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ABSTRACT
In this paper, we show how separation (decomposing a verifica-
tion problem into a collection of verification subproblems) can be
used to improve the efficiency and precision of verification of safety
properties. We present a simple language for specifying separation
strategies for decomposing a single verification problem into a set of
subproblems. (The strategy specification is distinct from the safety
property specification and is specified separately.) We present a gen-
eral framework of heterogeneous abstraction that allows different
parts of the heap to be abstracted using different degrees of precision
at different points during the analysis. We show how the goals of
separation (i.e., more efficient verification) can be realized by first
using a separation strategy to transform (instrument) a verification
problem instance (consisting of a safety property specification and
an input program), and by then utilizing heterogeneous abstraction
during the verification of the transformed verification problem.

Some tasks are best done by machine,
while others are best done by human insight;

and a properly designed system will find the right balance.
– D. Knuth
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and Reasoning about Programs; F.3.2 [Logics and Meanings of
Programs]: Semantics of Programming Languages—Program anal-
ysis

1. INTRODUCTION
Recently there has been significant and growing interest in static

verification of safety properties (e.g., see [3, 6, 2, 9, 8, 1, 14, 7,
5]). Such verification is valuable since it can identify software de-
fects early on, thereby improving programmer productivity, reduc-
ing software development costs, and increasing software quality and
reliability.

Consider the Java program fragment shown in Fig. 1. This pro-
gram performs a number of database queries using JDBC [21]. This
example violates one of the usage constraints imposed by the JDBC
library. Specifically, the execution of a query in line 28, using a
Statement object, has the implicit effect of discarding the re-
sults to the previous query executed in line 27 (using the same
Statement object). Hence, the subsequent attempt to use these
discarded results, in line 40, is invalid.

We are interested in verifying that a given program satisfies safety
properties of the kind illustrated above. While significant progress
has been made recently in such lightweight verification, doing pre-
cise verification that can scale to large and complex programs still
remains a challenge. In this paper, we investigate a technique to
improve the precision and efficiency of such verification.

The starting point for our work is the notion of separation: the
idea that separating or decomposing a verification problem into a
collection of smaller subproblems can help scale verification algo-
rithms (e.g., see [5]). Consider again the example in Fig. 1. This
example program executes 5 different queries, producing 5 different
ResultSets. We can verify that the program satisfies the desired
safety property by independently verifying the property for each of
these ResultSets.

It may seem like we are just restating the problem, but this restate-
ment is important from the point of view of the underlying analysis.
It can significantly increase the efficiency of the analysis by reducing
the size of the state space that needs to be explored. In our running
example, Statement stmt1 and ResultSet rs1 can be in
several possible states in line 28. While this information is relevant
for verifying subsequent use of ResultSet rs1, it is irrelevant
for verifying the usage of ResultSet rs2, for example. The
motivation for separation is to exploit this to improve efficiency,
without losing precision.

In this paper, we explore this approach by addressing the follow-
ing questions:

(1) How do we decompose a verification problem into a collection
of subproblems?



…
10 ConnectionManager cm = new ConnectionManager();
11 Connection con1 = cm.getConnection();
12 Statement stmt1 = cm.createStatement(con1);
…
15 ResultSet maxRs = stmt1.executeQuery(maxQry);
16 if (maxRs.next())
…
18 ResultSet rs1 = stmt1.executeQuery(balancesQry);
19 if (maxBalance1 < threshold) {
20 stmt1.close();
21 closed1 = true;
22 }

23 Connection con2 = cm.getConnection();
24 Statement stmt2 = cm.createStatement(con2);
…
27 ResultSet rs2 = stmt2.executeQuery(balancesQry);
28 ResultSet maxRs2 = stmt2.executeQuery(maxQry);
29 if (maxRs2.next())
…
31 ResultSet minRs2 = stmt2.executeQuery(minQry);
…
40 while (rs2.next())
…

Figure 1: JDBC example snippet.

(2) How can we adapt the state abstractions to each subproblem
(so that we may achieve the desired efficiency improvement)? One
of the key characteristics of our approach is that we break up this
question into two parts: (a) What are the objects that are relevant
to a verification subproblem? (b) Given the set of relevant objects,
how can we adapt the state abstraction to utilize this information?

In this paper, we introduce the notion of a separation strategy
as something that can help answer question (1) and partly help
answer (2)(a). Rather than adopt a fixed strategy for separation,
we introduce a simple language for specifying separation strate-
gies that can be used to manually specify strategies. One strategy
for the JDBC problem would be to apply separation at the level
of a Connection, where verification of all ResultSets cre-
ated over a single Connection is treated as a single verification
subproblem.

Currently, we see the strategy specification language as a way for
analysis designers, such as ourselves, to specify and experiment with
different strategies. Our intuition, however, is that end users may
be able to easily identify objects of interest and relevance to some
verification subproblem and that the strategy specification may be
a lightweight way to allow end user input to guide verification.

Given a verification problem instance (consisting of a safety prop-
erty specification and an input program) and a separation strategy,
the first step of our approach is to transform (or instrument) the ver-
ification problem instance to reflect the separation strategy. (Here,
it is worth pointing out that when we talk about “decomposing a
verification problem into subproblems”, we are talking at a concep-
tual level; the transformed verification problem mentioned above is
equivalent to solving the subproblems in parallel.)

The second step is to perform verification for the transformed pro-
gram and safety property in a way that exploits the separation. This
leads us to question (2) above. One of the distinguishing character-
istic of our approach is that we rely on an integrated analysis that
performs, e.g., heap analysis in conjunction with the verification (as
opposed to doing it as a separate preceding analysis). Thus, we are
interested in exploiting separation even for the heap analysis. (In-
deed, the benefits of separation may be greatest for the heap analysis
component if the verification utilizes precise, but expensive, heap
analysis.)

In this paper, we utilize heterogenous abstractions that allow us to
model different parts of the heap with different degrees of precision
at different points in time as a technique to exploit separation.

Consider the example in Fig. 1. Fig. 2(a) informally shows two
possible states of the heap at line 28, corresponding to different
branches taken at line 19. The Statement referenced by stmt1
and the ResultSet references by rs1 are in a closed state in C2

(as illustrated by the “c” inside the component node). Fig. 2(b) illus-
trates the abstract representation produced by our technique (with
a simple separation): the representation above the line corresponds
to one subproblem (corresponding to Connection con1), and

a

con1

��
stmt1

��
rs1

��
C1�������� st

//�������� mrs
//��������

con2

��
stmt2

��
rs2

���������� st
//�������� mrs

//��������

con1

��

stmt1
��

rs1
��

C2�������� st
// '&%$ !"#c

mrs
// '&%$ !"#c

con2

��
stmt2

��
rs2

���������� st
//�������� mrs

//��������

b

con1

��
stmt1

��
rs1

��
C1.1�������� st

//�������� mrs
//��������

/.-,()*+����������

con1

��

stmt1
��

rs1
��

C2.1�������� st
// '&%$ !"#c

mrs
// '&%$ !"#c

/.-,()*+����������

C1.2

WVUTPQRSONMLHIJK...=1/2

��

con2

��
stmt2

��
rs2

���������� st
//�������� mrs

//��������

Figure 2: Separation and heterogenous abstraction.

the representation below the line corresponds to a different subprob-
lem (corresponding to Connection con2). (We present more
details about these representations in later sections.)

Main Results
The main contributions of this paper are:

• We present a simple language for specifying separation strate-
gies for decomposing a single verification problem into a set
of subproblems.

• We present a general framework of heterogeneous abstrac-
tions that allows different parts of the heap to be abstracted
using different degrees of precision at different points during
the analysis.

• We show how the goals of separation (i.e., more efficient ver-
ification) can be realized by first using a separation strategy to
transform (instrument) a verification problem instance (con-
sisting of a safety property specification and an input pro-
gram), and then utilizing heterogeneous abstraction during
the verification of the transformed verification problem.

• We have implemented a prototype of a separation verifica-
tion engine using TVLA, and applied it to verify properties
of several Java programs, using several different separation



while (?) {
f = new File();
f.read();
f.close();

}

Figure 3: Program illustrating the difficulty of verifying that a
file component is never read after it has been closed.

strategies. Initial results indicate that separation does improve
the efficiency, and possibly precision, of verification results.

One of the themes to emerge in recent work (e.g., see [14, 7,
5]) is that maintaining just the right correlation required between
“analysis facts” can be the key to efficient and precise verification:
maintaining no correlations (independent attribute analysis) can lead
to imprecision, while maintaining all correlations (relational anal-
ysis) can lead to inefficiency. However, finding this intermediate
ground can be hard for heap analyses that, e.g., use graph-based
representations of the heap. Our approach may be seen as a step
towards achieving such a balance in a heap representation.

Existing approaches to verification range from more automated
techniques that rely on no extra human input (other than the safety
property specification) to techniques that rely on end users to pro-
vide significant annotation, such as program invariants. We see the
strategy specifications we use as a potentially useful, lightweight,
way for users to assist a verifier.

Related Work
ESP [5] is a system for typestate verification [19] that utilizes a
simple fixed separation technique. Our work differs from ESP in
several respects. ESP uses a two-phase approach to verification in
which pointer-analysis is performed first, followed by typestate ver-
ification. Often, this prevents ESP from applying “strong” updates
necessary for successful verification. Separation in ESP is exploited
only in the typestate verification phase. We utilize an integrated
analysis, where the heap analysis and verification are performed si-
multaneously, allowing the heap analysis to benefit from separation.
We also explore separation in a more general setting than ESP: we
explore its applicability to first order safety properties, such as the
ones shown earlier for JDBC, which involve relationships among
multiple objects; we allow user-specifiable separation strategies; fi-
nally, our technique can achieve separation between multiple objects
allocated at the same allocation site. Since our analysis is capable
of separating out a single object (even from among multiple objects
allocated at the same allocation site), it can utilize “strong” updates
when ESP is forced to use “weak” updates. This can lead to more
precise results, as illustrated by the example in Fig. 3. Unlike ESP,
our technique can successfully verify this example.

The instrumentation technique we use to implement separation
strategies may be seen as an extension of techniques previously used
(e.g., by Bandera [3, 4] and SLAM [13]) to instrument a program
with respect to a safety property specification prior to verification.
However, these approaches use such instrumentation purely to en-
code the verification problem, and do not exploit it for separation
and the generation of adaptive abstractions like we do.

Separation is similar in spirit to McMillan’s functional decompo-
sition [12], which divides the verification task according to units-
of-work rather than dividing according to the program syntax. His
division, however, is applied at the specification level since all en-
tities have static names.

Guyer [10] shows that it is valuable to have pointer analyses
that are client-driven. His analysis is a two pass analysis, with a

client-independent first pass pointer analysis, followed by a second
pass pointer analysis that uses different levels of context-sensitivity
for different analyzed procedures, based on sources of imprecision
identified from the use of the results computed by the first pass.

[14] explores techniques to derive abstractions that are special-
ized to a safety property. Our work on separation is orthogonal to
these techniques. In [18], a heap-safety-automaton (HSA) is used
to specify local heap properties (corresponding to typestate proper-
ties) which are later verified without using any form of separation.
We believe that the separation techniques in this paper could be
beneficial for their analysis as well.

Our heterogeneous abstraction technique is based on the paramet-
ric analysis framework of Sagiv et al. [17]. This analysis framework
has been used to derive several powerful and precise, but very expen-
sive, heap analyses. We believe that successful verification systems
need to use such powerful analyses when needed (to handle difficult
cases when they arise), but scalability requires that the scope of such
analyses be restricted to a small enough universe. We believe that
the identification of “relevant” objects via our separation technique
is a step towards achieving this.

An alternative separation technique would be to decompose a
verification problem into subproblems that verify that each use of
an object, such as a ResultSet, is safe, utilizing demand-driven
analysis to solve the subproblems. This inherently involves “back-
ward analysis”, while our approach utilizes “forward analysis”. The
motivation for our approach is that “backward analysis” is inherently
hard when complex heap analysis is involved.

2. SAFETY PROPERTIES
We are interested in verifying that client programs that use a

component (library) satisfy correct usage constraints imposed by
the library API. In this paper, we use some of the usage constraints
imposed by the JDBC library to illustrate our separation technique
for verification of such safety properties.

The JDBC library allows client programs to createConnections
to databases. Any number of Statements may be created over
a Connection. A Statement can be used to execute an SQL
query over the database, via theexecuteQuery()method, which
returns the results to the query as a ResultSet. The next()
method of a ResultSet can be used repeatedly to iterate over the
results of the query. However, the execution of theexecuteQuery()
method of a Statement implicitly closes any ResultSet pre-
viously returned by the Statement, and it is invalid to use any of
thoseResultSets any more. Similarly, after closing aConnection,
it is invalid to use any of theStatements created from thatConnection
or any of the ResultSets returned by these Statements.

Thus, the execution of line 28 in the example of Fig. 1 implicitly
closes the ResultSet created in line 27, and this will cause an
error when this closed ResultSet is used in line 40.

We specify safety properties using Easl [14], a procedural lan-
guage for specifying an abstract semantics for a component library.
Easl statements are a subset of Java statements containing as-
signments, conditionals, looping constructs, and object allocation.
Easl types are restricted to booleans, heap-references, and a built-
in abstract Set and Map types. Finally,Easl provides a requires
statement to specify the correct usage constraints imposed by the
library: it is the responsibility of any program that uses the library
to ensure that the condition specified by the requires clause will
hold true at the corresponding program point. These are the safety
properties we are interested in checking.
Easl supports object references and dynamic allocation. This

allows us to naturally express the structural relationships between
the objects of interest, as well as dynamic allocation of these objects.



class Connection {
boolean closed;
Easl.Set statements;
Connection() {
closed = false;
statements = {};

}
Statement createStatement() {
requires !closed;
Statement st = new Statement(this);
statements = statements U { st };
return st;

}
void close() {
closed = true;
for each st in statements
if (st.myResultSet != null) {
st.closed = true;
st.myResultSet.closed = true;

}
}

}

class Statement {
boolean closed;
ResultSet myResultSet;
Connection myConnection;
Statement(Connection c) {
closed = false;
myConnection = c;
myResultSet = null;

}
ResultSet executeQuery(String qry) {
requires !closed;
if (myResultSet != null)
myResultSet.closed = true;

myResultSet = new ResultSet(this);
return myResultSet;

}
void close() {
closed = true;
if (myResultSet != null)
myResultSet.closed = true;

}
}

class ResultSet {
boolean closed;
Statement ownerStmt;
ResultSet(Statement s) {
closed = false ;
ownerStmt = s;

}
void close() {
closed = true;

}
boolean next() {
requires !closed;

}
}

Figure 4: An Easl specification for a simplified subset of the JDBC API.

Fig. 4 shows an Easl specification for the JDBC1 safety prop-
erties described above.

Note the use of the setstatements and the fieldsmyResultSet,
myConnection, andownerStmt to specify the relationships be-
tween the components. Also note that applying executeQuery
closes the ResultSet component referenced by myResultSet
if one exists.

In the rest of this paper we will address the problem of verifying
that a given Java program satisfies the safety properties specified by
an Easl specification.

3. SEPARATION STRATEGIES
The goal of a separation strategy is to separate or decompose a ver-

ification problem into a collection of verification subproblems. We
now present an informal description of separation strategies. A more
formal meaning will be given to separation strategies in Sec. 4.2.

Consider a typestate property, such as “anInputStream should
not be read after it is closed”. In this case, verification of the
safety property for one InputStream object does not depend on
the state of another InputStream object. Hence, the verification
can be done independently for each InputStream object. This
amounts to a very simple separation strategy.

Some safety properties, such as the JDBC ResultSet prop-
erty, involve multiple related objects – we refer to these as first order
safety properties. Consequently, verification of such properties can
be separated into subproblems in several different ways, each with
potentially different efficiency and precision tradeoffs. Before we
present some of the possible separation strategies, we introduce a
simple language for specifying a separation strategy.

In our approach, a separation strategy represents a method for
choosing a set of objects. A set of chosen objects identifies a sub-
problem where verification is restricted to the chosen objects. For
effective verification, a strategy should identify other objects that
may have an impact on a chosen object and choose them too. This
motivates the definition of the following language for specifying
strategies.

An (atomic) separation strategy is a sequence of choice opera-
tions, where each choice operation identifies one or more objects
that are chosen, as a function of previously chosen objects.

<atomic-strategy> ::= <choice-spec> *

1Field names from Sun’s SDK1.3.1 sun.jdbc.odbc implementation.

<choice-spec> ::=
choose (some|all) <var>:<constr> [/<condition>]

<constr> = <type-name> ( <var-list> )

Each choice operation consists of a variable name, a signature
of a constructor, and an optional condition. The choice operation
choose some performs a non-deterministic selection of objects
created through the specified constructor that satisfy the condition.
The operation choose all chooses all objects created through
the specified constructor that satisfy the condition. Both choice
operations evaluate the condition, and apply their choice on entry
to the specified constructor.

We now present some strategies for the JDBC ResultSet
property.

Single Choice. The motivation for our first strategy is the obser-
vation that there is no interaction between differentConnections:
it should be possible to perform verification for each Connection
independently. Hence, the following strategy performs separation
at the level of a Connection.

choose some c : Connection()
choose all s : Statement(x) / x == c
choose all r : ResultSet(y) / y == s

The separation strategy described above first non-deterministically
chooses a single Connection, then proceeds by choosing all
Statements created from this Connection, and then choosing
all ResultSets created from these Statements. For the run-
ning example, this amounts to separating the verification problem
into two independent subproblems, one for each Connection.

Multiple Choice. However, it should be clear from the JDBC
specification that it is possible to perform a more fine-grained sep-
aration than the single choice strategy described above. In partic-
ular, the correct usage of a ResultSet does not really depend
on how any other ResultSet is used. Thus, it is not necessary
to perform verification of the different ResultSets created from
a single Statement together, for instance. However, the cor-
rect usage of a ResultSet does depend on the Statement and
Connection underlying the ResultSet. These observations
motivate the following separation strategy.



choose some c : Connection()
choose some s : Statement(x) / x == c
choose some r : ResultSet(y) / y == s

For the running example, this strategy produces a set of 5 sub-
problems, one for each combination of matching Connection,
Statement and ResultSet.

Note that using a finer grained separation strategy may or may
not lead to more efficient verification. On one hand, finer grained
separation leads to smaller subproblems that can be verified more
easily. On the other hand, it also leads to a larger number of sub-
problems. The relative performance of a strategy may depend on the
amount of work that is duplicated across the different subproblems.
The strategy we present next is likely to reduce the amount of work
duplicated across subproblems.

Incremental. The two strategies we have seen are examples of
atomic strategies. In this paper, we also explore the possibility of
applying a sequence of increasingly complex separation strategies
to perform verification. The motivation for this is simple: usually
many verification subproblems may be amenable to simple and ef-
ficient verification, but some verification subproblems may require
more precise analysis for successful verification.

An incremental strategy is a sequence of atomic strategies, which
are tried one after another, stopping when one of the atomic strate-
gies completely verifies the program. An atomic strategy can make
use of failure information from the previous atomic strategy applied
to the program. We restrict ourselves to a very simple form of fail-
ure information, where the choice operation can restrict attention to
individuals that failed verification in the previous step. We will il-
lustrate this with examples first, and later explain how these strategy
specifications are interpreted.

{
choose some r : ResultSet(y)

} on failure {
choose some s : Statement(x)
choose some failing r : ResultSet(y) / y == s

} on failure {
choose some c : Connection()
choose some failing s : Statement(x) / x == c
choose some failing r : ResultSet(y) / y == s

}

The above strategy optimistically first attempts to verify usage
of each ResultSet independent of even the Statement un-
derlying the ResultSet. If that fails, it then attempts to ver-
ify usage of ResultSets, while tracking usage of the underlying
Statement. If that too fails, it then attempts verification using
even more context.

Note that an incremental strategy may be thought of as a very
simple (fixed) iterative refinement scheme. For our running exam-
ple, the very first atomic strategy in the sequence above successfully
verifies all correct uses of ResultSet.

Semantics and Correctness. Note that the language presented
above is powerful enough to specify partial verification problems,
where the checking is done only for the specified subset of objects.
This power is useful in some contexts. However, the goal of a strat-
egy is typically to improve the precision and efficiency of verification
but not affect its correctness. In order for a separation strategy to
guarantee correctness, it has to cover all objects of the types being
verified.

We later describe how a strategy specification defines an instru-
mented semantics for a program: every program-state in the stan-
dard semantics corresponds to a set of instrumented-program-states

Predicates Intended Meaning
x(v) reference variable x points to the object v
fld(v1, v2) field f of the object v1 points to the object v2

bv() boolean variable bv has true value
bf(v) boolean field bf holds for object v
site[AS](v) object v was allocated in allocation site AS

Table 1: Predicates for partial Java semantics.

in the instrumented semantics, where an instrumented-program-
state may be roughly thought of as a program-state plus a set of
objects in the program-state (which are the “chosen” objects). A
strategy is said to completely cover a type T if for every program-
state σ in the standard semantics, for every object obj of type T
in σ, there exists an instrumented-program-state in which obj is a
chosen object.

Theorem 1. A separation strategy that consists only of choice
operations with no condition and choice operations of the form:

choose all x : T (w1,…,wk) / (wi == zj)

where wi (1 ≤ i ≤ k) is a parameter of the constructor T, and zj

is a variable bound by earlier choice operations, completely covers
T.

4. SEPARATION
In this section, we show how a separation strategy is utilized to

decompose a verification problem into a set of verification subprob-
lems. We first illustrate how an Easl safety property specification
and a Java program together can be translated into an analysis prob-
lem instance in the parametric analysis framework of [17]. We then
show how an Easl safety property specification, a Java program,
and a separation strategy specification together can be translated
into a modified analysis problem instance (corresponding to a set of
verification subproblems). (This translation provides the semantics
of a separation strategy.)

4.1 Background
We now present an overview of first order transition systems

(FOTS), the formalism underlying the parametric analysis frame-
work of [17]. FOTS may be thought of as an imperative language
built around an expression sub-language based on first-order logic

In a FOTS, the state of a program is represented using a first-
order logical structure in which each individual corresponds to a
heap-allocated object and predicates of the structure correspond to
properties of heap-allocated objects.

Definition 1. A 2-valued logical structure over a set of predicates
P is a pair C\ = 〈U \, ι\〉 where:

• U \ is the universe of the 2-valued structure. Each individual
in U \ represents a heap-allocated object.

• ι\ is the interpretation function mapping predicates to their
truth-value in the structure: for every predicate p ∈ P of arity
k, ι\(p) : U \k

→ { 0, 1 }.

In the following we will use p(v) as shorthand for ι\(p)(v) when
no confusion is likely.

Table 1 shows some of the predicates we use to record properties
of individuals in this paper. A unary predicate x(v) holds when
the reference (or pointer) variable x points to the object v. Simi-
larly, a binary predicate fld(v1, v2) records the value of a reference
(or pointer-valued) fieldfld. A nullary predicate bv() records the
value of a local boolean variable bv and a unary predicate bf(v)



Predicates Intended Meaning
chosen[x](v) object v was chosen by choice operation

for strategy variable x
wasChosen[x]() some object was chosen for strategy variable x
chosen(v) object v was chosen by some choice operation
relevant(v) abstraction-directing predicate

recording relevant objects

Table 2: Additional predicates of the instrumented semantics.

records the value of a boolean field bf. Finally, a unary predicate
site[AS](v) records the allocation site AS in which an object was
allocated.

In order to enable interprocedural analysis we explicitly repre-
sent stack frames and a corresponding set of predicates following
[16]. Since this does not interfere with the material in this paper, to
simplify presentation we do not describe these predicates.

In this paper, program configurations are depicted as directed
graphs. Each individual of the universe is drawn as a node. A unary
predicate p(o) which holds for a node u is drawn inside the node
u. A binary predicate p(u1, u2) which evaluates to 1 is drawn as
directed edge from u1 to u2 labelled with the predicate symbol.

Example 1. Fig. 5 shows a concrete program configuration rep-
resenting a global state of the program before executing the state-
ment at line 28. In this configuration, three String objects were
allocated in the heap and are referenced by maxQry, minQry,
balancesQry. The configuration also contains twoConnection
objects referenced by con1 and con2, two Statement objects
referenced by stmt1 and stmt2, and three ResultSet objects
referenced by maxRs, rs1, and rs2. Note that the ResultSet
referenced by maxRs is closed. The meaning of the predicates
relevant(u), chosen[c](u), chosen[s](u), and chosen[r](u) will
become clear in the next section.

4.2 Instrumentation For Separation
In this section we explain how we translate a Java program, an

Easl specification, and a strategy specification into a FOTS. Specif-
ically, the strategy specification is used to instrument the standard
translation of a Java program and Easl specification into a FOTS.
(This translation also directly provides a formal semantics for a
separation strategy as a method for non-deterministically choos-
ing a set of objects during program execution.) We use the pred-
icates in Table 2 to instrument the semantics. Predicates of the
form chosen[x](v), wasChosen[x](), and chosen(v) are used to
express the separation strategy. The predicate relevant(v) is an
abstraction-directing predicate that controls the way in which an
object is abstracted.

Consider a choice operation

choose all x : T (w1,...,wi) / e(w1,...,wi,z1,...,zk)

Here, we say that the choice operation binds variable x. Variables
w1 throughwi are free variables corresponding to parameters of a call
to a constructor for type T, while z1 through zk are variables bound
by earlier choice operations. In order to model the specified choice
operation, we introduce an instrumentation predicate chosen[x](u).
The idea is for the predicate chosen[x](u) to hold true for exactly the
objects that are chosen by the above choice operation. We achieve
this by translating the condition e(...) specified for the choice
operation into a first-order logic formula which is evaluated on entry
to the specified constructor T to compute the value of chosen[x](u)
for the newly created object u. (Technically, this translation works
by converting the free occurrences of a variable zj by occurrences

of an existentially quantified logical variable Oj that is constrained
to satisfy predicate chosen[zj ](Oj).)

The translation of a choose some x operation is similar, ex-
cept that the translation ensures that at most one of the objects that
is eligible for selection by the operation is chosen. This is done by
introducing a second instrumentation predicate wasChosen[x]()
that indicates if an object has already been selected during pro-
gram execution for the corresponding choice operation (thus, it is
defined by the instrumentation formula ∃O.chosen[x](O)). When
a new T object O is constructed, chosen[x](O) is set to false if
wasChosen[x]() evaluates to true or if the selection formula cor-
responding to the choice operation evaluates to false. Otherwise,
chosen[x](O) is non-deterministically assigned either true or false,
and wasChosen[x]() is correspondingly updated.

Given a simple strategy specification consisting of n choice op-
erations over variables z1 through zn, we also introduce a unary
predicate chosen(O) that indicates if an object was chosen by any
of the n choice operations: thus, it is defined by the instrumentation
formula chosen[z1](O) ∨ · · · ∨ chosen[zn](O).

Finally, the actual checks on objects that verify they satisfy the
necessary preconditions when methods are invoked on them are
instrumented to do the check only for chosen objects.

For now, the predicate relevant(u) may be thought of as being
equivalent to chosen(u). We will later see that the set of relevant
objects includes all the chosen objects and potentially some other
objects as well.

Example 2. The single-choice strategy for JDBC is modelled
using predicates chosen[c](u), chosen[s](u), and chosen[r](u).
Upon entry to the constructor Statement(Connection c),
the condition of the corresponding choice operation is evaluated
and the Statement is chosen if the passed Connection is
the one for which chosen[c](u) holds. Similarly, the condition
for choosing a ResultSet is evaluated on entry to constructor
ResultSet(Statement s). As a result, for each subproblem
chosen[c](u) holds for (at most) a single Connection compo-
nent, and chosen[s](u), chosen[r](u) hold for Statements and
ResultSets that are related to the chosen Connection. Part of
the instrumented program for this strategy is shown in Fig. 6 (For
clarity, we use Easl syntax to present the instrumented program).

We now briefly indicate how incremental strategies are handled.
The notion of a failed individual is fairly straightforward. A single
strategy specification produces multiple verification subproblems,
each over a set of chosen individuals. An individual is said to be
a failed individual if it is a chosen individual of a verification sub-
problem that fails verification. However, we want to utilize simple
strategy specifications that restrict their attention to individuals that
failed the previous simple strategy specification. In general, this
requires instrumentation that can identify at object-allocation time
whether the allocated object corresponds to a failed individual in
the previous verification step. This is hard to do in a very general
way, and we restrict ourselves to allocation-site based identification
of failed individuals: thus, if any one individual allocated at an al-
location site fails verification, then all individuals allocated at that
site are treated as failed individuals in the next verification step.

Operational Semantics
In a FOTS, program statements are modelled by actions that spec-
ify how the statement transforms an incoming logical structure into
an outgoing logical structure. This is done primarily by defining
the values of the predicates in the outgoing structure using first-
order logic formulae with transitive closure over the incoming struc-
ture [17].
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Figure 5: Concrete program configurations representing a possible program state (a) at line 28 and (b) after execution of statement
at line 28

class Connection {
...
Connection() {
if (!wasChosen) {
if (?) {
chosen = true;
wasChosen = true;

} else
chosen = false;

}
closed = false;
statements = {};

}
Statement createStatement() {
if (chosen)
requires !closed;

Statement st = new Statement(this);
statements = statements U { st };
return st;

}
...

}

class Statement {
...
Statement(Connection c) {
chosen = c.chosen
closed = false;
myConnection = c;
myResultSet = null;

}
ResultSet executeQuery(String qry) {
if (chosen)
requires !closed;

if (myResultSet != null)
myResultSet.closed = true;

myResultSet = new ResultSet(this);
return myResultSet;

}
...

}

class ResultSet {
...
ResultSet(Statement s) {
chosen = s.chosen;
closed = false ;
ownerStmt = s;

}
...
boolean next() {
if (chosen)
requires !closed;

}
}

Figure 6: An instrumented Easl specification for a simplified subset of the JDBC API with single-choice separation strategy.

Example 3. Fig. 5(b) shows the effect of the statement maxRs2
= stmt2.executeQuery(maxQry) at line28, where the state-
ment is applied to the configuration in Fig. 5. The effect of the
statement is reflected by its updates to predicate values. Here, we
assume that the choice predicates and the instrumentation predicates
are updated according to the single-choice strategy of Sec. 3. Since
the constructor of the new ResultSet is invoked with a chosen
Statement object, the choice condition is satisfied and the newly
created ResultSet is chosen and made relevant.

4.3 Additional Instrumentation
The predicate relevant is intended to identify objects that must be

modelled precisely for a verification subproblem. The separation
strategy specification allows users to identify relevant objects (via
choice clauses). An analysis designer, or a component library de-
signer, can create separation strategies that reflect the dependencies
that exist among component library objects, while an end user can
create separation strategies that provide more dependency informa-
tion (specific to their own program).

Currently, however, we do not assume that such extra dependency
information will be available from an end user. Instead, we rely
on a more automatic approach that considers objects which reach
a relevant object as relevant themselves, thus creating a notion of

transitive relevance. Transitive relevance causes all objects that
are on a path to a relevant object to become relevant as well, thus
separating heap paths that may reach a relevant object from heap
paths that cannot.

We achieve this by defining the instrumentation predicate relevant(u)
to be true iff there is a path from u to some chosen object v (i.e.,
some object v for which chosen(v) is true). We update this predi-
cate using the techniques of [15].

5. HETEROGENEOUS ABSTRACTION
The essence of our separation-based verification is the following:

first, a separation strategy is used to choose a set of objects (for
a given program trace); second, we utilize specialized abstractions
to perform verification for the chosen objects efficiently. These
specialized abstractions represent the chosen objects much more
precisely than the remaining objects. We refer to these abstractions
as heterogeneous abstractions as they represent different parts of the
heap with different degrees of precision. In this section we describe
the abstractions we use for separation-based verification.



Abstract Program Configurations
The goal of an abstraction is to create a finite representation of a po-
tentially unbounded set of 2-valued structures (representing heaps)
of potentially unbounded size. The abstractions we use are based
on 3-valued logic [17], which extends boolean logic by introducing
a third value 1/2 denoting values that may be 0 or 1.

Definition 2. A 3-valued logical structure over a set of predicates
P is a pair C = 〈U, ι〉 where:

• U is the universe of the 3-valued structure. An individual in
U may represent multiple heap-allocated objects.

• ι is the interpretation function mapping predicates to their
truth-value in the structure: for every predicate p ∈ P of
arity k, ι(p) : Uk → { 0, 1, 1/2 }.

An abstract configuration may include summary nodes, i.e., an indi-
vidual which corresponds to one or more individuals in a concrete
configuration represented by that abstract configuration. We use a
designated unary predicate sm to maintain summary-node informa-
tion. A summary node u has sm(u) = 1/2, indicating that it may
represent more than a single individual.

As in [17], the abstract interpretations we use work by abstracting
the set of 2-valued structures that can arise at a program point by a
set of 3-valued structures. However, this can be done in a number
of ways as shown below.

Individual Merging. The basic abstraction primitive used by [17]
is that of individual merging: a larger structure s can be safely ap-
proximated by a smaller 3-valued structure by merging multiple
individuals into one, and by approximating the predicate values ap-
propriately. Given an equivalence relation ≡ on individuals, let s/≡
denote the structure obtained by merging individuals of s that are
≡-equivalent together.

The above primitive induces a function abs1[≡] that abstracts a
set of 2-valued structures by a set of 3-valued structures, defined
by abs1[≡](S) = {s/≡ | s ∈ S}. (Strictly speaking, abs1[≡](S)
retains only a single representative of isomorphic structures, but we
ignore the fine distinction between isomorphism and equality for
the sake of simplicity.)

[17] utilizes the equivalence relation ≡A induced by a set of unary
predicates A (referred to as the abstraction predicates) defined as
follows: o1≡Ao2 iff p(o1) = p(o2) for every p ∈ A.

Structure Merging. Subsequently, TVLA [11] introduced more
aggressive abstraction mechanisms based on the idea of merging
multiple structures into one. Define the union s1 ∪ s2 of two struc-
tures to be the structure whose universe is the disjoint union of the
universes of s1 and s2, with the predicate interpretations of s1 and
s2 extended appropriately. The union of a set of structures S is
defined similarly. Structures are merged by first taking their union,
and then merging individuals of the union along the lines indicated
previously: define

⊔
≡(S) to be (

⋃
S)/≡.

Now, consider an equivalence relation ' defined on structures,
indicating which structures must be merged together, and an equiv-
alence relation ≡ defined on individuals. We can now define a
parameterized abstraction function abs2[', ≡](S) that first applies
individual merging to every structure s in S, and then merges to-
gether the resulting structures that are '-equivalent. Formally,
abs2[', ≡](S) is defined to be:

{
⊔

≡
(C) | C is an '-equivalence class of abs1[≡](S) }

TVLA utilizes the following ' definitions: (a) s1 ' s2 iff s1 and
s2 are isomorphic, (b) s1 ' s2 iff s1 and s2 have the same values

...=1/2
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Figure 7: An abstract program configuration representing the
concrete configuration of Fig. 5(b).

for a specified set B of nullary abstraction predicates, (c) s1 ' s2

iff s1 and s2 have the same universes (modulo ≡).
TVLA utilizes an extra unary predicate active, which indicates

if an individual definitely exists in the universe or not, so that the
structure

⊔
≡(S) can be used as an abstraction of every structure

in S. Thus, if S is a set of 2-valued structures, then the predicate
active is true for an individual o in

⊔
≡(S) iff the equivalence class

represented by o includes at least one individual from every structure
in S.

Heterogeneous Abstraction
Separation creates the possibility for achieving better efficiency by
adapting the abstractions to model chosen individuals more pre-
cisely and the other individuals less precisely. In particular, this can
be done by:

• Adapting individual merging: We can make finer distinctions
between chosen individuals than for unchosen individuals,
when we decide which individuals should be merged together.
E.g., we can choose to use the less expensive allocation-site
based merging for unchosen individuals, and more expensive
variable-name based merging for chosen individuals.

• Adapting structure merging: Similarly, when deciding which
structures should be merged into one, we could choose to treat
chosen and unchosen individuals differently.

• Adapting predicate values retained: One could choose to not
record the values of certain predicates for unchosen individ-
uals. While this can reduce the space required to represent a
structure, this does not, unlike the preceding techniques, re-
duce the number of structures in the abstraction. We will not
discuss this in this paper.

We now define a new family of equivalence relations for identify-
ing individuals to be merged. Consider a quadruple 〈c, A1, A0, A1/2〉
where c is a unary predicate, and A1, A0, and A1/2 are all sets of
unary predicates. The equivalence relation ≡〈c,A1,A0,A1/2〉 on in-
dividuals is defined by:

(c(o1) = c(o2) = 1) ∧ ∀p ∈ A1.p(o1) = p(o2)) ∨

((c(o1) = c(o2) = 0) ∧ ∀p ∈ A0.p(o1) = p(o2)) ∨

((c(o1) = c(o2) = 1/2) ∧ ∀p ∈ A1/2.p(o1) = p(o2))

Given a set Γ of such tuples, we define ≡Γ to be γ∈Γ
≡γ .

We similarly define a new criteria for structure merging. Given a
unary predicate c, define s1 'c s2 iff the substructures of s1 and s2

consisting only of individuals i for which c(i) = 1 are isomorphic.



For our separation-based verification, we utilize the abstraction
induced by the equivalence relations≡〈relevant,A,∅,A〉 and'relevant,
where A is the set of abstraction predicates utilized by the underlying
separation-less verification. (In our implementation, this consists of
the set of unary predicates).

Implementation Notes. Our current implementation uses a very
close approximation of the individual merging induced by the equiv-
alence relation ≡〈relevant,A,∅,A〉 as follows: for every predicate
p in A, we introduce a new instrumentation predicate pr(o) =
p(o) ∧ relevant(o), and use the set of predicates { pr | p ∈ A }
as the set of abstraction predicates.

Example 4. Fig. 7 shows an abstract configuration representing
the concrete configuration of Fig. 5(b), obtained by heterogeneous
relevance-based abstraction. Abstract program configurations are
depicted similarly to concrete configurations with an additional rep-
resentation of summary nodes as nodes with double-line boundaries,
and a 1/2-valued binary predicate as a dashed edge. All individ-
uals for which relevant holds are abstracted by the values of the
predicates in A1. Other individuals, for which relevant does not
hold, are merged into a single summary node since A0 = ∅. In par-
ticular, this abstract configuration abstracts away the current state
of objects related to Connection con1, including the state of
Statement stmt1. In the figure, we use . . . = 1/2 instead of
listing all predicates that have 1/2 value for the summary node.

If we had used a “homogeneous” abstraction, the non-relevant
objects would have been abstracted using the same set of predicates
as the relevant objects (A1), thus keeping the objects related to
the Connection referenced by con1 with the same precision,
and cost, as the ones related to Connection referenced by con2.
The ability to treat these structurally-similar objects very differently
during analysis is a key to obtaining good results with our method.

Abstract Semantics
We will now briefly describe the abstract semantics (“transfer func-
tions”) we utilize for program statements.

A key idea underlying [17] is that the actions defining a standard
operational semantics for a program statement (as a transformer of
2-valued structures) also define a corresponding abstract semantics
for the statement (as a transformer of 3-valued structures). This
abstract semantics is simply obtained by reinterpreting logical for-
mulae using a 3-valued logic semantics and serves as the basis for
an abstract interpretation. However, [17] also presents techniques,
such as materialization, that improve the precision of such an ab-
stract semantics. We directly utilize the implementation of these
ideas available in TVLA.

We described earlier (see Sec. 4.2) how we utilize instrumentation
predicates to identify relevant objects. We currently also utilize
instrumentation predicates to achieve a heterogeneous abstraction.
We use the techniques in [15] for automatically generating, from
the instrumentation formula, an instrumented abstract semantics for
statements to update the values of these instrumentation predicates.

6. PROTOTYPE IMPLEMENTATION
We have implemented a prototype of the separation verification

engine using TVLA [11]. To translate Java programs and their spec-
ifications to TVP (TVLA input language) we have extended an ex-
isting Soot-based [20] front-end for Java developed by R. Manevich.

The implementation emulates heterogeneous abstraction using in-
strumentation predicates in TVLA, which adds some overhead. We
believe that a native implementation of heterogeneous abstraction
will yield better performance.

Program Description Mode Line Space Time Rep. Act.
No. (MB) (Sec) Err. Err.

ISPath inp. streams vanilla 71 9.17 145.5 0 0

/ IOStreams single 2.51 17.4 0

sim 3.94 12.3 0

Input inp. streams vanilla 64 16.35 439 1 0

Stream5 holders single 17.65 240 0

/ IOStreams sim 21.35 202 0

Input inp. streams vanilla 64 13.72 343 1 1

Stream5b holders err single 19.71 279 1

/IOStreams sim 22.74 243 1

Input inp. streams vanilla 66 37.17 1344 1 0

Stream6 holders single 13.91 69.4 1

/ IOStreams sim 12.14 51.3 1

JDBC extended vanilla 149 33.43 2500 1 1

Example example single 28.71 1090 1

/ JDBC multi 16 7340 1

inc 12.5 3579 1

JDBC extended vanilla 153 32.8 2500 0 0

Example example single 28.8 1090 0

fixed / JDBC multi 29.5 7500 0

inc 25.7 3339 0

db SpecJVM98 vanilla 644 89.25 10454 0 0

db single 90 2500 0

/ IOStreams sim 91.17 1496 0

Kernel Collections vanilla 82 42.23 8321 1 1

Bench.1 benchmark single 13.15 657 1

/ CMP sim 13.84 255 1

multi 14.45 4552 1

inc 14.45 960 1

Kernel Collections vanilla 146 − − − 1

Bench.3 benchmark single 107.8 12098 1

/ CMP sim 128.7 7588 1

multi 119 69631 1

inc 106 12881 1

SQL JDBC vanilla 1297 − − − 0

Executor framework single 80.59 5028 0

/ JDBC multi 72.64 4919 0

inc 42.68 412 0

Table 3: Analysis results and cost for the benchmark programs.

We applied our framework to verify various specifications for a
number of example programs. Our specifications include correct
usage of JDBC, IO streams, Java collections and iterators, and ad-
ditional small but interesting specifications. The experiments were
performed on a machine with a 1 Ghz Pentium 4 processor, 1 Gb2.
Results are shown in Table 3. The column titled “mode” shows the
analysis mode for each line in the table. Verification with TVLA
with no separation is referred to as vanilla mode. “Rep. Err.” shows
the number of reported errors, while “Act. Err.” shows the number
of actual errors. When counting errors, we count all errors reported
at the same program location as a single error.

Our implementation allows control over which subproblems are
verified simultaneously. This allows verification of subproblems re-
lated to one (or more) allocation-sites separately from other subprob-
lems, reducing the maximal memory footprint of the verification.
The measurements in Table 3 correspond to this non-simultaneous
mode. The space measurement shown in Table 3 for separation
modes (single, multi, incremental) is the maximal space required for
analyzing a single set of subproblems. The time is the accumulated
time for analyzing all subproblems. The table also shows mea-
surements for simultaneous verification of all subproblems using
single-mode (sim mode). For the JDBC example, the simultaneous
single-choice mode is identical to the non-simultaneous mode.

2SQLExecutor analyzed on a machine with a 2.79Ghz processor.



ISPath is a simple correct program manipulating input streams.
InputStream5 is a heapful example program that manipulates input-
streams in holder objects at arbitrary depth of the heap. For this
program, the vanilla version produces a false-alarm that is avoided
by the separation-based analysis. This is due to the use of tran-
sitive relevance which makes the separation-based analysis more
precise (for the relevant objects). Generally, since the separation-
based analysis is more focused, it may allow using a more precise
abstraction than the one that could be used when applied uniformly.
InputStream5b is an erroneous version of InputStream5 containing
a single error. InputStream6 is another variation of InputStream5.

JDBCExample is an extended version of the running example that
uses 5 Connections. The high running-time result for incremen-
tal mode in this case is affected by the fact that there is small number
of Statements (1) and ResultSets (up to 3) associated with
each Connection. db is a program from SpecJVM98 performing
multiple database functions on a memory resident database.

KernelBenchmark1 and KernelBenchmark3 are part of a bench-
mark suite for testing Collections and Iterators used in [14]. SQLEx-
ecutor is an open source JDBC framework. For this benchmark,
vanilla verification failed to terminate after more than 5 hours, but
incremental-mode successfully verified the program in 412 seconds.
This is a result of the correct and relatively simple usage of JDBC
objects in this benchmark.

In some benchmarks separation gained an overall performance
increase, while in others the total verification time in some modes
was larger than the time for vanilla-mode verification. In all cases,
however, the average time for verifying a single subproblem was
significantly lower than the time required for vanilla verification.
Thus, separation may be useful for answering on-demand queries
when one is only interested in checking whether an object (or a set
of correlated objects) can produce an error. E.g., while the total
time for multi-mode and incremental-mode in the JDBC example
was larger than the time required for vanilla-mode, the average time
for verifying each subproblem was approximately 670 seconds.

One interesting future direction is to exploit separation for in-
creasing performance by parallelizing verification of subproblems.

7. EXTENSIONS AND FUTURE WORK
We have experimented with two classes of iterative refinement

schemes for approximating the set of relevant objects for a sub-
problem: the first iteratively identifies more “relevant program vari-
ables” and turns objects pointed-to by these variables relevant; the
second iteratively identifies “relevant allocation sites” and turns ob-
jects allocated at these sites relevant. Both classes of our refinement
schemes are guaranteed to terminate (with all objects being relevant
in the worst case), but are not guaranteed to yield a successful verifi-
cation. Our initial experience indicates that these techniques work
well for relatively small examples.
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