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ABSTRACT
This paper addresses the challenge of sound typestate verification,
with acceptable precision, for real-world Java programs.

We present a novel framework for verification of typestate prop-
erties, including several new techniques to precisely treat aliases
without undue performance costs. In particular, we presenta flow-
sensitive, context-sensitive, integrated verifier that utilizes a para-
metric abstract domain combining typestate and aliasing informa-
tion. To scale to real programs without compromising precision,
we present a staged verification system in which faster verifiers run
as early stages which reduce the workload for later, more precise,
stages.

We have evaluated our framework on a number of real Java pro-
grams, checking correct API usage for various Java standardli-
braries. The results show that our approach scales to hundreds of
thousands of lines of code, and verifies correctness for 93% of the
potential points of failure.

Categories and Subject Descriptors:D.2.4[Software Engineer-
ing]: Software/Program Verification

General Terms: Algorithms, Verification

Keywords: Typestate, Program Verification, Alias Analysis

1. INTRODUCTION
Statically checking if programs satisfy specified safety proper-

ties can help identify defects early in the development cycle, thus
increasing productivity, reducing development costs, andimprov-
ing quality and reliability.

Typestate [32] is an elegant framework for specifying a class
of temporal safety properties. Typestates can encode correct us-
age rules for many common libraries and application programming
interfaces (APIs) (e.g. [33, 2]). For example, typestate can ex-
press the property that a Java program should not read data from
java.net.Socket until the socket is connected.

This paper addresses the challenge of typestate verification, with
acceptable precision, for real-world Java programs.

We focus on sound verification; if the verifier reports no prob-
lem, then the program is guaranteed to satisfy the desired proper-
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ties. However, if the verifier reports potential problems, they may
or may not indicate actual program errors. Imprecise analysis can
lead a verifier to produce “false positives”: reported problems that
do not indicate an actual error. Users will quickly reject a verifier
that produces too many false positives.

While the most sophisticated and precise analyses can reduce
false positives, such analyses typically do not scale to real pro-
grams. Real programs typically rely on large and complex support-
ing libraries, which the analyzer must process in order to reason
about program behavior.

This paper presents several new typestate verification techniques,
ranging from the simple but imprecise, to the fairly precisebut
somewhat expensive. We also present a staged typestate verifica-
tion approach, which exploits verifiers with varying cost/precision
trade-offs. Early stages employ the efficient but impreciseanaly-
ses; subsequent stages employ progressively more expensive and
precise techniques. Each progressively more precise stagefocuses
on verifying only “parts” of the program that previous stages failed
to verify.

The key technical challenge facing typestate verification for Java
concerns pointer aliasing. Since all structured data in Java is heap-
allocated, almost all interesting operations involve pointer derefer-
encing. Further, Java libraries encourage layers of encapsulation
around data, which leads to multiple levels of pointer dereferenc-
ing. In order to prove that a program manipulates an object cor-
rectly, the verifier must cut through the tangle of alias relationships
by which the program manipulates the object of interest.

Researchers have developed a variety of efficient flow-insensitive
may-alias (pointer) analysis techniques (e.g. [10, 21]). Unfortu-
nately, may-alias analysis is inadequate for most typestate verifica-
tion problems, which require strong updates [6]. To supportstrong
updates and more precise alias analysis, we present a framework
to check typestate properties by solving a flow-sensitive, context-
sensitive dataflow problem on a combined domain of typestateand
pointer information. As is well-known [9], a combined domain
allows a more precise solution than could be obtained by solving
each domain separately. Furthermore, the combined domain allows
the framework to concentrate computational effort on aliasanalysis
only where it matters to the typestate property. This concentration
allows more precise alias analysis than would be practical if applied
to the whole program.

1.1 Contributions
The main contributions of this paper are:

• a flow-sensitive, context-sensitive, integrated verifier that uti-
lizes a parametric abstract domain that combines typestate
and points-to abstractions.

• two new techniques to handle destructive updates, utilizing
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Figure 1: Partial typestate specification for
java.net.Socket.

information from a preceding flow-insensitive may points-to
analysis. Specifically,

– a uniquenessanalysis that can strengthen the results of
the may points-to analysis to support “strong updates”
under certain conditions, and

– a focusoperation, similar in spirit to the one used in
shape analysis [31], that enables the analysis to use
strong updates in certain cases.

Though inspired by shape analysis techniques, our focus op-
eration applies to a more efficient, abstract domain, and re-
sults in analyses that are orders of magnitude more scalable
than typical shape analyses.

• an empirical evaluation of the efficiency and precision of var-
ious verification techniques. The empirical results shed light
on the relative importance of various techniques for treating
aliases, and demonstrate the validity of a staged approach.

Our implementation handles the full Java language, excluding
concurrency, subject to caveats described regarding dynamic lan-
guage features such as reflection. The experimental resultsshow
that the staged solver verifies correctness for 93% of the poten-
tial points of failure, running in under 10 minutes across a suite of
moderately-sized programs.

The rest of this paper is organized as follows: Sec. 2 provides an
informal overview of the various challenges in typestate verifica-
tion, and sketches our solutions. Sec. 3, Sec. 4 and Sec. 5 present
the abstractions and techniques formally. Sec. 6 presents the em-
pirical evaluation, and Sec. 7 reviews related work.

2. OVERVIEW

2.1 Typestate Verification
A typestate property can be specified using a finite state automa-

ton. States in the automaton correspond to typestates whichan ob-
ject can occupy during execution. The automaton also contains a
designated typestateerr corresponding to an erroneous state of the
object. Transitions in the automaton correspond toobservable op-
erationsthat may change the object’s typestate. In this paper, we
focus on observable operations corresponding to method invoca-
tions. The goal of typestate checking is to statically verify that no
object reaches its error typestate during any program execution.

class Sender {
public static Socket createSocket() {

return new Socket();
}
public static Collection createSockets() {

Collection result = new LinkedList();
for (int i = 0; i < 5; i++) {
result.add(new Socket());

}
return result;

}
public static Collection readMessages() throws IOException {

Collection result = new ArrayList();
FileInputStream f = new FileInputStream("/tmp/foo.txt");
// ...
f.read();
// ...
return result;

}
public static void talk(Socket s) throws IOException {

Collection messages = readMessages();
PrintWriter o = new PrintWriter(s.getOutputStream(),true);
for (Iterator it=messages.iterator();it.hasNext();) {
Object message = it.next();
o.print(message);

}
o.close();

}
public static void example() throws IOException {

InetAddress ad=InetAddress.getByName("tinyurl.com/cqaje");
Socket handShake = createSocket();
handShake.connect(new InetSocketAddress(ad, 80));
InputStream inp = handShake.getInputStream();

Collection sockets = createSockets();
for (Iterator it = sockets.iterator(); it.hasNext();) {
Socket s = (Socket) it.next();
s.connect(new InetSocketAddress(addr, 80));
talk(s);

}
talk(handShake);

}
}

Figure 2: Program with correct usages of common APIs.

Fig. 1 shows a finite state automaton providing a partial specifi-
cation for thejava.net.Socket API. This automaton shows,
for example, that callinggetInputStream() is only legal after
a preceding call toconnect().

Fig. 2 presents a program that exercises Java Sockets, I/O streams,
and Iterators. Our goal is to verify that the program

• never callsgetInputStream()orgetOutputStream()
on aSocket unless it isconnected,

• never callsread() on aclosedstream, and

• always callshasNext() on anIterator before calling
next().

In the example program, some typestate properties (e.g.Iterators)
could be verified relatively easily by local, intra-procedural reason-
ing. Unfortunately, any local alias analysis can be easily defeated
by unknown side effects from procedure calls.

Other properties require more powerful (and costly) techniques.
In particular, socket usage in the example requires an interprocedu-
ral analysis with relatively precise alias analysis, sincethe socket
objects flow across procedure boundaries and through complex col-
lection data structures.

2.2 Outline of our Algorithm
Our verification system is acompositeverifier built out of several

composableverifiers of increasing precision and cost. Each verifier
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can run independently, but the composite verifier stages analyses in
order to improve efficiency without compromising precision. The
early stages use the faster verifiers to reduce the workload for later,
more precise, stages.

All of our verifiers use the results of a preceding flow-insensitive,
selectively context-sensitive subset-based pointer analysis. This
analysis produces a conservative approximation of the heap, and in-
duces a partition of concrete objects intoabstract objects; as is typi-
cal, the pointer analysis creates names for abstract objects based on
static allocation sites and the governing context-sensitivity policy 1.
The flow-insensitive alias analysis can be performed relatively effi-
ciently, and scales to large programs (e.g. [21, 24]).

Given a program and a typestate property, we consider all opera-
tions in the program that may cause a transition to an error state as
points of potential failure (PPF). We consider a pair(o, p) where
o is an abstract object, andp a point of potential failure, as a sepa-
rate verification problem. We refer to such pairs aspotential failure
pairs. We define averification scopeto be a set of potential failure
pairs.

Our verification system starts by initializing the verification scope
to contain all matching pairs of abstract typestate objectsand po-
tential points of failure. The verification scope is then gradually
reduced by a sequence of stages, as shown in Fig. 3. Each stage
may successfully eliminate potential failure pairs by verifying for
a pair(o, p) that a failure cannot occur for objects represented byo
at the pointp.

Each composable verifier exploitsseparation[11, 35]: it per-
forms the typestate checking separately for each abstract object of
the appropriate type in the program. It accepts as a parameter a ver-
ification scope which holds information from the preceding stages
about which potential failure pairs remain unverified.

Each verifier restricts its attention to the verification scope, and
produces an updated verification scope for the subsequent phase.
The system reports any potential failure pairs that remain after the
last stage as potential errors.

In the following discussion we briefly describe each of these
stages. Later, we present a more detailed description of thealgo-
rithms.

2.2.1 Flow-Insensitive Feasibility Checking
Prior to any flow-sensitive analysis, the first stage prunes the ver-

ification scope using an extremely efficient flow-insensitive error-
path feasibility check. The flow-insensitive pointer analysis pro-
vides the set of observable operations that may occur for each ab-
stract object. The flow-insensitive verifier determines if it is pos-
sible for the abstract object to reach theerr state in the typestate
automaton, using this set of operations.

Any abstract object that does not exhibit a feasible error-path
could be considered as verified.

In our running example, theFileInputStream object allo-
cated inreadMessages() is pruned at this stage, as the pro-
gram never invokesclose() for this abstract object, and thus it
can never reach an error state (for “read() afterclose()”).

1 Sec. 6 gives details on our implementation’s context-sensitivity
policy.

This stage, however, is unable to verify the correct usage ofthe
Iterators or Sockets in the example program.

2.2.2 Intraprocedural Verifier
The intraprocedural verifier is a flow-sensitive verifier that re-

stricts the scope of each verification attempt to a single procedure.
The verification starts at the beginning of each procedure assum-
ing an arbitrary unknown initial context (state). Method calls are
treated conservatively, without analyzing the method. This essen-
tially works well for “local” objects, which are pointed-toby local
variables only. The intraprocedural verifier uses the same abstrac-
tion as the integrated verifier (see Sec. 2.2.4 and Sec. 5).

When the intraprocedural verifier is able to verify all uses of an
abstract object in the program, we can avoid interprocedural veri-
fication for that object. This is often the case for typestateobjects
that do not escape the method in which they are allocated.

For example, the intraprocedural verifier can verify that all It-
erators in our running examples are used correctly. Applying the
intraprocedural verifier as an early stage eliminates the need for
verification of the Iterators in the running example by the latter,
more expensive interprocedural solvers.

2.2.3 Strong Updates: Uniqueness Analysis
While a flow-insensitive alias analysis suffices to check feasi-

bility of an error-path (as in Sec. 2.2.1), it generally doesnot suf-
fice for verifying typestate properties. A flow-insensitiveanalysis
produces onlymay aliasinformation and notmust aliasinforma-
tion. Therefore, an analyzer that directly uses the resultsof a flow-
insensitive analysis must use “weak updates” to handle assignments
and operations via a pointer.

Using “weak updates” precludes verification of many typestate
properties. For example, it is insufficient for verifying the typestate
property of Fig. 1. Using onlymay aliasinformation, the analyzer
cannot guarantee that aconnect() operation occurs on the same
concrete object as a subsequentgetInputStream() operation.
Hence, such analysis cannot verify this property.

We now present a verifier that is still based on flow-insensitive
alias analysis, but uses a noveluniqueness analysisto allow strong
updates in some scenarios.

Consider the invocation of a method, via a pointerp, that may
alter the typestate of the receiver object. If the followingtwo con-
ditions hold, then the analysis can apply a strong update to change
the typestate of the receiver object:

(a) the points-to set forp consists of a singleabstractobject

(b) thisabstractobject represents a singleconcreteobject2.

Consider an abstract objectS representing a particular (context-
sensitive) allocation siteA. This abstract object represents all con-
crete objects that are allocated atA. The Unique solver performs
a flow- and context-sensitive analysis with a simple abstraction to
determine if more than one object allocated atA can be simultane-
ously alive. If not, then the abstract objectS represents at most one
concrete object at that program point, and the verifier can exploit
strong updates at that point if condition (a) mentioned above also
holds.

For example, the Unique verifier can verify the correct use of
the socket pointed-to byhandShake in the methodexample(),
despite the fact that this object is used interprocedurally(and hence

2For purposes of typestate checking, we may safely ignore thepos-
sibility of the pointerp being null, which will result in a null-
pointer dereference exception. If desired, null-pointer checking is
done separately.



could not be handled by the intraprocedural verifier of the previous
section).

Uniqueness analysisis of general use in our framework, and later
stages incorporate the technique. This novel analysis compares fa-
vorably to existing techniques for computing unique abstract loca-
tions, as it relies on flow- and context-sensitive analysis of a pruned
program with respect to the tracked abstract object (see discussion
in Sec. 7).

2.2.4 Integrated Verifier
The Integrated verifier improves upon the Unique verifier by per-

forming flow- and context-sensitive verification with an abstraction
that combines aliasing information with typestate information. The
use of a combined domain is more precise than separately perform-
ing typestate checking and flow-sensitive alias analysis, as is com-
mon with abstract interpretation over combined domains [9].

For example, flow-sensitivity of alias information enablesstrong-
updates in cases such as the one below, where the Unique verifier
fails because the abstract file object does not qualify as unique.

Collection files = ...
while (...) {

File f = new File();
files.add(f);
f.open();
f.read();

}

Since all our verifiers exploit separation, it suffices to focus on
the problem of verifying usage for a single abstract object.The
Integrated verifier utilizes an abstract domain that captures infor-
mation about the typestate of the given abstract object, as well as
information about a setM of pointer access paths that definitely
point to the given abstract object, and a setMN of pointer access
paths that definitely do not point to the given abstract object. The
domain also includes a boolean flag indicating if there may exist
other access paths, not mentioned inM , that may point to the given
abstract object. Sec. 5 presents a more complete description of the
abstraction.

A key element of the integrated verifier’s abstraction is theuse
of a focusoperation [31], which is used to dynamically (during
analysis) make distinctions between objects that the underlying ba-
sic points-to analysis does not distinguish. For example, consider
the loop in the methodexample() in our running example. The
verifier utilizes two or more abstract objects to represent the set
of all (5) Socket objects created by thecreateSockets()
method (even though the flow-insensitive pointer analysis repre-
sents them by a single abstract object): one abstract objectrep-
resents the Socket pointed to bys, and the other abstract objects
represent the remaining Sockets.

This enables the use of strong updates, allowing verification for
all Sockets in the running example, despite their flow through a
collection and across procedures.

3. TYPESTATE CHECKING FRAMEWORK
This section presents a framework for typestate checking which

enables declaration of different levels of abstractions.
First, we sketch an instrumented concrete semantics for this prob-

lem. Intuitively, given a typestate property, our semantics instru-
ments the program state,state♮ to include for every object,o♮, its
typestate from the property definition. The instrumented semantics
verifies that an object never reaches its error typestate.

Next, we present aparameterizedconservative abstraction that
allows us to define the family of abstractions used by the various
verifiers in our framework.

3.1 Instrumented Concrete Semantics
We assume a standard concrete semantics which defines a pro-

gram state and evaluation of an expression in a program state. The
semantic domains are defined in a standard way as follows:

L♮ ∈ objects♮

v♮ ∈ Val = objects♮ ∪ {null}
ρ♮ ∈ Env= VarId → Val
h♮ ∈ Heap= objects♮ × FieldId → Val

state♮ = 〈L♮, ρ♮, h♮〉 ∈ States = 2objects♮ × Env× Heap

whereobjects♮ is an unbounded set of dynamically allocated ob-
jects,VarId is a set of local variable identifiers, andFieldId is a set
of field identifiers.

A program statekeeps track of the set of allocated objects (L♮),
an environment mapping local variables to values (ρ♮), and a map-
ping from fields of allocated objects to values (h♮).

We also define the notion of an access path as follows: Apointer
path γ ∈ Γ = FieldId∗ is a (possibly empty) sequence of field
identifiers. The empty sequence is denoted byǫ. We use the short-
handfk wheref ∈ FieldId to mean a sequence of lengthk of
accesses along a fieldf . An access pathp ≡ x.γ ∈ VarId× Γ is a
pair consisting of a local variablex and a pointer pathγ.

We denote byAPsall possible access paths in a program. The
l-value of access pathp, denote bystate♮[p], is recursively defined
using the environment and heap mappings, in the standard manner.

We formally define a typestate property as follows.

DEFINITION 3.1. A typestate propertyF is represented by a fi-
nite state automatonF = 〈Σ,Q, δ, init,Q \ {err}〉 whereΣ is the
alphabet of observable operations,Q is the set of states,δ is the
transition function mapping a state and an operation to a succes-
sor state, init∈ Q is a distinguishedinitial state, err ∈ Q is a dis-
tinguishederror statefor which for everyσ ∈ Σ, δ(err, σ) = err,
and all states inQ \ {err} are accepting states. Given a sequence
of operations we say that it isvalid when it is accepted byF , and
invalid otherwise.

Our instrumented concrete semantics instruments every concrete
state〈L♮, ρ♮, h♮〉 with an additional mappingtypestate♮ : L♮ → Q
that maps an allocated object to its typestate.

For a given statestate♮ = 〈L♮, ρ♮, h♮〉, we define a function

AP♮

state♮ : L♮ → 2APs as a mapping between allocated objects

and the access paths that evaluate to them, i.e.AP♮(o♮) = {e |
state♮[e] = o♮}. When the state is clear from context, we omit it
and simply writeAP♮(o♮).

A state of the instrumented concrete semantics is thereforea tu-
ple 〈L♮, ρ♮, h♮, typestate♮〉.

EXAMPLE 3.2. Given the property of Fig. 1, the instrumented
concrete state before the first call tos.connect() in example()
contains six objects: one objecto

♮
0

allocated during the invoca-
tion ofcreateSocket(), and five other objectso♮

1
, . . . , o

♮
5
, al-

located during the invocationcreateSockets(). The values of
typestate♮ and the function AP♮(o♮

0
) are:

typestate♮(o♮
0
) = conn AP♮(o♮

0
) = {handShake}

typestate♮(o♮
1
) = init AP♮(o♮

1
) = {s, sockets.head}

typestate♮(o♮
i) = init AP♮(o♮

i) = {sockets.head.nexti−1}
where(i = 2, ..5)

The instrumented semantics updates the typestate of the object
in a natural way. When the object is first allocated, its typestate
is mapped to the initial state of the typestate automaton. Then, on
every observable event, the object typestate is updated accordingly.



3.2 Abstract Semantics
The instrumented concrete semantics uses an unbounded set of

objects with an unbounded set of (unbounded) access paths. In this
section, we describe a parameterized abstract semantics that allows
us to conservatively represent the instrumented concrete semantics
with various degrees of precision and cost.

Our abstract semantics uses a combination of two representa-
tions to abstract heap information: (i) a global heap-graphrepresen-
tation encoding the results of a flow insensitive points-to analysis;
(ii) enhanced flow-sensitive must points-to information integrated
with typestate checking.

3.2.1 Flow-insensitive May Points-to Information
The first component of our abstraction is a globalheap graph,

obtained through a flow-insensitive, context-sensitive subset based
may points-to analysis [3]. This is fairly standard and provides a
partition of the setobjects♮ into abstract objects. In this discussion,
we define aninstance keyto be an abstract object name assigned by
the flow-insensitive pointer analysis. The heap graph provides for
an access pathe, the set of instance keys itmaypoint-to and also
the set of access paths that may be aliased withe.

The heap graph representation of the running example contains
two instance keys for type Socket: one representing the object al-
located increateSocket, denoted byo♮

0
in Example 3.2, and

another one, for the second allocation site, representing all five ob-
jects in thesockets collection.

3.2.2 Parameterized Typestate Abstraction
Our parameterized abstract representation uses tuples of the form:

〈o, unique, typestate, APmust, May, APmustNot〉 where:

• o is an instance key.

• unique indicates whether the corresponding allocation site
has a single concrete live object.

• typestateis the typestate of instance keyo.

• APmustis a set of access paths that must point-too.

• May is true indicates that there are access paths (not in the
must set) that may point too.

• APmustNotis a set of access paths that do not point-too.

This parameterized abstract representation has four dimensions, for
the lengthandwidth of each access path set (must and must-not).
The length of an access path set indicates the maximal lengthof
an access path in the set, similar to the parameterk in k-limited
alias analysis. The width of an access path set limits the number of
access paths in this set.

An abstract state is a set of tuples. We observe that a conser-
vative representation of the concrete program state must obey the
following properties:

(a) An instance key can be indicated as unique if it represents a
single object for this program state.

(b) The access path sets (the must and the must-not) do not need
to be complete. This does not compromise the soundness of
the staged analysis due to the indication of the existence of
other possible aliases.

(c) The must and must-not access path sets can be regarded as
another heap partitioning which partitions an instance key
into the two sets of access paths: those that a) must alias this

abstract object, and b) definitely do not alias this abstractob-
ject. If the must-alias set is non-empty, the must-alias parti-
tion represents a single concrete object.

(d) If May = false, the must access path is complete; it con-
tains all access paths to this object.

This can be formally stated as follows:

DEFINITION 3.3. A tuple
〈o, unique, typestate, APmust, May, APmustNot〉 is a sound repre-
sentationof objecto♮ at instrumented state istate♮ when:

o = ik(o♮)
∧ unique⇒ {x♮ ∈ live(istate♮) | ik(x♮) = o} = {o♮}
∧ typestate= typestate♮(o♮) ∧ APmust⊆ AP♮(o♮)
∧ (¬May ⇒ (APmust= AP♮(o♮)))
∧ APmustNot∩ AP♮(o♮) = ∅

where ik is an abstraction mapping a concrete object to the instance
key that represents it, andlive(istate♮) is defined to be
{x♮ | AP♮(x♮) 6= ∅}.

DEFINITION 3.4. An abstract state istate is asoundrepresen-
tation of a concrete state istate♮ = 〈L♮, ρ♮, h♮, typestate♮〉 if for
every objecto♮ ∈ L♮ there exists a tuple in istate that provides a
sound representation ofo♮.

3.3 Base Abstraction
The Base (least precise) abstraction is an instance of the parame-

terized abstraction with zero length and width of both the must and
the must-not access path sets (and henceMay = true in all tu-
ples). In addition, this abstraction does not track uniqueness. This
yields a typestate checking algorithm, similar to [11] in its alias
handling, that cannot verify any property that requires strong up-
dates. For simplicity, we denote each tuple in this abstraction as
〈o, typestate〉

EXAMPLE 3.5. A base abstraction representing the concrete
state described in Example 3.2 contains two instance keys: o0 rep-
resentingo♮

0
and o1..5 representing the five objectso♮

i , i = 1, 2, ..5
in thesockets collection and the following three tuples:〈o0, init〉,
〈o0, conn〉, 〈o1..5, init〉.

This analysis is an iterative flow- and context-sensitive propaga-
tion, that tracks tuples starting with an initial〈o, init〉 generated at
an allocation. The analysis only needs to handle observableoper-
ations and propagates tuples according to typestate changes. The
result of an observable operation associated with eventop on the
tuple〈o, typestate〉 are two tuples: The previous tuple and the tuple
〈o, δ(typestate,op)〉. Tuples are never removed; all operations are
handled as weak updates. The first tuple in Example 3.5 demon-
strates the results of a weak-update. It represents thato

♮
0
, in Ex-

ample 3.2, may be in theinit state, which is not feasible in any
concrete state at this program point.

4. UNIQUENESS ANALYSIS
The Unique verifier extends the Base abstraction, adding an ab-

straction which determines whether more than one concrete object
corresponding to a given instance key can be simultaneouslyalive.
This information allows the verifier to use strong updates under
certain conditions. We refer to this analysis asuniqueness analysis.

In terms of the abstraction tuples introduced in Sec. 3, the Unique
verifier makes use of only the instance key, uniqueness flag, and the
typestate. (Thus the must-point-to set and must-not-point-to set are



always empty, and the May flag is always true.) Hence, we will
represent each tuple as a triple〈o, unique, typestate〉.

The analysis works as follows. The first time an allocation site
with an instance keyk is executed (during analysis), it generates the
tuple 〈k, true, init〉. If, during the analysis, any tuple〈k, true, s〉
reaches the same (context-sensitive) allocation site, theallocation
site will generate the tuple〈k, false, typestate〉.

To make the above technique effective for allocation sites that
are in a loop, it is necessary to find a way to “kill” the tuples where
possible. This verifier utilizes a preliminary liveness analysis, com-
puted prior to typestate checking, that determines a conservative
approximation of which instance keys may be live at each program
point. Whenever a tuplep for an instance keyo flows to a program
point whereo cannot be live,p can be removed soundly.

The framework admits any form of liveness analysis, which can
be plugged into the verifier. Our current implementation uses a sim-
ple bottom-up interprocedural liveness analysis, based onthe re-
sults of the preliminary flow-insensitive, partially context-sensitive
pointer analysis.

This approach is effective in two situations. First,singletonpat-
tern objects clearly retain theirunique predicates, and so enjoy
strong updates everywhere. The Java standard libraries usesin-
gleton patterns frequently.

Additionally, the liveness analysis allows unique analysis to suc-
ceed for a ubiquitous pattern: an allocated object dies before its
allocation site executes again. In practice, we have found that a
simple liveness analysis catches many of these cases.

For tuples not marked unique, this verifier degenerates intothe
Base verifier of Sec. 3.3. For example, while uniqueness handles
the handshakesocket in the running example, uniqueness cannot
show that the Sockets in the collection are used correctly. The in-
stance key that represents all the Socket objects in thesockets
collection is, naturally, not unique. Therefore, when the statement
s.connect() is analyzed, the typestate of the abstract Socket
object is weakly-updated, indicating that a socket may occupy the
conn state or theinit state. These tuples propagate to the state-
ments.getOutputStream() in talk(), causing the verifier
to imprecisely report a possible error.

Note that in the example, although verifying usage of thehand-
shakeobject does not rule out errors at any potential points of fail-
ure, the staged verifier will remove pairs involving thehandshake
object from the running verification scope. This would reduce the
computational workload for the next stage.

5. INTEGRATED TYPESTATE AND ALIAS
ANALYSIS

In this section, we describe two verifiers that make use of the
access-path sets in the tuple representation. We first describe the
APFocus verifier, our most precise analysis.

5.1 Update Functions
The interpretation of an allocation statement “v = new T()”

with instance keyo will generatea tuple〈o, true, init, {v}, false, ∅〉
representing the newly allocated object. WhenMay is false, the
APmustNotcomponent is redundant and, hence, initialized to be
empty. Table 1 shows how a tuple is transformed by the interpreta-
tion of various statements. When a typestate method is invoked, we
can (1) use theAPmustNotinformation to avoid changing the type-
state of the tuple where possible, (2) use theAPmust information
to perform strong updates on the tuple where possible, and (3) use
the uniqueness information also to perform strong updates where
possible.

When a tuple reaches the allocation site that created it, we gener-
ate two tuples, one representing the newly created object, and one
representing the incoming tuple. We change the uniqueness flag to
false for reasons explained earlier. For assignment statements, we
update theAPmustandAPmustNotas appropriate.

5.2 Focus Operation
We now describe the focus operation, which improves the preci-

sion of the analysis. As a motivating example, consider the state-
ments.connect() in the loop in the methodexample() in
our running example. We have an incoming tuple representing
all of the sockets in the collection, and, hence, we cannot apply
a strong update to the tuple, which can subsequently cause a false
positive. Thefocusoperation replaces the single tuple with two tu-
ples, one representing the object thats points to, and another tuple
to represent the remaining sockets. Formally, consider an incoming
tuple〈o, unique, typestate, APmust, true, APmustNot〉 at an observ-
able operatione.op(), wheree 6∈ APmust, but e may point too
(according to the flow-insensitive points-to solution). The analysis
replaces this tuple by the following two tuples:

〈o, unique, typestate, APmust∪ {e}, true, APmustNot〉
〈o, unique, typestate, APmust, true, APmustNot∪ {e}〉

In the example under consideration, the statements.connect()
is reached by the tuple〈o1..5, false, init, ∅, true, ∅〉. Focusing re-
places this tuple by the following two tuples:

〈o1..5, false, init, {s}, true, ∅〉
〈o1..5, false, init, ∅, true, {s}〉

The invocation ofconnect() is analyzed after the focusing. This
allows for a strong update on the first tuple and no update on the
second tuple resulting in the two tuples:

〈o1..5, false, conn, {s}, true, ∅〉
〈o1..5, false, init, ∅, true, {s}〉

We remind the reader that theuniquecomponent tuple merely
indicates if multiple objects allocated at the allocation site o may
be simultaneously alive. A tuple such as
〈o1..5, false, conn, {s}, true, ∅〉, however, represents a single ob-
ject at this point, namely the object pointed to bys, which allows
us to use a strong update.

The analysis applies thisfocusoperation whenever it would oth-
erwise perform a weak update for a typestate transition. Thus, fo-
cus splits the dataflow facts tracking the two typestates that nor-
mally result from a weak update.

5.3 Focus and polymorphism
Polymorphism is the distinguishing feature of object-oriented

languages; an object’s behavior depends on its concrete type rather
than it’s declared type. Polymorphic call sites, present aninterest-
ing and widespread difficulty for the integrated typestate checking.

Consider the following snippet of code:

Collection c = ...
for (Iterator it=c.iterator();

it.hasNext();){
it.next();}

The Java Collections API often returns one of two Iterator imple-
mentations, depending on whether the collection is empty. Thus,
the calls to bothhasNext andnext are polymorphic. This effec-
tively introduces a path-sensitivity issue, where the two dynamic
dispatch sites play the role of correlated branches in traditional
path-sensitive discussions.



Stmt S Resulting abstract tuples
observable operatione.op()
asop ∈ Σ whereo ∈ pt(e)

〈o, unique, δ(typestate,op), APmust, May, APmustNot〉 if e 6∈ APmustNot∧ (e ∈ APmust∨ May)
〈o, unique, typestate, APmust, May, APmustNot〉 if e ∈ APmustNot∨(e 6∈ APmust∧¬(unique∧pt(e) = {o})∧May)

v = new T() whereo = Stmt S 〈o, false, typestate, APmust\ {v.γ | γ ∈ Γ}, May, APmustNot∪ {v}〉
〈o, false, init , {v}, false, ∅}〉

v = null 〈o, unique, typestate, APmust\ {v.γ | γ ∈ Γ}, May, APmustNot∪ {v}〉
v.f = null 〈o, unique, typestate, APmust\ {e′.f.γ | mayAlias(e′, v), γ ∈ Γ}, May, APmustNot∪ {v.f}〉
v = e 〈o, unique, typestate, APmust∪ {v.γ | e.γ ∈ APmust}, May, APmustNot\ {v|e ∈ APmustNot}〉

v.f = e

AP′
must := APmust∪ {v.f.γ | e.γ ∈ APmust}

〈o, unique, typestate, AP′
must, May∨ ∃v.f.γ ∈ AP′

must, p ∈ AP | mayAlias(v, p) ∧ p.f.γ 6∈ AP′
must, APmustNot\

{v.f |e ∈ APmustNot}〉

Table 1: Transfer functions for statements indicating how an incoming tuple 〈o, unique, typestate, APmust, May, APmustNot〉 is trans-
formed, wherept(e) is the set of instance keys pointed-to bye in the flow-insensitive solution,v ∈ VarId. mayAlias(e1, e2) iff pointer
analysis indicatese1 and e2 may point to the same instance key.

As in ESP [11], we could introduce path-sensitive predicates that
encode the direction of dynamic dispatch. Instead, our focus algo-
rithms exploit information from the tuple to avoid propagation at
polymorphic call sites.

In particular, before the call tohasNext, if we have the tuple
〈o, false, init, ∅, true, ∅〉 (in which caseo represents one of the
two possible concreteIterator implementations) then thefocus
operation will result in two tuples after the call tohasNext:

t1 = 〈o, false, hasNext, {it}, true, ∅〉
t2 = 〈o, false, init, ∅, true, {it}〉

The flow functions forcall edges exploit alias information to avoid
propagating tuples down infeasible paths. In particular, the flow
function for the call toit.nextwill not propagatet2 to thenext
operation, sincet2 indicates thatit must-notaliaso. Thus, focus
avoids a spurious transition toerr.

Intuitively, focusintroduces a notion of path-sensitivity, where a
path corresponds to a dynamic dispatch governed by alias relation-
ships for tracked objects.

5.4 Discarding Access Paths
As explained earlier, we enforce limits on the length and the

number of access paths allowed in theAPmust and APmustNot
components to keep the number of tuples generated finite. We de-
signed the abstract domain specifically to discard access-path in-
formation soundly, allowing heuristics that trade precision for per-
formance but do not sacrifice soundness. This feature is crucial for
scalability; the analysis would suffer an unreasonable explosion of
dataflow facts if it soundly tracked every possible access path, as in
much prior work [13, 23, 7, 14].

We can always safely discard access path elements from the
APmustNotcomponent, since the flow functions do not rely on the
must-not set being complete. Additionally, we can safely discard
elements from theAPmustcomponent by setting theMay compo-
nent to be true, indicating that theAPmustset does not contain all
possible aliases.

There are a variety of possible heuristic options for limiting the
number of tuples. For example, ESP’s “property simulation”intro-
duced lossy joins, to merge tuples that do not differ in the typestate
property of interest [11].

Our current implementation uses a different heuristic. It discards
the priorAPmustNotpaths when applying afocusoperation, main-
taining the more precise information from the most recentfocus.
This is based on intuition that in most cases the extra precision
from focuswill manifest at the next typestate change. This heuris-
tic avoids a common exponential blowup in state due to a sequence
of focus operations, and seems to perform well in practice.

5.5 The APMust Verifier
APMust is a simpler version of APFocus engine that makes use

of theAPmustcomponent, but not theAPmustNotcomponent. Thus,
theAPmustNotcomponent is always an empty set in this abstrac-
tion. Since it does not use theAPmustNot, it does not use focus
either (since focus is ineffective without theAPmustNot). Other
aspects of this engine, such as the transfer functions, can be ob-
tained in a straightforward way from the description of APFocus.

We include the APMust verifier for comparison in the next sec-
tion, to help evaluate the contribution of the focus operation.

6. EXPERIMENTAL RESULTS

6.1 Implementation
The preliminary flow-insensitive pointer analysis provides a mostly

context-insensitive field-sensitive Andersen’s analysis[3], enhanced
with a selective object sensitivity policy [26] to disambiguate con-
tents of Java collection classes and I/O stream containers.The
pointer analysis relies on an SSA register-transfer language repre-
sentation of each method, which gives a measure of flow-sensitivity
for points-to sets of local variables [20]. The pointer analysis names
each context-sensitive allocation site as an instance key,and builds
the call graph on-the-fly. For these experiments, we configure the
analysis to ignore some system libraries such asjava.awt and
javax.swing, which generally do not have side effects that af-
fect the typestate properties of interest. This choice reduces the
computed call graph sizes.

The analysis deals with reflection by tracking objects to casts,
as in [17, 25] . When an object is created by a reflective call (e.g.
newInstance), the analysis assumes (unsoundly) that the ob-
ject will be cast to a declared type before being accessed. The
analysis tracks these flows, and infers the type of object created
by newInstance based on the declared type of relevant casts.
While technically unsound, we believe that this approximation is
accurate for the vast majority of reflective factory methodsin Java
programs.

The pointer analysis adds one-level of call-string contextto calls
to various library factory methods,arraycopy, andclone state-
ments, which tend to badly pollute pointer flow precision if handled
without context-sensitivity. The system uses a substantial library of
models of native code behavior for the standard libraries.

The flow-sensitive combined typestate and alias analysis builds
on a general Reps-Horwitz-Sagiv (RHS) IFDS tabulation solver
implementation [29]. We have enhanced the standard IFDS solver
in straightforward ways to handle Java’s exceptional control-flow
and polymorphic dispatch without undue precision loss.



Benchmark Classes Methods Bytecode Stmts Contexts
bcel 751 4070 236,271 6011
gj 209 2253 131,288 2358
javacup 102 567 45,510 813
jbidwatcher 492 2723 180,492 3641
jlex 90 369 38,019 610
jpat-p 39 115 10,910 133
l2j 583 3443 209,184 4766
lucene 719 3540 224,478 5238
portecle 623 2992 210,543 4762
rhino-a 169 1150 81,388 1427
sablecc-j 362 2027 88,982 2476
schroeder-m 104 481 25,020 696
soot-c 651 2682 137,537 3105
specjvm98 627 3465 290,272 5654
symjpack-t 52 204 73,826 224
toba-s 132 610 52,985 838
tvla 331 1992 132,422 9331
total 6036 32,683 2,169,127 52,083

Table 2: Call graph characteristics for benchmarks.

6.2 Sparsification
To make the analysis scale, we rely on a lightweight sparsifica-

tion[28] optimization prior to solving the IFDS problem. Consider
an integrated verifier using access-paths bounded by depthk. We
first consult the flow-insensitive points-to graph to conservatively
determine all program variables that may appear in access-paths
of depth at mostk, which point to typestate objects of interest for
a given property. Next, we perform a context-insensitive mod-ref
analysis over the call graph, to determine those call graph nodes
which may write to such variables; call these therelevantnodes.
We prune the call graph to includeonly those nodes from which
somerelevantnode is reachable, since the other nodes cannot mod-
ify the IFDS solution.

This pruning is particular important for the LocalFocus verifier.
Exploiting the pruning, the LocalFocus verifier can avoid making
conservative assumptions for every method call, thus greatly in-
creasing its precision.

We assume that methods from the standard libraries will not di-
rectly transition toerr, and apply sparsification accordingly. Of
course, the analysis still must analyze all relevant library code to
account for typestate transitions to non-err states, and aliases in-
duced by the libraries.

In the staged verifier, we exploit results from early stages to im-
prove sparsification in latter stages in two ways. First, if an early
stage verifies that a particular statement does not transition toerr,
latter stages incorporate this information to improve sparsification.
Second, if an early stage proves that a particular abstract object
never causes an error, latter stages ignore tuples for that abstract
object entirely.

6.3 Benchmarks
Table 2 lists the benchmarks employed in this study. Apache

Bcel is a bytecode toolkit with a sample verifier.Java cup and
JLex are a parser generator and lexical analyzer, respectively,for
Java.Jbidwatcher is an online auction tool.L2j is Multi-User
Dungeon game server. Apachelucence is a text search engine.
Portecle is a GUI application for managing secure keys and
certificates.SPECjvm98 is a collection of client-oriented appli-
cations.TVLA is a research vehicle for abstract interpretation. The

Name Description
Enumeration Call hasNextElement beforenextElement
InputStream Do not read from aclosedInputStream
Iterator Do not callnext without first checkinghasNext
KeyStore Always initialize aKeyStore before using it
PrintStream Do not use aclosedPrintStream
PrintWriter Do not use aclosedPrintWriter
Signature Follow initialization phases forSignatures
Socket Do not use aSocket until it is connected
Stack Do notpeek or pop an emptyStack
URLConn Illegal operation performed when already connected
Vector Do not access elements of an emptyVector

Table 3: Typestate properties.

remainder of the benchmarks come from the Ashes suite, described
at the Ashes web page3.

The Table reports size characteristics restricted to methods dis-
covered by on-the-fly call graph construction. The call graph in-
cludes methods from both the application and the libraries;for
many programs the size of the program analyzed is dominated by
the standard libraries. The table also reports the number of(method)
contexts in the call graph. Recall that the context-sensitivity policy
models some methods with multiple contexts.

Table 3 lists intuitive descriptions of the typestate properties ver-
ified in the experiments.

6.4 Methodology
The experiments evaluate the following verification algorithms:

• FI : flow-insensitive analysis (Sec. 2.2.1)

• LocalFocus: the intraprocedural analysis (Sec. 2.2.2)

• Base: the base analysis (Sec. 3.3)

• Unique: the analysis using theuniquereasoning (Sec. 4)

• APMust: the integrated analysis without focus (Sec. 5)

• APFocus: the integrated analysis with focus (Sec. 5.)

• Staged: a staged analysis consisting of three stages: Local-
Focus, Unique, and APFocus.

Note that each verifier performs the FI analysis as a first step, since
it is extremely fast and can prune the workload based on the “ver-
ification scope” passed from the previous stage. The experiments
use an access-path depth limit of 2, and unlimited access-path set
width.

All experiments ran on an IBM Intellistation Z pro with two 3.06
GHz Intel Xeon CPUs and 3.62 GB of RAM, running Windows XP.
The analysis implementation, consisting of roughly 200,000 lines
of Java code, ran on the IBM J2RE 1.4.2 for Windows, with a max
heap of 800MB.

6.5 Results
Figure 4 shows the percentage of warnings, as a percentage of

total number of statements that the callgraph indicates might tran-
sition toerr (points of potential failure (PPF)). The number shown
above each bar in the figure is the total number of PPFs.

The rightmost cluster of bars shows the total number of warnings
across all runs. Overall,

• The FI verifier verifies correctness for30% of PPFs.
3http://www.sable.mcgill.ca/ashes/
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Figure 4: Percentage of warnings out of total number of points of potential failure (PPFs). Results are grouped by a) application,
and b) property. Number of PPFs is shown above each group.

• The LocalFocus verifier verifies correctness for64% of PPFs.

• The Base verifier verifies correctness for68% of PPFs.

• The Unique verifier verifies correctness for72% of PPFs.

• The APMust verifier verifies correctness for85% of PPFs.

• The APFocus verifier verifies correctness for93% of PPFs.

Table 4 shows detailed results for verification warnings produced
by the most precise (APFocus) solver. By construction, the Staged
verifier has the same precision as APFocus. Sec. 6.7 discusses the
sources of many false positives.

6.6 Performance
Figure 5 reports the running times of the various verifiers across

the benchmarks. The results show the expected relative costs of the
various verifiers.

6.6.1 Impact of Staging
The Staged verifier improves performance compared to the AP-

Focus verifier on 9 of the 10 codes where typestate checking takes
more than 30 seconds. On these 10 codes, staging improves per-
formance by up to 85% (tvla), with a median of 34%. Staging
hurts performance by 40% onl2j; on this code, many PPFs sur-
vive early verification stages, and the cost/precision tradeoffs of the
various solvers do not pay off.



Enum InptStr Itr KStore PrntStr PrntWr Sig Socket Stack URLConn Vector Total
bcel 0 / 2 0 / 1 0 / 15 0 / 36 0 / 139 8 / 32 0 / 2 8 / 227 3.5%

gj 2 / 6 0 / 40 2 / 46 4.4%
javacup 0 / 82 0 / 6 0 / 111 0 / 166 2 / 23 2 / 388 0.5%

jbidwatcher 1 / 8 0 / 9 0 / 46 0 / 31 0 / 9 0 / 13 9 / 17 10 / 133 7.5%
jlex 0 / 5 0 / 29 0 / 365 1 / 1 1 / 400 0.3%

jpat-p 0 / 3 0 / 3 0.0%
l2j 6 / 36 0 / 17 0 / 48 4 / 4 1 / 3 10 / 10 21 / 118 17.8%

lucene 0 / 29 0 / 6 0 / 11 0 / 60 0 / 1 1 / 2 1 / 109 0.9%
portecle 19 / 72 0 / 266 0 / 1 0 / 2 0 / 25 0 / 18 19 / 384 5.0%
rhino-a 3 / 9 0 / 16 1 / 1 6 / 6 10 / 32 31.3%

sablecc-j 0 / 24 0 / 47 1 / 3 1 / 74 1.4%
schroeder-m 0 / 6 2 / 11 0 / 2 2 / 19 10.5%

soot-c 0 / 14 0 / 2 0 / 213 0 / 58 6 / 6 6 / 293 2.0%
specjvm98 3 / 109 3 / 151 241 / 1075 4 / 9 0 / 1 251 / 1345 18.7%

symjpack-t 0 / 16 0 / 16 0.0%
toba-s 0 / 3 0 / 3 0 / 25 0 / 386 1 / 2 1 / 419 0.2%

tvla 27 / 715 0 / 151 0 / 2 3 / 4 30 / 872 3.4%

Total 26 / 363 13 / 497 27 / 805 0 / 2 241 / 1928 1 / 1127 0 / 18 4 / 4 27 / 83 0 / 14 26 / 37 365 / 4878 7.5%
7.2% 2.6% 3.4% 0.0% 12.5% 0.1% 0.0% 100.0% 32.5% 0.0% 70.3%

Table 4: Findings for the most precise (staged) solver across all benchmarks and typestate properties. Each entry in thetable shows
the number of warnings as a fraction of the number of PPFs, foreach benchmark/property combination.
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Figure 5: Total wallclock time needed to run the analysis. “Setup” indicates the preliminary activities; primarily the preceding
flow-insensitive pointer analysis and call graph construction. The rightmost stacked bar in each group represents the running time
of the Staged verifier.

6.6.2 Impact of Sparsification
We evaluated the sparsification of Sec. 6.2 across all runs ofthe

staged verifier. With sparsification, 70% of supergraphs have fewer
than 3500 nodes, 95% have fewer than 25,000 nodes, and 100%
have fewer than 40,000 nodes. The corresponding numbers with-
out sparsification are drastically higher: roughly 80% of unpruned
supergraphs have more than 125,000 nodes, and 20% have over
290,000 nodes. Overall, sparsification reduces median supergraph
size by roughly a factor of 50. We would expect a corresponding
reduction in space and running time, if we could run the unpruned
verifiers without running out of memory.

6.6.3 Impact of Initial Pointer Analysis
The precision of the preceding flow-insensitive pointer analysis

significantly impact on performance and precision. A more accu-

rate pointer analysis allows better sparsification, more effective live
analysis and improved disambiguation overall. We ran many of the
analyses with a context-insensitiveAndersen-style pointer analy-
sis, without the custom context-sensitivity policies described ear-
lier. Many benchmarks timed out on several rules; we conclude
that adequate precision in the preceding pointer analysis is vital.

Our context-sensitivity policy employs object-sensitivity for types
from the standard libraries typically relevant to these typestate prop-
erties (namely collections and I/O streams). Some benchmarks de-
feat this object-sensitivity policy by using application-level collec-
tions or streams. For example, TVLA uses a library of application-
level collections, and specJVM98 uses a reporting library of cus-
tom I/O streams. To handle these cases more effectively, we need
to infer a pointer-analysis context-sensitivity policy for application
classes that match typestate properties. Iterative refinement tech-
niques [27, 19] may apply to this problem.



6.7 Discussion
Overall, the results show that our combination of techniques is

relatively successful and efficient at verifying these typestate prop-
erties. The various techniques complement each other, contributing
to the effectiveness of the staged verifier.

Since our goal in this paper is the successful verification oftypes-
tate properties, we have deliberately chosen a set of maturebench-
marks. For our experiments, we assume that typestate violations
in these benchmarks are all false alarms. We have examined, by
hand, many of the warnings which our most precise verifier does
not eliminate.

The specJVM98code’s use ofPrintStreamaccounts for 241 of
the 365 warnings reported. These are all false positives, stemming
from a few lines of code in thespecJVM98harness. This program
stores aPrintStreamobject in a static fieldContext.out, and uses
the object ubiquitously throughout the various benchmarks. The
particular idiom by which the program caches thePrintStreamob-
ject in a static field defeats our focus heuristics, leading to a loss of
precision.

Of the remaining 124 warnings, 53 arise from theVector and
Stackproperties. Most of these warnings appear to represent a
failure of the typestate property to capture all legal behavior, as
opposed to solver limitations. For example, our typestate prop-
erty for Vector does not account for the return value fromVec-
tor.size(). Many times, application code accesses a Vector via state-
ments guarded by a test thatsize > 0. This pattern accounts for
many of the false positives for theStackand Vector rules. For
proper treatment, these APIs require at least range-check analysis,
as commonly applied to array-bounds checking (e.g. [18]).

The remaining warnings appear to arise from a combination of
analysis approximations and typestate property limitations.

We expect that in the near future we can improve precision by a)
access-path tracking for objects that are not typestate objects, but
are likely to point to them, and b) increasing the scope of focus by
exploiting inexpensive local alias reasoning. We suspect that sub-
stantial improvements in alias precision are within reach,without
undue performance compromise.

In many cases, programmers deduce from application logic that
a particular iterator must have a next element, or a particular collec-
tion must not be empty. The typestate property for a single object
does not allow for application logic which ensures, via someback
door, that an object occupies a particular typestate. Designing ef-
ficient, effective analysis for more general specificationsremains a
difficult problem.

7. RELATED WORK
Many existing verification frameworks (e.g., [11, 4, 8]) usea

two-phased approach, performing points-to analysis as a preceding
phase, followed by typestate checking. This approach only sup-
ports weak updates as discussed in Sec. 3.3.

The current version of ESP [13] uses an integrated approach,
recording must and may alias information in a flow-sensitiveman-
ner. They observe that the may set becomes polluted and expensive
to maintain, and even hint toward maintaining a must-not setas a
possible future solution. In contrast, our approach adds must-not
and also introduces the notions of uniqueness and focus, anduses
staging to achieve increased scalability and precision.

DeLine and Fähndrich [12] present a type system for typestate
properties for objects. Their system guarantees that a program that
typechecks has no typestate violations, and provides a modular,
sound checker for object-oriented programs. To handle aliasing,
they employ theadoptionandfocusoperations to a linear type sys-

tem, as described in [15]. With these operations, the type checker
can assumemust-aliasproperties for a limited program scope, and
thus apply strong updates allowing typestate transitions.Our ap-
proach can prove correctness of a more general class of programs,
since a context-sensitive analysis can accept programs forwhich
an expression cannot be assigned a unique type at a given program
point. Furthermore, ourfocusoperation generates facts that can
flow across arbitrary program scopes, in contrast to the limited pro-
gram scope handled by [15]. On the other hand, our approach is
non-modular and thus more expensive.

Aiken et al. [1] present an inference algorithm for inferring re-
strictedandconfinedpointers, which they use to enable strong up-
dates. We believe that thefocusingtechnique we exploit, inspired
by [30], can sometimes achieve a similar effect without explicitly
inferring restrictedand confinedpointers, and sometimes enable
strong updates even when the pointers are not restricted/confined.
Further, the uniqueness technique we use provides a somewhat or-
thogonal, cheap, technique for enabling strong updates.

Field et al. [16] present algorithms based on abstractions that
integrate alias and typestate information, but restrictedto shallow
programs, with only single-level pointers to typestate objects.

The parametric shape analysis presented in [31] has served as the
basis for very precise verification algorithms, where the verifica-
tion is integrated with heap analysis (e.g., [35].) These algorithms,
however, do not scale well. We plan to extend our staged verifier
by adding such precise verifiers as a last stage.

Counter-example guided refinement [5, 22] based approaches
have had impressive results in certain domains. But they have so
far been less successful in dealing with complex heap manipulation,
partly because these approaches attempt toautomaticallyderive ap-
propriate heap analyses. Our staged verifier has a “refinement” fla-
vor, but restricted to a fixed set of manually crafted verifiers.

Aliasing of our combined domain resembles previous approaches
to flow-sensitive, context-sensitive access-path-based pointer anal-
ysis [23, 7]. Emami, Ghiya and Hendren [14] presented a domain
that combined may and must points-to information. Our IFDS-
based solvers memoize function summaries, similar to Wilson and
Lam’s partial transfer functions [34]. Our domain differs from
these previous works since a) it tracksmustandmust-notpaths, but
not may, and b) Java’s strong typing avoids complications arising
from pointers to stack locations.

Iterative refinement techniques [27, 19] perform pointer analysis
in multiple passes, with a client-independent first pass, followed
by subsequent passes using context-sensitivity policies driven by
client feedback. In future work we plan to integrate these tech-
niques into our framework, where each typestate solver provides
feedback for the next stage’s pointer analysis.
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