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Abstract

Since multi-dimensional arrays are a natural data structure for supporting multi-dimensional queries, and
object-relational database systems support multi-dimensional array ADTs, it is natural to ask if a multi-dimensional
array-based ADT can be used to improve O/R DBMS performance on multi-dimensional queries. As an initial
step toward answering this question, we have implemented a multi-dimensional array in the Paradise Object-
Relational DBMS. In this paper we describe the implementation of this compressed-array ADT, and explore its
performance for queries including star-join consolidations and selections. We show that in many cases the array
ADT can provide significantly higher performance than can be obtained by applying techniques such as bitmap

indices and star-join algorithms to relational tables.

1 Introduction

Multi-dimensional data analysis has been around for at least twenty years [OR95], but has recently taken the spotlight
in the context of OLAP (On-Line Analytical Processing) systems. A fundamental demand of OLAP systems is
extremely fast response times for multi-dimensional queries. The relational database community is investigating
and implementing a variety of techniques intended to meet the stringent OLAP response time requirements, most
notably special techniques for “star join” consolidation queries and bit-map indices for select-join queries over star
or snowflake schemas. These techniques can indeed greatly improve relational performance for multi-dimensional
queries when compared with more traditional alternatives such as pipelined left-deep hash joins for consolidation
queries [Su96] or B-tree indexes for star select-joins [0Q97].

However, the recent emergence of object-relational database systems [Ki95, St96] has opened the door to another
potential approach to solving the OLAP query performance problem: since object-relational database systems can
be extended to support the storage and manipulation of multi-dimensional arrays, why not use these arrays as

a storage structure for multi-dimensional data sets, and use specialized processing algorithms on these arrays to



answer multi-dimensional queries? To begin to answer this question, we have implemented multi-dimensional arrays
in the Paradise [DKLPY94] object-relational database system, and tested their effectiveness for multi-dimensional
query workloads. In previous work [ZDN97], we investigated the performance of multi-dimensional arrays for the
specialized OLAP “compute the cube” function. In this paper we consider the performance of arrays for two different
operations, the previously mentioned star select-joins and consolidation queries. To enable a comparison, we have
also implemented bit-map indices and specialized star-join consolidation operators in Paradise.

Of course, the idea of using multi-dimensional arrays as a storage structure for multi-dimensional data analysis is
far from new — many of the leading OLAP companies (including Arbor Software, Pilot Software, and others) in fact
use arrays in their multi-dimensional (non-relational) database systems as their basic storage mechanism. However,
since these systems are proprietary, and their vendors view many of their processing techniques as trade secrets,
very little implementation or performance information is available. More importantly with respect to our efforts,
we know of no comparison, implementation-based or otherwise, of multi-dimensional arrays with their bit-map and
star-join counterparts. A contribution of this paper is a discussion of our implementation of these arrays and their
processing algorithms, and a performance study comparing them to relational techniques within the same software
and hardware platform.

The results from our study indicate that multi-dimensional arrays in object-relational systems can indeed improve
performance significantly over bit-map indexing and star-join consolidation algorithms. The main reasons for this
are that (1) with proper compression, the same data set is much smaller when stored in a multi-dimensional array
than in a relational table (even when the relational table is stored in an extremely dense format customized for
fixed-length records), and (2) with arrays, lookups and aggregations are position-based rather than value-based.

Clearly, the work reported here is just the beginning, and many important questions need to be answered before
one can claim that arrays should be used for OLAP applications running on object-relational database systems. One
of the main issues to be resolved is how exactly these arrays should interact with the SQL processing engine. In
more detail, bitmaps and star-join operators can be naturally invoked by query optimizers and evaluation engines in
response to the standard SQL expression of multi-dimensional queries. With multi-dimensional arrays the situation
is less clear. Since the arrays are implemented as an ADT, queries can be run by invoking appropriate methods on
the ADT (in fact this is how our implementation works) but this is not transparent to the query generator. Further
work is necessary before arrays can be used transparently as a storage alternative or index-like query accelerator.
Other issues to be resolved include developing techniques for parallelizing these arrays and their operators so that
they can scale as well as standard relational operators. But the performance results we have observed to date are
striking enough that these issues appear to be worth investigating.

The rest of the paper is structured as follows: Section 2 presents an OLAP data model. Section 3 describes the
design and implementation of the OLAP Array ADT, while Section 4 describes the new query evaluation algorithms
used by this ADT, and the corresponding relational algorithms to which they are compared. Section 5 gives the

results from our performance study, and Section 6 concludes and discusses future work.

2 A Basic OLAP Data Model

In order to make this paper self-contained, we outline some basic characteristics of OLAP data sets relevant to the
queries and algorithms we will be discussing here. Consider a database containing sales data describing the volumes
of products sold in a given store on a given date. The attributes product, store and time functionally determine the
sales volume. These attributes are referred to as dimensions, while the sales volume is referred to as a measure.
Intuitively, this data 1s best visualized as a three dimensional array with product, store and time being the dimensions
of the array. In addition, each dimension has its own attributes that describe its members. For example, the product

dimension might contain for each product the product name, the product type, and the category to which it belongs.



Returning to the measure, each individual cell in the array contains the sales volume for a particular product at a
particular store on a particular date. Even though the array logically has cells for all possible combinations of values
of dimensions, some of the cells might not be valid. For example, a store in Madison, Wisconsin 1s unlikely to sell
beach clothing in January.

Typically, dimensions have associated with them hierarchies. These hierarchies represent the level of aggregation
and hence successive refinement of data being viewed. For example, the store dimension might have a hierarchy store
name — city — region. Similarly, product type — category could be a hierarchy on the product dimension.

Now we generalize the preceding example. Let us assume that the data contains n dimensions. Let C' be the

hypercube with n dimensions. Let M = {ma,...,m,} be the set of p measures stored in individual cell in the
hypercube. Each of m; can draw values from the domain dom(m;), ... , dom(m,). Each of the dimensions is
referred to as Dy, ... ,D,. Each dimension Dj;, contains the k; attributes D;(A;1), ... , D;(Aix,) that describe the

dimension. Each D; contains a key attribute to index to into the cube. For simplicity, we will assume D;(A4;1) is the
key attribute for each dimension D; (1 <i < n). Each dimension attribute D;(A;;) takes values from dom(D;(A;;))
(1 <i<n,1<j<k;). Now each n-tuple (ay,as, ..., a,) uniquely identifies the cell at C'(ay, ..., a,), where each a; is
a element of the domain dom(D;(A;1)).

With this minor formalism in place we can describe the classes of queries we are considering.

2.1 Consolidation Queries

Consolidation is one of the most important of OLAP operations. Consolidation involves the aggregation of data over
one or more dimension hierarchies or formulaic relationships within a dimension. While they are often as simple as
summations, consolidations can involve complicated mathematical and statistical functions such as expected value
and correlation.

A generalized consolidation query can be formally written as

SELECT P, Fi(m1), -, Fp(my)
FROM C(D1(An), -+, C(Dn(An1))
WHERE ¢(D;) AND ... AND ¢(D,)

GROUP BY (

Perhaps the strangest-looking part of this query to SQL hackers is the FROM clause term C'(D1(A11), - -+, C(Dn(An1)),
which we use to indicate that the “source” of the data for the query is the cube indexed by the dimension tables.
As with “real” SQL this does not imply any particular implementation. Also, we have that ¢(D;) is the predicate
D;(A;;) = vij, where vi; € dom(D;(Ai5)) (1 <i<n,1<j<k;). Also, we have that G C {D;(4;;) |1 <i<n,1<
J <k;},and P C G. F; is the aggregation function used for measure m;.

2.2 Mapping the Data Model to a Relational Schema

In this section, we show how to map the OLAP data model to a ROLAP schema. The standard way of representing
such a data set in the relational model is to use a star schema [Ki95] (or its slightly more complex variant, the
snowflake schema). Each of the dimension tables D; (1 < i < n) with k; attributes maps onto a relational table Tp,
with k; attributes

D;(Ai1, Asay o Ai,) = To, (Ain, Aia, ooy Aik,)

such that
dom(D;(A;j)) = dom(Tp,(Aij)), (1< < ki)



. The hypercube C' is mapped into a table F¢ with n + p attributes

C = Fco(Ai1, Ao, ..., Ap1,ma, ma, ..., myp)

such that
dom(Fc (A1) = dom(D;(Ai1)) 1<i<n

and
dom(Fc(m;)) = dom(m;) 1<i<p

with n attributes from the foreign keys of n dimensions and p attributes from the measures. This table is often called

the “fact” table. The relational star schema for our running example database is:
e Sales (pid, sid, tid, volume);
e Product (pid, pname, type, category);
e Store (sid, sname, city, state, region);
e Time (tid, day, month, quarter, year);

The Sales table contains the actual sales volume data. Also notice that each dimension does form a hierarchy.
The dimension tables maintain information about the hierarchy. As Figure 1 shows, the term “star” in “star schema”
arises here because Sales can be viewed as the center of a star, with each of the dimension tables representing a point
of the star.

In terms of query processing, an OLAP consolidation query over a star schema involves a join of the “fact” table
with the dimension tables, followed by a group-by and an aggregation. The join portion of the consolidation is often

called a star join in OLAP terminology.

2.3 Mapping the Data Model into an O/R DBMS Array

In an O/R DBMS, we have an alternative for implementing our abstract data model. We still map each dimension
D into a dimension table, but we store the hypercube C' in a multi-dimensional array instead of a fact table. This
array is implemented as an ADT, and the mapping between the key value of a dimension table and the index value
of the array is maintained by the instance of the ADT. The ADT also keeps track of the mapping between the
dimension table and the array dimension. A consolidation query is evaluated by executing a function on the ADT.

The implementation details of the ADT are discussed in the next section.

3 An ADT for Multi-Dimensional Data Sets

In this section, we describe the design and implementation of an array-based OLAP ADT that integrates a multi-
dimensional OLAP storage structure into the Paradise database system. Paradise has an object-relational data
model and query language that supports relational tables, ADTs, and functions on ADTs. The OLAP Array ADT
uses a multi-dimensional array as its primary storage structure and has functions defined on it to perform common

OLAP operations such as consolidation and aggregation.
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Figure 1: Relational Star Schema

3.1 Implementation

The OLAP Array ADT contains an n-dimensional array and a set of B-tree indices, one for each dimension. The
n-dimensional array stores the same data that was stored in the “fact” table in the relational implementation of the
data model. For example, if this ADT were used to store the data from the retail sales example from Section 2, each
cell of the array would contain one sales volume value. In addition to maintaining the sales volume values, we must
also maintain the mapping from dimension value to array index. (Unfortunately here and elsewhere in this paper
we run into overloading of the word “index” — in this case “index” refers to a value used as a subscript for an array
access. )

The pid, sid, and tid attributes are keys for the Product, Store, and Time relations. In order to maintain the
mapping between a tuple in a dimension table (a dimension value) and its corresponding array index value, we
store one B-tree index for each dimension table within the OLAP Array ADT. This B-tree index maps dimension
identifiers, e.g. pid, to array index values. Notice that a vector (a1, as, .., a,) of dimension values uniquely identifies
a cell in the array in the ADT. Figure 2 shows a small 2-D OLAP Array ADT object in detail.

The OLAP Array ADT is built on top of the Paradise multi-dimensional array type.

The Paradise multi-
dimensional array uses tiling (also called chunking) to make array access more efficient [DKLPY94]. Storing large

arrays on disk in row-major or column-major order may not be efficient because cells that are logically adjacent in
the array can be far apart on disk. Tiling, on the other hand, breaks an n-dimensional array into n-dimensional tiles
and stores each tile as a SHORE [CDFHM94] large object. (The SHORE storage manager is the storage repository
used by Paradise.) In [SS94], the authors found that tiling improves access times for an n-dimensional array. The
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Figure 2: 2-D OLAP ADT

Paradise multi-dimensional array also implements compression on a tile by tile basis using the LZW algorithm [Wel84]
to further improve performance. As we discuss in the next subsection, the OLAP Array ADT does not use LZW
compression, and uses instead a compression method that is specific to arrays.

The OLAP Array ADT, like the relational fact table, relies on SHORE for database support. As we described
above, each tile of a Paradise multi-dimensional array is stored as a SHORE large object. SHORE provides database

support for large objects, including recovery and concurrency control.

3.2 Storage Efficiency

Multi-Dimensional arrays are clearly efficient for storing dense data. For example, consider a 100% dense n-
dimensional array. To store this in a relational table, each tuple would contain a foreign key for each dimension D;
and p attributes for the set of measures M. On the other hand, in an array only the corresponding p measures are
stored, since the cell in the array is identified by the key attributes D;(A;1) for 1 < i < n. If Ty and A, are the
storage requirements for a table and array, then Ts = ”p# x pAs where p stands for data density. This means that
the relational star schema requires about np# times the amount of storage that a multi-dimensional array would
need, when data density is 100%.

However, this storage efficiency does not come for free — on sparse data, the array might require far more storage.
When p < n’fp, the table storage requires less space than the array. In the retail sales example, storing the fact table
in a three dimensional array instead of a four attribute ROLAP table saves storage space when p is 25% or greater.
However, with a density of less than 25%, the OLAP Array ADT’s array potentially requires much more disk space
than the relational “fact” table because the OLAP Array ADT allocates storage for every array cell, regardless of
whether the cell contains valid data or not. On the other hand, a relational table only stores a tuple for a cell only
if the cell has valid data.

Fortunately, for sparse data sets, another opportunity arises: sparse arrays are extremely compressible. As we
show in the next subsection, using our “offset compression” algorithm, we found that a compressed array takes
less disk space than a relational fact table for surprisingly low densities. In the next subsection, we discuss the

chunk-offset compression in details.



3.3 Chunk-offset compression

In our OLAP Array ADT we use a form of compression that to our knowledge is new, and which we call “chunk-
offset compression.” In chunk-offset compression, we omit those invalid data cells in each chunk and store a pair,
(offsetInChunk,data), for each valid array cell. The offsetInChunk integer can be computed as follows: consider
the chunk as a normal (uncompressed) array. Each cell ¢ in the chunk is defined by a set of indices; for example,
if we are working with a three-dimensional square chunk of ¢ units in each dimension, a given cell will have an
“address” (4,7, k) in the chunk. To access this cell in memory, we would convert the triple (7,7, k) into an offset
s=((i x ¢) + j) x ¢) + k from the start of the chunk. This offset is the “offsetInChunk” integer we store.

We also sort the valid array cells of each chunk in a increasing order of array cells’ chunk offsets. For a given set
of array index values (a, - -, an) , we can calculate the chunk number and the chunk offset and use a binary search
to find whether there is valid array cell in the position (a1, ---,a,). This feature can be used when indexing the
multi-dimensional array, which is explored in the Array-based alogrithm for consolidation with selection.

Since in this representation chunks will be of variable length, we use some meta data to hold the OID and the
length of each chunk and store the meta data at the beginning of the data file. Given a chunk number, the meta

data is used as index structure to fetch the corresponding array chunk.

3.4 IndexTolndex Arrays

The OLAP Array ADT, in addition to the array corresponding to the relational fact file, includes a set of arrays, one
per dimenson table, called the IndexTolndex arrays. These arrays map from the array index corresponding to one
level of a dimensional hierarchy to the array index corresponding to another. For example, if we have a dimension
table geography (city, state), we would have an IndexToIndex array mapping from the city array index in the OLAP
Array ADT’s array to the state array index in a (virtual) consolidated version of the OLAP Array ADT. If Madison
is the 10,344th distinct element of the City column of the geography table, and Wisconsin is the 47th distinct element
of the State column, then IndexTolIndex array for the geography dimension would contain the pair (10344,47) in the
10,344’th slot. This is really the array equivalent of the hierarchy information in the dimension table.

Returning to our formalism, this can be expressed as follows. For each dimension D;, where 1 < ¢ < n, there
is an indexTolIndex array I;. If D; has k; attributes, the array I; can be declared of size I;[count Distinct(A;1), kil
Consider some row m of this array. This row will be an g¢-tuple of the form (m,e¢s,...,¢q) (¢ = k;), with the
interpretation that the mth distinct element of attribute A;; maps to the csth distinct element of attribute A;5, and
to the esgth element of attribute A;3, and so forth.

3.5 Functions

As stated above, the Paradise data model supports functions on ADTs. These ADT functions can be invoked in
the Paradise-SQL query language using the standard dot notation. We take advantage of this functionality to define
several functions on the OLAP Array ADT to provide OLAP functionality, which, though very limited, is enough
for our experiments.

The functions on the OLAP Array ADT include a Read/Write function to retrieve and update the array data
in the OLAP Array ADT, a function to compute the sum of a subset of the array, a consolidation function, and
a slicing function. The result of the Read/Write and summation aggregation functions are instances of the OLAP
Array ADT. The Paradise ADT model will eventually allow us to implement complex OLAP analytical functions

such as correlation and variance inside the DBMS server.



4 OLAP Consolidation Algorithms

Consolidation is one of the most costly and widely used OLAP operations, much as the join is one of the most
costly and widely used operations in standard relational query processing. We have developed a new consolidation
algorithm specifically for the OLAP Array ADT and have compared the performance of this algorithm against a
relational consolidation algorithm. This section describes our new algorithm in detail and gives brief descriptions of

the relational algorithm which we used for comparison.

4.1 An OLAP Array Consolidation Algorithm

Recall that a basic consolidation looks something like this in SQL:

select city, type, sum(volume)
from Sales, Product, Store
where Sales.pid = Product.pid and Sales.sid = Store.sid

group by Store.city, Product.type

That is, the consolidation operation consists of a star join followed by a “group by” and an aggregation. In the
context of the OLAP Array ADT, a consolidation operation is a “join” of the OLAP Array object’s array with
its associated dimension tables followed by a “group by” and an aggregation. An important feature of our new
consolidation algorithm is that it merges the star join and the aggregation into a single operation. This is faster
than a star join followed by an aggregation in a non-pipelined system. Furthermore, as we will discuss, the algorithm
takes advantage of the fact that arrays are in some sense “index” structures, in that a set of array indices can be
used to directly identify the position of a value in the array.

The result of a consolidation operation on an instance of the OLAP Array ADT is another instance of the OLAP
Array ADT. We call these instances the input OLAP Array object and the result OLAP Array object, respectively.
In addition, the array associated with the input OLAP Array object is called the input array. The result array is
defined similarly.

This algorithm has two phases: the first phase scans the input OLAP Array object’s dimension tables, B-trees,
and IndexTolndex arrays for each dimension. The B-trees for the result OLAP Array object are also created during
this phase. The second phase of the algorithm scans the input array and uses the values from the input array and
the IndexTolndex arrays to create the result array.

Logically, the cells in the input array are divided into groups by the group by values. Each group is associated
with exactly one cell in the result array. Therefore, each cell in the input array can be associated with exactly one cell
in the result array. The IndexTolndex array maintains a function from the input array indices in a given dimension
to the result array indices in that dimension as defined by the group by values. Given the indices of an element of
the input array, we can use the IndexTolndex arrays for each dimension to uniquely determine the result element
the input element is associated with. In the context of an aggregation function, we can think of each element of the
result array as a “group” and all the elements of the input array that map to that “group” need to be aggregated
together.

As stated above, the first phase of the algorithm creates the B-tree for the result OLAP Array object. This phase
begins by scanning the dimension tables. For each dimension tuple retrieved, the dimension identifier from that tuple
is used to probe the appropriate dimension B-tree in the OLAP ADT to obtain the tuple’s associated index value.
The group by value for the tuple is determined and is inserted into the appropriate B-tree in the result OLAP Array
ADT object.

After building the result B-trees for each dimension, the algorithm scans the input array. For each index value

of each array cell retrieved, the indices of that array cell and the corresponding IndexTolndex arrays are used to
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Figure 3: OLAP Array Consolidation Algorithm Data Structures

determine the indices of the result element associated with this input element. Once all result indices have been

determined, the input element is placed in the appropriate array cell and aggregated as appropriate. For example,

in a summation aggregation the input element is summed with the value in the result array cell. Figure 3 shows the
data structures for the OLAP Array ADT consolidation algorithm.
Pseudo-code for the OLAP Array consolidation algorithm is below.

OLAP Array Consolidation Algorithm

For each joined dimension

{

}

create result B-tree;

load the IndexToIndex array;

scan the input array

For each array cell

{

look up result indices using the IndexTolIndex arrays;
//Star Join

find the corresponding result array cell;
//Aggregation

add the input cell to the result array cell;



This algorithm is currently implemented for summation aggregation, but could easily be extended to aggregates
such as count and average. This algorithm assumes that the result OLAP object and all the IndexTolndex arrays
fit into memory. The assumption that the IndexTolndex arrays fit in memory is reasonable, since dimension tables
are typically small for OLAP applications. The assumption that the resulting OLAP Array object fits in memory is
more questionable. Since it is the result of an aggregation, this object will always be no bigger than the input OLAP
Array object, and in general it will be much smaller. The result OLAP Array object approaches the input OLAP
Array object in size only when the number of groups in the “group by” implied by the consolidation approaches
the number of cells in the input array. For such operations our algorithm would need to be extended to compute
the result OLAP object “chunk by chunk”, where each chunk fits in memory. While such an extension would be

straightforward we did not implement it, as it was not necessary in our experiments.

4.2 OLAP Consolidation algorithm with Selection

To handle the consolidation queries with selection we designed another algorithm. The algorithm consists of two
main steps. First, it searches the B-tree built on the selected attribute on each dimension table for the “selected”
value. It returns a list of index values for the dimension. As we mentioned before, each tuple in a dimension table has
a key value and its key value corresponds to a unique index value of the OLAP Array object’s n-dimensional array.
The list of index values associated with a given “selected” value serves as a join index for the “selected” value. After
retrieving the index lists for all “selected” values on each dimension table, the algorithm merges those index lists
into a final list for each dimension table. Second, it generates a cross-product of the final lists from each dimension
on the fly. No memory is allocated to the cross-product elements. For each generated cross-product element, the
algorithm calculates the element’s chunk number and the offset in the chunk from its index values. It uses the chunk
number to retrieve the chunk and uses the offset to probe the chunk. If the cross-product element is a valid element,
the algorithm aggregates the corresponding array cell value to the result.
Pseudo-code for the OLAP Array algorithm is below.

OLAP Array Consolidation Algorithm with Selection

For each join dimension table

{

Use the B-tree to retrieve the index list

for the selected values;

Merge those index lists to generate the final list;
}

Generate the cross-product of the final lists;

For each cross—-product element

{
calculate the chunk number and chunk offset;
probe the chunk;
if (cross-product element is valid)
aggregate the array cell to the results;
X

In our implementation of the algorithm, we adopted a few optimizations to enhance its performance. First, we
generate the cross-product elements according to the chunk number. In other words, we generate the cross-product
elements contained in Chunk 0 first, then those in the Chunk 1, and so on. If we calculate that a chunk does

not overlap with any cross-product elements, we do not read the chunk into memory. If the array chunks are laid
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out on the disk in the same order as their chunk number order, we read chunks in the same order as the chunks’
physical order. Second, we sort each array chunk’s elements according to their offset values. This means that given
a cross-product element’s chunk offset, we can use a standard binary search to see whether the element is valid in
the chunk. Third, we generate the cross-product elements in an increasing order of their chunk offsets. We use this

order to optimize the search.

4.3 A Relational Consolidation Algorithm

To compare the array-based consolidation algorithm with the table-based relational consolidation algorithm, we im-
plemented within Paradise a Starjoin algorithm. To see why this was necessary, we first repeat a common assumption
of star schemas: the dimension tables are dwarved by the fact table, so much so that the assumption is that the
dimension tables fit in memory while the fact table does not. Furthermore, the dimension tables share no join
attributes; that is, they join only through the fact table, not with each other.

If we try to do a star join on such a set of tables using only left-deep hash-based query plans, we are in trouble.
At issue is where in the plan to put the (large) fact table. Tt must be one of the lowest leaves of the tree, or else the
plan will contain a cross product. If it is the left leaf, then we are faced with building a hash table on the (huge)
fact table. If it is the right leaf, we only delay this by one stage; after a join with the first dimension table, we must
build a hash table on the large result.

One alternative is to do a cross product of the dimension tables and join this with the fact table. We explored
this possibility, but even with small dimension tables this cross product quickly grew in size to the point where
this alternative was unworkable. Another alternative is to modify the system to accept right-deep trees. Our star
join algorithm approximates such an approach, albeit at lower overhead (since it is a single operator rather than a
pipeline.)

Our Starjoin Consolidation algorithm uses one hash table for each dimension table, and a hash table for the
aggregate function. The algorithm first builds an in-memory hash table for each dimension table. Each hash entry
contains the value of the tuple’s group by attribute and the value of the tuple’s key attribute. After building the hash
tables, the algorithm scans the fact table. For each tuple from the fact table, the algorithm probes the hash tables to
obtain the group by values for this tuple. It then constructs a new “joined” tuple containing all the group by values
and the data value. If there exists a corresponding group tuple for the “joined” tuple in the aggregation hash table,
the data value is aggregated to the group tuple. Otherwise, the “joined”tuple is inserted into the aggregation hash
table. The results are output from the aggregation hash table at the end of the algorithm.

4.4 Selections on Star Joins: Bitmap Index and Fact File

The previous section considered only consolidations without selections. While such consolidations are important
(e.g., when computing an aggregate table), many times queries involve selection conditions on the dimension tables.

We implemented and tested several algorithms for these selections, including standard B-tree indexing, a spe-
cialized “skipping multi- attribute B-tree” algorithm, and bitmap indexing. Here we present only bitmap indexing,
since our tests showed that it dominated the other techniques over the full range of queries tested in this paper. For
details of these tests please see [RQZN].

Bitmap Indexes are becoming widely used in relational systems [SybaselQ, Redbrick, Informix] to speed up the
evaluation of consolidation queries with selection [OQ97]. We have implemented bitmap indices in Paradise. We
have also implemented a specialized file structure optimized for tables with small, fixed-size records. We call this
structure a “fact file” for obvious reasons. Our main reason for implementing this file is to do everything possible to

ensure that the relational table is as fast as possible (since our conclusions indicate that the OLAP Array is faster.)
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This fact file improves performance in two ways: (1) it provides a fast path for retrieving tuples corresponding to
“1”s in a bitmap, and (2) it eliminates the space overhead associated the with slotted page structure used in most
relational database systems. Note that we also used this “fact file” structure for the consolidation queries to take
advantage of this second benefit.

In more detail, in OLAP applications, the fact table tuples are fixed length. We can use this feature to eliminate
the overhead incurred by using slotted pages. In addition, given a tuple position relative to the first tuple i.e. the
tuple number, we can find the corresponding page and offset within the page. One possible method is to allocate
all fact table pages contiguously. Given a tuple number, we can calculate the page number and the offset within the
page containing the tuple. However, the disadvantage with such direct mapping is that it is not often possible to
allocate large set of pages contiguously for large fact tables.

To address this problem, the fact file allocates n pages in groups called extents. Within each extent, all the pages
are contiguous. It uses an internal tree structure to keep the pointers to the first page of each extent. Given a tuple
number, we can compute the extent, the page within the extent, and the offset within the page for the tuple. The
fact file provides a interface that takes a bitmap and retrieves the tuples corresponding to non-zero bit positions.
For more details on the design, implementation and performance of bitmap indices and fact file refer to [RQZN].

Note that 1t was possible to implement a fact file complete with concurrency control, recovery, and SQL query
processing in a reasonable amount of time because the SHORE storage manager used by Paradise is C++ from the
bottom up. This means that by exposing the proper public interface all these database functions were available to

the fact file with essentially no additional programming effort.

4.5 Relational Algorithm for Consolidation Queries with Selection

The basic idea of the algorithm is to retrieve the bitmaps satisfying the predicate on the dimension tables and AND
them to get the result bitmap. Using the result bitmap, we fetch the tuples and aggregate. Initially, we create a
join bitmap index on each selected attribute for each dimension table. (This bitmap creation is done ahead of time,
not as part of the query evaluation.) The relational algorithm for consolidation with selection on n dimensions is as

follows

Set all bits of ResultBitmap to ones;

foreach selected dimension
{

retrieve the bitmaps for the selected values;
AND ResultBitmap with the bitmaps;
X

retrieve the tuples for ResultBitmap;

aggregate the tuples’ measure to the results;
The ResultBitmap is used to open up a fact file scan on the fact file. For each ”1” in the final bitmap, it gets the

tuple from the fact file and aggregates the tuple to the results.

5 Performance

We have used six data sets to compare the performance of the OLAP Array ADT versus the relational tables. This

section describes our test database configurations and our performance results.
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5.1 Test OLAP Database Schema

The test OLAP database schema 1s similar to that of the retail store database. The relational star schema for the

test database is below:

e fact (d0 int, d1 int, d2 int, d3 int, volume int);

)

e dimO (d0 int, h01 string, h02 string

)

(
dim1 (d1 int, h11 string, h12 string
( .
(

)

e dim2 (d2 int, h21 string, h22 string

)

)
)
)
e dim3 (d3 int, h31 string, h32 string)

The hX1 and hX2 attributes of all the dimension tables are uniformly distributed. The hX1 and hX2 attributes

are hierarchically structured, similar to the dimensions in the retail sales example.

5.2 OLAP Queries

Query 1 is a template for an OLAP consolidation query that joins the fact table or the OLAP Array ADT with all

dimension tables, groups by each dimension table’s hX1 attribute, and sums on the sales volume.

select sum(volume), dim0.h01, diml.h11, dim2.h21, dim3.h31
from fact, dim0, dimil, dim2
where fact.d0 = dim0.d0 and fact.d1l diml.d1 and
fact.d2 = dim2.d2 and fact.d3 = dim3.d3
group by hO01, hii, h21, h31

Query 2 is Query 1 with selection.

select sum(volume), dim0.h01, diml.h11, dim2.h21, dim3.h31
from fact, dim0, diml, dim2, dim3
where fact.d0 = dim0.d0 and fact.dl = diml.d1 and
fact.d2 = dim2.d2 and fact.d3 = dim3.d3 and
dim1.d401 = "AA1" and dimi.d11 "AA2" and
dim2.d421 = "AA3" and dim3.d31 "AA1"
group by hO01, hii, h21, h31

Query 3 is the same consolidation query with selection on three dimensions.

select sum(volume), dim0.h01, diml.h11, dim2.h21

from fact, dim0, dimil, dim2

where fact.d0 = dim0.d0 and fact.d1l diml.d1 and fact.d2 = dim2.d2 and
dim1.d401 = "AA1" and diml.d11 = "AA2" and dim2.d21 = "AA3"

group by hO01, hii, h21

5.3 System Configuration

These tests were run on an 200MHZ Intel Pentium Pro processor with 64MB main memory and a 2.0 GB Quantum
Fireball disk. The operating system used was Solaris 2.4. We used version 0.5 of Paradise, configured with an 16MB
buffer pool. The test databases were created using the Unix file system on a local disk. We flushed both the Unix
file system buffer and Paradise buffer pool before running each query. The configurations of the two test databases

are shown below.
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5.4 Data Sets

We used synthetic data sets to study the algorithms’ performance. There are a number of factors that affect the

performance of an OLAP algorithm. These include:

e Number of valid data entries.

That 1s, what fraction of the cells in a multi-dimensional space actually contain valid data? Note that the
number of valid data entries is just the number of tuples in a relational table implementing the multi-dimensional
data set.

o Dimension size.

That is, how many elements are there in each dimension? Note that for an OLAP Array ADT implementation,
the dimension size determines the size of the array. For a relational table implementation, the table size remains
constant as we vary dimension size, but the range from which the values in the dimension attributes are drawn

changes.
We used the following two types of data sets and scaling in our tests.

e Data Set 1: Keep the number of valid data elements constant, vary the dimension sizes. The data set consists
of three 4-dimensional arrays. For these arrays, three of the four dimensions sizes are fixed at 40, while the
fourth dimension is either 50 (for the first array), or 100 (for the second), or 1000 (for the third). Every array
has 640000 valid elements. This results in the data density of the arrays (fraction of valid cells) ranging from
20%, to 10%, to 1%.

e Data Set 2: Keep the dimension sizes fixed, vary the number of valid data elements.

All members of this data set are logically 4-dimensional arrays, with size 40x40x40x100. We varied the number

of valid data elements so that the array data density ranges from 0.5% to 20%.

We generated uniform data for both data sets.

The table representation of the data set was generated as determined by the array representation. One tuple was
generated for each cell of the array that had valid data. For example, if the array had a value 1 at cell A7, j, k], then
we generated a tuple (4,7, &, 1).

5.5 Performance Results
5.5.1 Consolidation Query

The results of Query 1 for the OLAP Array and the relational consolidation algorithms on Data Set 1 and Data
Set 2 are shown in Figure 4 and Figure 5.

For both data sets, the OLAP Array consolidation outperforms the relational algorithm by a wide margin. There
are two factors contributing the performance difference. First, the array, compressed by the offset compression
algorithm, is smaller than the Fact File. For this reason scanning the fact file is much expensive than scanning the
compressed array. (It takes about 10 seconds to scan the Fact File for the Data Set 1 while the entire array-based
algorithm takes less than 3.5 seconds.) For example, at 1% data density with Data Set 1, the size of the relational
fact file is about 18.5 MBytes vs. 6.5 MBytes of the compressed OLAP array.

Second, the relational algorithm uses a value-based aggregation algorithm, which costs more CPU time than the
OLAP Array’s position-based aggregation. For Data Set 1, the relational algorithm spends 3 seconds on aggregation
while the array algorithm takes less than 1 second to aggregate the results.

To see why, consider again the following consolidation query, Query 1:
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Figure 4: Query 1 - Data Set 1 Figure 5: Query 1 - Data Set 2

select sum(volume), dim0.h01, diml.h11l, dim2.h21, dim3.h31
from fact, dim0, dimil, dim2
where fact.d0 = dim0.d0 and fact.d1l diml.d1 and
fact.d2 = dim2.d2 and fact.d3 = dim3.d3
group by hO01, hii, h21, h31

Any algorithm to compute this consolidation must map all dimension attributes (d0, d1, and d2) in the fact table
to their parents in their respective hierarchies (h02, h12, and h22.) In the array implementation, this mapping is
done using simple index lookups in the IndexTolndex arrays. For each value in the OLAP Array, its array indices
are used to determine the array indices in the output array to which that input value corresponds. The input value
is then summed with the output value. Thus for each array element, aggregation involves a series of array lookups
(one for each dimension) and a sum.

The relational algorithm, on the other hand, because it only stores valid entries, but not all possible entries,
must use hashing or some other mechanism, instead of array lookups, to do the aggregation. For each tuple in the
relational fact table relation, we must map the tuple to its aggregation group, by looking at the dimension hash
table, using the hash value of its group-by attributes to find the group entry in the result hash table, and adding the
tuple volume to the result tuple volume. This is significantly more expensive than the array lookups and sum done
by the array algorithm.

We found that the array algorithm execution time increases somewhat as the fourth dimension size increases.
The reason for this is explained as follow. We used the same chunk size (that is, the dimensions of the chunks were
the same) independent of the full array size. The 40x40x40x1000, 40x40x40x100, and 40x40x40x50 arrays have 800
chunks, 80 chunks, and 40 chunks. Even though the storage for each is about the same (due to the chunk-offset
compression technique), it takes SHORE more time to scan 800 6400-bytes chunks than 80 64000-bytes chunks.

5.6 Performance Result for Query 2 and Query 3

The results of Query 2 for the Array-based and the Relational consolidation algorithms on the 40x40x40x100 and
40x40x40x1000 arrays are shown in Figure 6 and Figure 7.

For Query 2, we vary the number of distinct values for the second attribute of each dimension table from 2, 3, 4,
5, 8, to 10. The selectivity S for the star join is the s”, where s is the selectivity on each dimension table and r is
the number of joined dimension tables. When s value ranged from 1/2, 1/3, 1/4, 1/5, 1/8, to 1/10, the S changes
from 0.0625, 0.0123, 0.00391, 0.0016, 0.00024, 0.0001 for a four dimension star-join query.
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From Figure 6 and 7, we see that the OLAP Array algorithm is faster than the relational algorithm when the
selectivity S is greater than 0.00024. When the selectivity S is smaller than 0.00024, the Bitmap index with Fact File
performs slightly better than the OLAP Array algorithm, for the 40x40x40x1000 array shown in Figure 8 and for the
40x40x40x100 array shown in Figure 9. With 0.0001 selectivity, there are only 80 no-zero bits in the final bitmap.
The relational algorithm only needs to retrieve 80 tuples. On the other hand, while the OLAP Array ADT algorithm
only needs to retrieve 80 cells, unfortunately these cells are distributed throughout the array and the algorithm must

retrieve close to 80 array chunks.
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Figure 8: Query 2 on the 40x40x40x1000 array Figure 9: Query 2 on the 40x40x40x100 array

For Query 3, we found that 90% of execution time for the relational algorithm is spend on retrieving the selected
tuple. Getting the bitmap entries from the bitmap indices and ANDing them is not expensive. The performance
results on Query 3 confirm this point (Figure 10). Comparing the relational algorithm’s execution times in Figure 7
and 10, we see that having a selection on three dimensions instead of four dimensions makes very little difference to
algorithms’s performance, since while with three dimensions the algorithm has one fewer bitmap operation (bitmap

fetch and AND), but still must pull out the same number of result tuples.
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6 Conclusion and Future Work

In this paper, we have used an implementation of an OLAP Array Abstract Data Type to show that multi-
dimensional arrays can be more efficient both in terms of storage space and performance than relational tables
for multi-dimensional OLAP data sets. This performance comparison was done in the context of the Paradise
object-relational database system. We conclude that for a wide variety of queries multi-dimensional arrays are sur-
prisingly efficient, when compared with relational tables, for storing and operating on relatively sparse OLAP data
sets. The exception we observed was that by using bitmap indices over a highly optimized file structure, the more
standard relational algorithm outpeformed the OLAP Array algorithm for selectivities less than 0.00024.

These results suggest that the support for arrays in object-relational database technology can be used to improve
system performance for OLAP-style multi-dimensional workloads. Much work remains to be done before this benefit
can be fully utilized; we are currently investigating topics including languages issues that arise when integrating the
array-based storage approach with standard SQL query processing, parallelizing the array-based approach to provide
scalability to large data sets, and support for more complex functions of the sort often used in multi-dimensional
data analysis.

Finally, we believe that the large OLAP data set sizes require parallel computing and we would like to investigate
parallelization of OLAP data structures and key OLAP operations in the context of a parallel object-relational

database system.
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