoéx
strong updates at that point if condition (a) mentioned abalgo
holds.

For example, the Unique verifier can verify the correct use of
the socket pointed-to byandShake in the methodexanpl e() ,
despite the fact that this object is used interprocedufaltg hence

2For purposes of typestate checking, we may safely ignorpdke
sibility of the pointerp being null, which will result in a null-
pointer dereference exception. If desired, null-pointezaking is
done separately.

could not be handled by the intraprocedural verifier of trevijgus
section).

Unigueness analysis of general use in our framework, and later
stages incorporate the technique. This novel analysis amesgda-
vorably to existing techniques for computing unique alusti@éca-
tions, as it relies on flow- and context-sensitive analyssmruned
program with respect to the tracked abstract object (seeisifon
in Sec. 7).

2.2.4 Integrated Verifier

The Integrated verifier improves upon the Unique verifier &g p
forming flow- and context-sensitive verification with an aastion
that combines aliasing information with typestate infotiora The
use of a combined domain is more precise than separatelyrperf
ing typestate checking and flow-sensitive alias analysiss aom-
mon with abstract interpretation over combined domains [9]

For example, flow-sensitivity of alias information enald&é®ng-
updates in cases such as the one below, where the Uniquewnerifi
fails because the abstract file object does not qualify apueni

Col lection files = ...
while (...) {
File f = new File();
files.add(f);
f.open();
f.read();

Since all our verifiers exploit separation, it suffices tou®on
the problem of verifying usage for a single abstract objethe
Integrated verifier utilizes an abstract domain that castunfor-
mation about the typestate of the given abstract object,adisas
information about a sed/ of pointer access paths that definitely
point to the given abstract object, and a €1V of pointer access
paths that definitely do not point to the given abstract dbjébe
domain also includes a boolean flag indicating if there magtex
other access paths, not mentionedinthat may point to the given
abstract object. Sec. 5 presents a more complete desoridtibe
abstraction.

A key element of the integrated verifier's abstraction is ke
of a focusoperation [31], which is used to dynamically (during
analysis) make distinctions between objects that the lyidgrba-
sic points-to analysis does not distinguish. For exammasicler
the loop in the methodxanpl e() in our running example. The
verifier utilizes two or more abstract objects to represast et
of all (5) Socket objects created by ther eat eSocket s()
method (even though the flow-insensitive pointer analyspge-
sents them by a single abstract object): one abstract otgpet
resents the Socket pointed to by and the other abstract objects
represent the remaining Sockets.

This enables the use of strong updates, allowing verifiodto
all Sockets in the running example, despite their flow thtoag
collection and across procedures.

3. TYPESTATE CHECKING FRAMEWORK

This section presents a framework for typestate checkinghwh
enables declaration of different levels of abstractions.

First, we sketch an instrumented concrete semantics fopthb-
lem. Intuitively, given a typestate property, our semantitstru-
ments the program statstaté to include for every objecty?, its
typestate from the property definition. The instrumentedagics
verifies that an object never reaches its error typestate.

Next, we present @arameterizedonservative abstraction that
allows us to define the family of abstractions used by theowari
verifiers in our framework.

3.1 Instrumented Concrete Semantics

We assume a standard concrete semantics which defines a pro-
gram state and evaluation of an expression in a program 3tage
semantic domains are defined in a standard way as follows:

Lf € objects

%% € Val = object$ U {null}

o° € Env= Varld — Val

hf € Heap= objectd x Fieldld — Val

staté = (L%, o, h') € States = 20088 . Envx Heap

whereobject$ is an unbounded set of dynamically allocated ob-
jects,Varld is a set of local variable identifiers, afteldld is a set
of field identifiers.

A program statekeeps track of the set of allocated objedtS)(
an environment mapping local variables to valyed,(and a map-
ping from fields of allocated objects to valuég).

We also define the notion of an access path as followsoiAter
pathy € T' = Fieldld* is a (possibly empty) sequence of field
identifiers. The empty sequence is denoted.bye use the short-
hand f* where f € Fieldld to mean a sequence of lengthof
accesses along a fiefd An access patlp = z.v € Varld x T'is a
pair consisting of a local variableand a pointer path.

We denote byAPsall possible access paths in a program. The
I-value of access path, denote bystaté [p], is recursively defined
using the environment and heap mappings, in the standardenan

We formally define a typestate property as follows.

DEFINITION 3.1. A typestate property is represented by a fi-
nite state automatorf = (X, Q, 4, init, @ \ {err}) whereX is the
alphabet of observable operationg), is the set of states) is the
transition function mapping a state and an operation to acese
sor state, inite Q is a distinguishednitial state err € Q is a dis-
tinguishederror statefor which for everys € %, §(err,o) = err,
and all states inQ \ {err} are accepting states. Given a sequence
of operations we say that it igalid when it is accepted b§F, and
invalid otherwise.

Our instrumented concrete semantics instruments evegretn
state(L?, p*, hf) with an additional mappingypestaté: L' — Q
that maps an allocated object to its typestate.

For a given statestaté = (L%, p% h%), we define a function

AFﬂstateﬂ: Lf — 2APSasa mapping between allocated objects

and the access paths that evaluate to them,AR.(0") = {e |
staté[e] = o'}. When the state is clear from context, we omit it
and simply writeAP* (o%).

A state of the instrumented concrete semantics is thereftue
ple (L%, pf, h*, typestaté).

EXAMPLE 3.2. Given the property of Fig. 1, the instrumented
concrete state before the first callto connect () inexanpl e()
contains six objects: one objeog allocated during the invoca-
tion of cr eat eSocket (), and five other objects?, . . ., 0%, al-
located during the invocatioor eat eSocket s() . The values of
typestaté and the function AR0j) are:

typestaté(o?) = conn AP(0%) = {handShake}

typestaté(o?) = init AP"(0%) = {s, sockets.head}

typestaté(o’) = init AP"(o%) = {sockets.head.next' '}
where(i = 2,..5)

The instrumented semantics updates the typestate of teetobj
in a natural way. When the object is first allocated, its tyaes
is mapped to the initial state of the typestate automatoenTan
every observable event, the object typestate is updateddingly.

3.2 Abstract Semantics abstract object, and b) definitely do not alias this abstaet

The instrumented concrete semantics uses an unboundefi set o ject. If the must-alias set is non-empty, the must-aliasi-par
objects with an unbounded set of (unbounded) access pattiss| tion represents a single concrete object.
section, we describe a parameterized abstract semarstcallitws
us to conservatively represent the instrumented concesbaustics
with various degrees of precision and cost.

Our abstract semantics uses a combination of two representa This can be formally stated as follows:
tions to abstract heap information: (i) a global heap-grapinesen-

(d) If May = false, the must access path is complete; it con-
tains all access paths to this object.

tation encoding the results of a flow insensitive points#algsis; DEFINITION 3.3. A tuple ,
(i) enhanced flow-sensitive must points-to informatiotegrated (0, unique typestateAPmust May, APmystNot IS asound repre-
with typestate checking. sentatiorof objecto? at instrumented state istdtevhen:
3.2.1 Flow-insensitive May Points-to Information 0 = ik(o) o ,
, o A unique=- {z" € live(istat€') | ik(z?) = 0} = {0"}

The first component of our abstraction is a glohabp graph Bl o AP C AP (o
obtained through a flow-insensitive, context-sensitidessti based A\ typestate= typestaté(o®) A b must = (o)
may points-to analysis [3]. This is fairly standard and jdeg a A (~May = (APmus;[: AP (o))
partition of the sebbjects into abstract objects. In this discussion, A APmustNot" AP (o) =0
we define arinstance keyo be an abstract object name assigned by \here ik is an abstraction mapping a concrete object to thtaince
the flow-insensitive pointer analysis. The heap graph pes/ifor key that represents it, ardve istate') is defined to be
an access patt, the set of instance keysritay point-to and also {% | AP (1) £ 0},
the set of access paths that may be aliased avith

The heap graph representation of the running example centai DEFINITION 3.4. An abstract state istate is soundrepresen-
two instance keys for type Socket: one representing thecbhje tation of a concrete state istdte= (L%, p*, h%, typestaté) if for
located incr eat eSocket, denoted by)g in Example 3.2, and every objecb” € L there exists a tuple in istate that provides a
another one, for the second allocation site, representiffigeaob- sound representation of.
jects in thesocket s collection.)

_ _ 3.3 Base Abstraction

3.2.2 Parameterized Typestate Abstraction The Base (least precise) abstraction is an instance of thenga

Our parameterized abstract representation uses tuples fofrm: terized abstraction with zero length and width of both thestaund
(0, unique typestateAPmyst May, APmustNot Where: the must-not access path sets (and heheey = true in all tu-

ples). In addition, this abstraction does not track unigssn This
yields a typestate checking algorithm, similar to [11] is #@lias
handling, that cannot verify any property that requiresrsgrup-
dates. For simplicity, we denote each tuple in this abstadas
(o, typestatée

e 0is an instance key.

e uniqueindicates whether the corresponding allocation site
has a single concrete live object.

e typestatds the typestate of instance key . .
ExXAMPLE 3.5. A base abstraction representing the concrete

e APmustis a set of access paths that must point:to state described in Example 3.2 contains two instance keyem
resentingo? and o 5 representing the five objects, i = 1,2, .5

e Mayis true indicates that there are access paths (not in the j thesocket s collection and the following three tuplegoo, init),
must set) that may point t@ (00, conn), (045, init).

* APmustNotis & set of access paths that do not poinb:to This analysis is an iterative flow- and context-sensitiveppga-

This parameterized abstract representation has four dioves) for tion, that tracks tuples starting with an initig, init) generated at

the lengthandwidth of each access path set (must and must-not). @0 allocation. The analysis only needs to handle obsenapge
The length of an access path set indicates the maximal lexfigth ~ &tons and propagates tuples according to typestate chaige

an access path in the set, similar to the parameter k-limited result of an observable operation associa_ted with ewgrn the

alias analysis. The width of an access path set limits thebenrof tuple (o, typestaté are two tuples: The previous tuple and the tuple

access paths in this set. (o, d(typestateop)). Tuples are never removed; all operations are
An abstract state is a set of tuples. We observe that a conser-Nandled as weak updates. The first tuple in Example 3.5 demon-

vative representation of the concrete program state muest thie strates the results of a weak-update. It rgpresentwﬁpdﬂ Ex-
following properties: ample 3.2, may be in thmit state, which is not feasible in any

concrete state at this program point.
(a) Aninstance key can be indicated as unique if it represant

single object for this program state. 4. UNIQUENESS ANALYSIS

(b) The access path sets (the must and the must-not) do ribt nee TheT Uniqge verifier gxtends the Base abstraction, addir)gaan a
to be complete. This does not compromise the soundness ofStraction which determines whether more than one conclgéen

the staged analysis due to the indication of the existence of corresponding to a given instance key can be simultanealisty.
other possible aliases. This information allows the verifier to use strong updatedeun

certain conditions. We refer to this analysisaijueness analysis
(c) The must and must-not access path sets can be regarded as Interms of the abstraction tuples introduced in Sec. 3, thigle
another heap partitioning which partitions an instance key verifier makes use of only the instance key, uniqueness fratthe
into the two sets of access paths: those that a) must ali@s thi typestate. (Thus the must-point-to set and must-not-goiset are

always empty, and the May flag is always true.) Hence, we will
represent each tuple as a trigle unique typestaté.

The analysis works as follows. The first time an allocatida si
with an instance ke¥ is executed (during analysis), it generates the
tuple (k, true, init). If, during the analysis, any tuplg, true, s)
reaches the same (context-sensitive) allocation sitealtbeation
site will generate the tuplé:, false, typestate.

To make the above technique effective for allocation sites t
are in a loop, it is necessary to find a way to “kill” the tuplelsere
possible. This verifier utilizes a preliminary livenesslgags, com-
puted prior to typestate checking, that determines a coates
approximation of which instance keys may be live at eachnarog
point. Whenever a tuplg for an instance keyp flows to a program
point whereo cannot be livep can be removed soundly.

The framework admits any form of liveness analysis, whiah ca
be plugged into the verifier. Our currentimplementatiorsussim-
ple bottom-up interprocedural liveness analysis, basetherre-
sults of the preliminary flow-insensitive, partially coxtesensitive
pointer analysis.

This approach is effective in two situations. Fishgletonpat-
tern objects clearly retain theunique predicates, and so enjoy
strong updates everywhere. The Java standard librariesinse
gleton patterns frequently.

Additionally, the liveness analysis allows unique anaysisuc-
ceed for a ubiquitous pattern: an allocated object diesrbefs
allocation site executes again. In practice, we have fohat &
simple liveness analysis catches many of these cases.

For tuples not marked unique, this verifier degeneratesthreo
Base verifier of Sec. 3.3. For example, while uniquenesslaand
the handshakesocket in the running example, uniqueness cannot
show that the Sockets in the collection are used correctig im-
stance key that represents all the Socket objects irs tleket s
collection is, naturally, not unique. Therefore, when ttegesment
s. connect () is analyzed, the typestate of the abstract Socket
object is weakly-updated, indicating that a socket may pgdhe
conn state or thenit state. These tuples propagate to the state-
ments. get Qut put Strean() int al k() , causing the verifier
to imprecisely report a possible error.

Note that in the example, although verifying usage oftthad-
shakeobject does not rule out errors at any potential points ¢f fai
ure, the staged verifier will remove pairs involving th@ndshake
object from the running verification scope. This would rezitize
computational workload for the next stage.

5. INTEGRATED TYPESTATE AND ALIAS

ANALYSIS

In this section, we describe two verifiers that make use of the
access-path sets in the tuple representation. We firstideste
APFocus verifier, our most precise analysis.

5.1 Update Functions

The interpretation of an allocation statemewnt = new T()"”
with instance key will generatea tuple(o, true, init, {v}, false, 0)
representing the newly allocated object. Whday is false, the
APmustNotcomponent is redundant and, hence, initialized to be
empty. Table 1 shows how a tuple is transformed by the ingtapr
tion of various statements. When a typestate method is édjoke
can (1) use th&PystNotinformation to avoid changing the type-
state of the tuple where possible, (2) use Mg ystinformation
to perform strong updates on the tuple where possible, nase3
the uniqueness information also to perform strong updatesrev
possible.

When a tuple reaches the allocation site that created itemerg
ate two tuples, one representing the newly created objedtpae
representing the incoming tuple. We change the uniqueregsdi
false for reasons explained earlier. For assignment stattnwe
update theAPmystandAPy,stNot@S appropriate.

5.2 Focus Operation

We now describe the focus operation, which improves theprec
sion of the analysis. As a motivating example, consider tates
ments. connect () in the loop in the metho@gxanpl e() in
our running example. We have an incoming tuple representing
all of the sockets in the collection, and, hence, we cannptyap
a strong update to the tuple, which can subsequently cawalsen f
positive. Thefocusoperation replaces the single tuple with two tu-
ples, one representing the object thaioints to, and another tuple
to represent the remaining sockets. Formally, considemn@miing
tuple (o, unique typestateAPmuyst true, APmstNot @t an observ-
able operatiore.op(), wheree ¢ APmyst bute may point too
(according to the flow-insensitive points-to solution).eTdnalysis
replaces this tuple by the following two tuples:

(o, un?que typestateAPmustU {e}, true, APmustNot
(0, unique typestateAPmyst true, APmustNot {e})

In the example under consideration, the stateraegionnect ()
is reached by the tupk@: . 5, false, init, (), true, §). Focusing re-
places this tuple by the following two tuples:

(01..5, false, init, {s}, true, 0)
(01..5, false,init, 0, true, {s})

The invocation ot onnect () is analyzed after the focusing. This
allows for a strong update on the first tuple and no update en th
second tuple resulting in the two tuples:

(01..5, false,conn {s}, true, 0
(01..5, false, init, 0, true, {s})

We remind the reader that theique component tuple merely
indicates if multiple objects allocated at the allocatidte 8 may
be simultaneously alive. A tuple such as
(01..5, false,conn {s}, true, 0), however, represents a single ob-
ject at this point, namely the object pointed to §ywhich allows
us to use a strong update.

The analysis applies thfscusoperation whenever it would oth-
erwise perform a weak update for a typestate transitionsTfos
cus splits the dataflow facts tracking the two typestates ribe
mally result from a weak update.

5.3 Focus and polymorphism

Polymorphism is the distinguishing feature of object-oréal
languages; an object’s behavior depends on its concreter&gper
than it's declared type. Polymorphic call sites, presenngarest-

ing and widespread difficulty for the integrated typestdteoking.
Consider the following snippet of code:

Col l ection ¢ ..
for (lterator it=c.iterator();
it.hasNext();){
it.next();}

The Java Collections API often returns one of two Iteratqulen
mentations, depending on whether the collection is emphusT
the calls to botlhasNext andnext are polymorphic. This effec-
tively introduces a path-sensitivity issue, where the twoanic
dispatch sites play the role of correlated branches in ttosuil
path-sensitive discussions.

Stmt S Resulting abstract tuples

observable operationop()
asop € X whereo € pt(e)

0, unique 6(typestateop), APmust May, APmysiNot If € & APmusiNot! (¢ € APmustV May)
0, uniqug typestateAPmust May, APmustNot If € € APmustNotY (¢ & APmustA —(uniqueA pt(e) = {0}) AMay)

0, false, typestateAPmyst\ {v.y [y € '},

v =newT() whereo = Stmt S o, false.init, {v}, false, 0})

May, APmystNot- {v}

(
(
(
{
(
{

{v.fle € APmustNot)

v=null 0, unique typestateAPmuyst\ {v.v | v € T'}, May, APpusinot” {v])
v.f=null 0, uniqug typestateAPmust\ {€’.f.y | mayAliage’, v), v € T'}, May, APyysiNotY {v.f})
v=e (0, uniqug typestateAPmuystU {v.7 | e.y € APmust}, May, APpysiNot\ {vle € APmusiNot)
APust:= APmustU {v.f.7 [ey € APmustt
v.f=e (0, unique typestateAP, gy May V Fv. f.y € AP usp P € AP | mayAliagv, p) A p.f.v & APust APmustNot\

Table 1: Transfer functions for statements indicating how a incoming tuple (o, unique, typestate, APy st, May, APqustNot) 1S trans-
formed, where pt(e) is the set of instance keys pointed-to by in the flow-insensitive solution,v € Varld. mayAlias(e1, e2) iff pointer

analysis indicatese; and ex may point to the same instance key.

As in ESP [11], we could introduce path-sensitive predigétat
encode the direction of dynamic dispatch. Instead, ourd@tgo-
rithms exploit information from the tuple to avoid propagatat
polymorphic call sites.

In particular, before the call thasNext , if we have the tuple
(o, false,init, 0, true, ®) (in which caseo represents one of the
two possible concretet er at or implementations) then thfecus
operation will result in two tuples after the callbas Next :

t1 = (0, false, hasNext, {it}, true,)
to = (0, false, init, 0, true, {it})

The flow functions forcall edges exploit alias information to avoid
propagating tuples down infeasible paths. In particulse, ftow
function for the call ta t . next will not propagate to thenext
operation, since indicates that t must-notaliaso. Thus, focus
avoids a spurious transition tar.

Intuitively, focusintroduces a notion of path-sensitivity, where a
path corresponds to a dynamic dispatch governed by aliaael
ships for tracked objects.

5.4 Discarding Access Paths

As explained earlier, we enforce limits on the length and the
number of access paths allowed in thBmyst and APy stNot
components to keep the number of tuples generated finite.eVe d
signed the abstract domain specifically to discard accassip-
formation soundly, allowing heuristics that trade premisfor per-
formance but do not sacrifice soundness. This feature isatfioc
scalability; the analysis would suffer an unreasonabléosign of
dataflow facts if it soundly tracked every possible acces, jga in
much prior work [13, 23, 7, 14].

We can always safely discard access path elements from the
APmustNotcomponent, since the flow functions do not rely on the
must-not set being complete. Additionally, we can safelcdid
elements from thé\Pystcomponent by setting thélay compo-
nent to be true, indicating that teéPmstset does not contain all
possible aliases.

There are a variety of possible heuristic options for limgtthe
number of tuples. For example, ESP’s “property simulatioifo-
duced lossy joins, to merge tuples that do not differ in tipegyate
property of interest [11].

Our current implementation uses a different heuristicidtards
the priorAPy,stNotPaths when applying ocusoperation, main-
taining the more precise information from the most redeotis
This is based on intuition that in most cases the extra poecis
from focuswill manifest at the next typestate change. This heuris-
tic avoids a common exponential blowup in state due to a segue
of focus operations, and seems to perform well in practice.

5.5 The APMust Verifier

APMust is a simpler version of APFocus engine that makes use
of theAPmystcomponent, but not th&Py, ,stNoicOmponent. Thus,
the AP ustNotcomponent is always an empty set in this abstrac-
tion. Since it does not use thP,,stNot it does not use focus
either (since focus is ineffective without thePy,,stNng)- Other
aspects of this engine, such as the transfer functions, easbb
tained in a straightforward way from the description of A&

We include the APMust verifier for comparison in the next sec-
tion, to help evaluate the contribution of the focus operati

6. EXPERIMENTAL RESULTS

6.1 Implementation

The preliminary flow-insensitive pointer analysis pro@mostly
context-insensitive field-sensitive Andersen’s analfgjisenhanced
with a selective object sensitivity policy [26] to disambéae con-
tents of Java collection classes and I/O stream contain€lse
pointer analysis relies on an SSA register-transfer lagguepre-
sentation of each method, which gives a measure of flow-thatysi
for points-to sets of local variables [20]. The pointer gs& names
each context-sensitive allocation site as an instanceakel/builds
the call graph on-the-fly. For these experiments, we cordigue
analysis to ignore some system libraries such aga. awmt and
j avax. swi ng, which generally do not have side effects that af-
fect the typestate properties of interest. This choice cesluhe
computed call graph sizes.

The analysis deals with reflection by tracking objects tdszas
as in [17, 25] . When an object is created by a reflective call. (e
newl nst ance), the analysis assumes (unsoundly) that the ob-
ject will be cast to a declared type before being accessed Th
analysis tracks these flows, and infers the type of objectede
by newl nst ance based on the declared type of relevant casts.
While technically unsound, we believe that this approxiorais
accurate for the vast majority of reflective factory method3ava
programs.

The pointer analysis adds one-level of call-string contexialls
to various library factory methodar r aycopy, andcl one state-
ments, which tend to badly pollute pointer flow precisionafdled
without context-sensitivity. The system uses a substditirary of
models of native code behavior for the standard libraries.

The flow-sensitive combined typestate and alias analysidsbu
on a general Reps-Horwitz-Sagiv (RHS) IFDS tabulation esolv
implementation [29]. We have enhanced the standard IFD&isol
in straightforward ways to handle Java’'s exceptional ai+ftow
and polymorphic dispatch without undue precision loss.

Table 2: Call graph characteristics for benchmarks.

6.2 Sparsification

To make the analysis scale, we rely on a lightweight spaasific
tion[28] optimization prior to solving the IFDS problem. @xider
an integrated verifier using access-paths bounded by depitie
first consult the flow-insensitive points-to graph to comagvely
determine all program variables that may appear in accatsp
of depth at mosk;, which point to typestate objects of interest for
a given property. Next, we perform a context-insensitivedmef
analysis over the call graph, to determine those call grajales
which may write to such variables; call these te&evantnodes.
We prune the call graph to includmly those nodes from which
somerelevantnode is reachable, since the other nodes cannot mod-
ify the IFDS solution.

This pruning is particular important for the LocalFocusifier.
Exploiting the pruning, the LocalFocus verifier can avoidking
conservative assumptions for every method call, thus lgréat
creasing its precision.

We assume that methods from the standard libraries will Rot d
rectly transition toerr, and apply sparsification accordingly. Of
course, the analysis still must analyze all relevant lipicode to
account for typestate transitions to nen-states, and aliases in-
duced by the libraries.

In the staged verifier, we exploit results from early stagasit
prove sparsification in latter stages in two ways. Firstnifearly
stage verifies that a particular statement does not trandibierr,
latter stages incorporate this information to improve siiiaation.
Second, if an early stage proves that a particular abstigeto
never causes an error, latter stages ignore tuples for bisataat
object entirely.

6.3 Benchmarks

Table 2 lists the benchmarks employed in this study. Apache
Bcel is a bytecode toolkit with a sample verifigkava_cup and
JLex are a parser generator and lexical analyzer, respectiaely,
Java.Jbi dwat cher is an online auction tool.2j is Multi-User
Dungeon game server. Apacheacence is a text search engine.
Por t ecl e is a GUI application for managing secure keys and
certificates. SPECj viB8 is a collection of client-oriented appli-
cations.TVLA is a research vehicle for abstract interpretation. The

Benchmark || Classes] Methods | Bytecode Stmts| Contexis Name Description

bcel 751 4070 236,271 6011 Enumeration | CallhasNext El enment beforenext El enent
gj 209 2253 131,288 2358 InputStream | Do not read from &losed! nput St r eam
javacup 102 567 45,510 813 Iterator Do not callnext without first checkindhas Next
jbidwatcher 492 2723 180,492 3641 KeyStore Always initialize akey St or e before using it
jlex 90 369 38,019 610 PrintStream | Do not use alosedPri nt St ream

jpat-p 39 115 10,910 133 PrintWriter Do not use &losedPri nt Wi ter

12 583 3443 209,184 4766 Signature Follow initialization phases foi gnat ur es
lucene 719 3540 224,478 5238 Socket Do not use &ocket until it is connected
portecle 623 2992 210,543 4762 Stack Do notpeek or pop an emptySt ack

rhino-a 169 1150 81,388 1427 URLConn lllegal operation performed when already connected
sablecc-j 362 2027 88,982 2476 Vector Do not access elements of an empbet or
schroeder-m| 104 481 25,020 696

soot-c 651 2682 137,537 3105

specjvm98 627 3465 290,272 5654 Table 3: Typestate properties.

symjpack-t 52 204 73,826 224

toba-s 132 610 52,985 838

:\égl 633%3 321%%% > ﬁgﬁ% 529 36?5:13 remainder of the benchmarks come from the Ashes suite,itledcr

at the Ashes web pade

The Table reports size characteristics restricted to naisthis-
covered by on-the-fly call graph construction. The call grap
cludes methods from both the application and the librarfes;
many programs the size of the program analyzed is dominated b
the standard libraries. The table also reports the numkienethod)
contexts in the call graph. Recall that the context-seviisitpolicy
models some methods with multiple contexts.

Table 3 lists intuitive descriptions of the typestate prtips ver-
ified in the experiments.

6.4 Methodology

The experiments evaluate the following verification althoris:

e FI: flow-insensitive analysis (Sec. 2.2.1)

e LocalFocus the intraprocedural analysis (Sec. 2.2.2)

Base the base analysis (Sec. 3.3)
Unique: the analysis using theniquereasoning (Sec. 4)
APMust: the integrated analysis without focus (Sec. 5)

e APFocus the integrated analysis with focus (Sec. 5.)

Staged a staged analysis consisting of three stages: Local-
Focus, Unique, and APFocus.

Note that each verifier performs the Fl analysis as a first stape

it is extremely fast and can prune the workload based on tee “v
ification scope” passed from the previous stage. The expeitsn
use an access-path depth limit of 2, and unlimited accetbsgad
width.

All experiments ran on an IBM Intellistation Z pro with two0&
GHz Intel Xeon CPUs and 3.62 GB of RAM, running Windows XP.
The analysis implementation, consisting of roughly 200,00es
of Java code, ran on the IBM J2RE 1.4.2 for Windows, with a max
heap of 800MB.

6.5 Results

Figure 4 shows the percentage of warnings, as a percentage of
total number of statements that the callgraph indicate$iign-
sition toerr (points of potential failure (PPF)). The number shown
above each bar in the figure is the total number of PPFs.

The rightmost cluster of bars shows the total number of wasi
across all runs. Overall,

e The FI verifier verifies correctness 80% of PPFs.

3http://ww. sabl e. ncgi | | . cal ashes/

227 46 388 133 400 3 118 109 384
100

80 —

60 —

Warnings/PPFs (%)

40—

j 1Y

32 74 19 293 1345 16 419 872 4878

— PPFs
= FI
=3 LocalFocus
== Base
mm Unique
m=m APMust
| =m APFocus
'
I3
=
&

& o~ g $ &
S S @ 2 @ < & o S >~
> g &£ 2 g & & & F £ 5 g o
§ v FFELE ¥ LT EFE S EE F &
@
R - DA S a
a)
363 497 805 2 1928 1127 18 4 83 14 37 4878
100+ M M
80
<3
S 5o = PPFs
L = FI
& 3 LocalFocus
5 == Base
= == Unique
£ =m APMust
g 40— mm APFocus
20—
0- k il -
S & & 9
O A 3 =
Sy g g S 4) & X 5
s £ £ & £ &£ 5 £ &5 & & gz
§ s & oy & & S 2] & S @ S
I L = X < 5= 2 A
& & & 4 &

Figure 4: Percentage of warnings out of total number of poing of potential failure (PPFs). Results are grouped by a) apptation,

and b) property. Number of PPFs is shown above each group.

e The LocalFocus verifier verifies correctnessgdgo of PPFs.
e The Base verifier verifies correctness &&% of PPFs.

e The Unique verifier verifies correctness ##% of PPFs.

e The APMust verifier verifies correctness 86% of PPFs.

e The APFocus verifier verifies correctness 989 of PPFs.

Table 4 shows detailed results for verification warninggslpoed
by the most precise (APFocus) solver. By construction, tag&l
verifier has the same precision as APFocus. Sec. 6.7 disctisse
sources of many false positives.

6.6 Performance

Figure 5 reports the running times of the various verifierssg
the benchmarks. The results show the expected relative abite
various verifiers.

6.6.1 Impact of Staging

The Staged verifier improves performance compared to the AP-
Focus verifier on 9 of the 10 codes where typestate checkkas ta
more than 30 seconds. On these 10 codes, staging improves per
formance by up to 85%t (/1 a), with a median of 34%. Staging
hurts performance by 40% dr2j ; on this code, many PPFs sur-
vive early verification stages, and the cost/precisiongoffd of the
various solvers do not pay off.

Enum | InptStr Itr KStore PrntStr | PrntWr Sig Socket | Stack | URLConn | Vector Total
bcel 0/2 0/1 0/15 0/36 0/139 8/32 0/2 817227 3.5%
gj 2/6 0/40 21746 4.4%
javacup 0/82 0/6 0/111 0/166 2723 2/388 0.5%
jbidwatcher 1/8 0/9 0/46 0/31 0/9 0/13 9/17 10/133 7.5%
jlex 0/5 0/29 0/365 1/1 1/400 0.3%
jpat-p 0/3 0/3 0.0%
12j 6/36 0/17 0/48 474 1/3 10/10 21/118 17.8%
lucene 0/29 0/6 0/11 0/60 0/1 1/2 1/109 0.9%
portecle 19/72| 0/266 0/1 0/2 0/25 0/18 19/384 5.0%
rhino-a 3/9 0/16 1/1 6/6 10/32 31.3%
sablecc-j 0/24 0747 1/3 1/74 1.4%
schroeder-m 0/6 2711 0/2 2/19 10.5%
s00t-C 0/14 0/2 0/213 0/58 6/6 6/293 2.0%
specjym98 | 3/109| 3/151 241/1075 479 0/1 251/1345 18.7%
symjpack-t 0/16 0/16 0.0%
toba-s 0/3 0/3 0/25 0/386 1/2 1/419 0.2%
tvla 271715 0/151 0/2 3/4 30/872 3.4%
Total | 26/363 | 137497 | 27/805 0/2] 24171928] 1/1127| 0/18 4741 27783 0/14 | 26/37 || 365/4878 7.5%

‘ ‘ 7.2% ‘ 2.6% ‘ 3.4% 0.0% ‘ 12.5% ‘ 0.1% ‘ 0.0% | 100.0% | 32.5% ‘ 0.0% | 70.3% H

Table 4: Findings for the most precise (staged) solver acrssall benchmarks and typestate properties. Each entry in théable shows
the number of warnings as a fraction of the number of PPFs, foreach benchmark/property combination.

APMust = 1677
APFocus = 4275
1000+

= LocalFocus
800 — = Base

mm Unique

== APMust

1 1 APFocus
= Setup

600 — i

400 —

Run Time (secs)

200 —

&
<
> S £ & &
S e
S s fF F L g v 8 &
< S 3 = &
=)
S

Figure 5: Total wallclock time needed to run the analysis. “®tup” indicates the preliminary activities; primarily the preceding
flow-insensitive pointer analysis and call graph construdbn. The rightmost stacked bar in each group represents theunning time
of the Staged verifier.

6.6.2 Impact of Sparsification rate pointer analysis allows better sparsification, mdexéfe live
We evaluated the sparsification of Sec. 6.2 across all rutteeof ~ @nalysis and improved disambiguation overall. We ran manlyeo

than 3500 nodes, 95% have fewer than 25,000 nodes, and 1ooo/§_,is, without the custom c_ontext-sensitivity policies dised ear-
have fewer than 40,000 nodes. The corresponding numbehs wit lier. Many benchmarks timed out on several rules; we coreclud

out sparsification are drastically higher: roughly 80% opumed ~ thatadequate precision in the preceding pointer analysigal.
supergraphs have more than 125,000 nodes, and 20% have over Our context-sensitivity policy employs object-senstifor types
290,000 nodes. Overall, sparsification reduces mediarnguamph from the standard libraries typically relevant to thesestate prop-

size by roughly a factor of 50. We would expect a correspandin €rties (namely collections and I/O streams). Some bendtsuie-

reduction in space and running time, if we could run the unpcu feat this object-sensitivity policy by using applicati@vel collec-

verifiers without running out of memory. tions or streams. For example, TVLA uses a library of apgilica

level collections, and specJVM98 uses a reporting librdrgus-

. . . tom 1/O streams. To handle these cases more effectively,esd n

6.6.3 Impact of Initial Pointer Analysis to infer a pointer-analysis context-sensitivity policy fipplication

The precision of the preceding flow-insensitive pointerlysia classes that match typestate properties. Iterative reénetach-
significantly impact on performance and precision. A moreuac niques [27, 19] may apply to this problem.

6.7 Discussion

Overall, the results show that our combination of techrsgise
relatively successful and efficient at verifying these stpee prop-
erties. The various technigues complement each other,looting
to the effectiveness of the staged verifier.

Since our goal in this paper is the successful verificatiappés-
tate properties, we have deliberately chosen a set of mhé&umreh-
marks. For our experiments, we assume that typestate ioiagat
in these benchmarks are all false alarms. We have examiyed, b
hand, many of the warnings which our most precise verifiesdoe
not eliminate.

The specJVM9&ode’s use oPrintStreamaccounts for 241 of
the 365 warnings reported. These are all false positivemraing
from a few lines of code in thepecJVM9&arness. This program
stores aPrintStreamobject in a static fieldContext.outand uses
the object ubiquitously throughout the various benchmarkke
particular idiom by which the program caches BrntStreamob-
ject in a static field defeats our focus heuristics, leading lbss of
precision.

Of the remaining 124 warnings, 53 arise from tector and

tem, as described in [15]. With these operations, the typelar
can assumenust-aliasproperties for a limited program scope, and
thus apply strong updates allowing typestate transitiddsr ap-
proach can prove correctness of a more general class ofgonsgr
since a context-sensitive analysis can accept programeHimh

an expression cannot be assigned a unique type at a giveraprog
point. Furthermore, oufocusoperation generates facts that can
flow across arbitrary program scopes, in contrast to theditro-
gram scope handled by [15]. On the other hand, our approach is
non-modular and thus more expensive.

Aiken et al. [1] present an inference algorithm for infegrire-
strictedandconfinedpointers, which they use to enable strong up-
dates. We believe that tHecusingtechnique we exploit, inspired
by [30], can sometimes achieve a similar effect without iexghy
inferring restricted and confinedpointers, and sometimes enable
strong updates even when the pointers are not restrictefitied.
Further, the uniqueness technique we use provides a sorhewha
thogonal, cheap, technique for enabling strong updates.

Field et al. [16] present algorithms based on abstractibas t
integrate alias and typestate information, but restritteshallow

Stackproperties. Most of these warnings appear to represent aPrograms, with only single-level pointers to typestateeoty.

failure of the typestate property to capture all legal bétrawas
opposed to solver limitations. For example, our typestatgp
erty for Vector does not account for the return value frorec-
tor.size() Many times, application code accesses a Vector via state-
ments guarded by a test thate > 0. This pattern accounts for
many of the false positives for thgtackand Vector rules. For
proper treatment, these APIs require at least range-chealisas,
as commonly applied to array-bounds checking (e.g. [18]).

The remaining warnings appear to arise from a combination of
analysis approximations and typestate property limitetio

We expect that in the near future we can improve precision by a
access-path tracking for objects that are not typestatctshjbut
are likely to point to them, and b) increasing the scope ofiday
exploiting inexpensive local alias reasoning. We susrett sub-
stantial improvements in alias precision are within reaeithout
undue performance compromise.

In many cases, programmers deduce from application logic th
a particular iterator must have a next element, or a pasaiadllec-
tion must not be empty. The typestate property for a singjeabb
does not allow for application logic which ensures, via sdraek
door, that an object occupies a particular typestate. Dagigef-
ficient, effective analysis for more general specificati@sains a
difficult problem.

7. RELATED WORK

Many existing verification frameworks (e.g., [11, 4, 8]) use
two-phased approach, performing points-to analysis as@eging
phase, followed by typestate checking. This approach omby s
ports weak updates as discussed in Sec. 3.3.

The current version of ESP [13] uses an integrated approach,
recording must and may alias information in a flow-sensithan-
ner. They observe that the may set becomes polluted andsxpen
to maintain, and even hint toward maintaining a must-noaset
possible future solution. In contrast, our approach addstmaot
and also introduces the notions of uniqueness and focus,sex
staging to achieve increased scalability and precision.

DeLine and Fahndrich [12] present a type system for typesta
properties for objects. Their system guarantees that agmothat
typechecks has no typestate violations, and provides a lapdu
sound checker for object-oriented programs. To handlesiatia
they employ theadoptionandfocusoperations to a linear type sys-

The parametric shape analysis presented in [31] has sestbd a
basis for very precise verification algorithms, where thefiea-
tion is integrated with heap analysis (e.g., [35].) Thege@hms,
however, do not scale well. We plan to extend our staged gerifi
by adding such precise verifiers as a last stage.

Counter-example guided refinement [5, 22] based approaches
have had impressive results in certain domains. But theg bav
far been less successful in dealing with complex heap méatipn,
partly because these approaches attemgtomaticallyderive ap-
propriate heap analyses. Our staged verifier has a “refiniifhen
vor, but restricted to a fixed set of manually crafted vergfier

Aliasing of our combined domain resembles previous appresc
to flow-sensitive, context-sensitive access-path-baséuqr anal-
ysis [23, 7]. Emami, Ghiya and Hendren [14] presented a domai
that combined may and must points-to information. Our IFDS-
based solvers memoize function summaries, similar to \Witswl
Lam’s partial transfer functions [34]. Our domain differ®rh
these previous works since a) it tracksistandmust-notpaths, but
not may, and b) Java’s strong typing avoids complications arising
from pointers to stack locations.

Iterative refinement techniques [27, 19] perform pointexgsis
in multiple passes, with a client-independent first paskovied
by subsequent passes using context-sensitivity polidgigerd by
client feedback. In future work we plan to integrate thesshte
nigues into our framework, where each typestate solverigesv
feedback for the next stage’s pointer analysis.

8. REFERENCES
[1] A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi.
Checking and inferring local non-aliasirgCM SIGPLAN
Notices 38(5):129-140, May 2003. I@onference on
Programming Language Design and Implementation (PLDI)
R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of
interface specifications for java classS88GPLAN Not.
40(1):98-109, 2005.
L. O. AndersenProgram Analysis and Specialization for the
C Programming Languagé”hD thesis, DIKU, Univ. of
Copenhagen, May 1994. (DIKU report 94/19).
[4] T.Ball, R. Majumdar, T. Millstein, and S. Rajamani.
Automatic predicate abstraction of C programsPhoc.
ACM Conf. on Programming Language Design and
Implementationpages 203—-213, June 2001.

(2]

(3]

[5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

T. Ball and S. K. Rajamani. Th8LAM project: debugging
system software via static analys#sCM SIGPLAN Notices
37(1):1-3, Jan. 2002.

D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of
pointers and structureACM SIGPLAN Notices
25(6):296-310, June 1990. RLDI.

J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sermsit
interprocedural computation of pointer-induced aliases a
side effects. IlPOPL 93 pages 232-245, 1993.

J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,

S. Laubach, and H. Zheng. Bandera: Extracting finite-state
models from Java source code.Rroc. Intl. Conf. on
Software Eng.pages 439-448, June 2000.

P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. IRroc. ACM Symp. on Principles of
Programming Languagepages 269-282, New York, NY,
1979. ACM Press.

M. Das. Unification-based pointer analysis with direcal
assignmentsACM SIGPLAN Notices35(5):35-46, May
2000. InConference on Programming Language Design and
Implementation (PLDI)

M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive
program verification in polynomial tim@&CM SIGPLAN
Notices 37(5):57—-68, May 2002. I@onference on
Programming Language Design and Implementation (PLDI)
R. DeLine and M. Fahndrich. Typestates for objectsl8th
European Conference on Object-Oriented Programming
(ECOOP) volume 3086 of.NCS June 2004.

N. Dor, S. Adams, M. Das, and Z. Yang. Software validatio
via scalable path-sensitive value flow analysis38TA

pages 12-22, 2004.

M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitiv
interprocedural points-to analysis in the presence oftfanc
pointers ACM SIGPLAN Notice9(6):242-256, June

1994. InConference on Programming Language Design and
Implementation (PLDI)

M. Fahndrich and R. DeLine. Adoption and focus: praaitic
linear types for imperative programmin§CM SIGPLAN
Notices 37(5):13-24, May 2002. I@onference on
Programming Language Design and Implementation (PLDI)
J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typesta
verification: Abstraction techniques and complexity réesul

In Proc. of Static Analysis Symposium (SAS'@8Jume

2694 of LNCS pages 439-462. Springer, June 2003.

S. Fink, J. Dolby, and L. Colby. Semi-automatic J2EE
transaction configuration. Technical Report RC23326, IBM,
2004.

R. Gupta. Optimizing array bound checks using flow
analysisACM Lett. Program. Lang. Sys2(1-4):135-150,
1993.

S. Guyer and C. Lin. Client-driven pointer analysisPliroc.

of SAS'03volume 2694 of NCS pages 214-236, June
2003.

R. Hasti and S. Horwitz. Using static single assignnferm

to improve flow-insensitive pointer analys&CM SIGPLAN
Notices 33(5):97-105, May 1998. I6onference on
Programming Language Design and Implementation (PLDI)
N. Heintze and O. Tardieu. Ultra-fast aliasing anayssing
CLA: A million lines of C code in a secondACM SIGPLAN
Notices 36(5):254—-263, May 2001. I@onference on
Programming Language Design and Implementation (PLDI)

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

T. A. Henzinger, R. Jhala, R. Majumdar, and G. SutreyLaz
abstraction. IrBymposium on Principles of Programming
Languagespages 58-70, 2002.

W. Landi and B. G. Ryder. A safe approximate algorithm fo
interprocedural aliasindACM SIGPLAN Notices
27(7):235-248, July 1992. I@onference on Programming
Language Design and Implementation (PLDI)

O. Lhotak and L. Hendren. Scaling Java points-to asialy
using SPARK. Inl2th International Conference on Compiler
Construction (CC)volume 2622 of. NCS pages 153-169,
Apr. 2003.

B. Livshits, J. Whaley, and M. S. Lam. Reflection anaysi
for java. InProceedings of Programming Languages and
Systems: Third Asian Symposium, APLAS 20&fvember
2005.

A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to analysis for jav®CM Trans.
Softw. Eng. Methodql14(1):1-41, 2005.

J. Plevyak and A. A. Chien. Precise concrete type imfeee
for object-oriented language&CM SIGPLAN Notices
29(10):324-324, Oct. 1994. [Bonference on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA)

G. Ramalingam. On sparse evaluation representafidreor.
Comput. Scj.277(1-2):119-147, 2002.

T. Reps, S. Horwitz, and M. Sagiv. Precise interprocatu
dataflow analysis via graph reachability.@onference
record of POPL '95, 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languageges
49-61, New York, NY, USA, 1995. ACM Press.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. IRroc. ACM Symp. on
Principles of Programming Languagegsages 105-118,
1999.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via3-valued logic.Transactions on Programming
Languages and Systems (TOPLAXI)(3):217-298, May
2002.

R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliabil B E
Trans. Software Eng12(1):157-171, 1986.

J. Whaley, M. Martin, and M. Lam. Automatic extractioh o
object-oriented component interfaces Aroceedings of the
International Symposium on Software Testing and Analysis
July 2002.

R. P. Wilson and M. S. Lam. Efficient context-sensitive
pointer analysis for C programA&CM SIGPLAN Notices
30(6):1-12, June 1995. Monference on Programming
Language Design and Implementation (PLDI)

E. Yahav and G. Ramalingam. Verifying safety propertie
using separation and heterogeneous abstractions. In
Proceedings of the ACM SIGPLAN 2004 conference on
Programming language design and implementatjgages
25-34. ACM Press, 2004.

