
Building a Scalable Geo-Spatial DBMS:
Technology, Implementation, and Evaluation

Jignesh Patel, JieBing Yu, Navin Kabra, Kristin Tufte, Biswadeep Nag, Josef Burger, Nancy Hall,
Karthikeyan Ramasamy, Roger Lueder, Curt Ellmann, Jim Kupsch, Shelly Guo, Johan Larson,

David DeWitt, and Jeffrey Naughton

Computer Sciences Department
University of Wisconsin-Madison

Abstract

This paper presents a number of new techniques for parallelizing
geo-spatial database systems and discusses their implementation
in the Paradise object-relational database system. The effective-
ness of these techniques is demonstrated using a variety of com-
plex geo-spatial queries over a 120 GB global geo-spatial data
set.

1. Introduction and Motivation

The past ten years have seen a great deal of research devoted to
extending relational database systems to handle geo-spatial
workloads; in fact, handling these workloads has been one of the
driving forces for object-relational database technology. While
researchers have always acknowledged the existence of very
large data sets in the geo-spatial domain, the vast majority of
research to date has focused on language issues or uniprocessor
query evaluation and indexing techniques. This is unfortunate,
since the large data set problems that have been lurking beneath
the surface are now likely to surface with a vengeance. In this
paper we describe new techniques for building a parallel geo-
spatial DBMS, discuss our implementation of these techniques in
the Paradise parallel object-relational database system, and pres-
ent the results from a variety of queries using a 120 GB global
geo-spatial data set.

We are currently on the verge of a dramatic change in both the
quantity and complexity of geo-spatial data sets. Perhaps the
best-known example of a large geo-spatial data set is the peta-
byte data set which will be generated by NASA’s EOSDIS proj-
ect. The data generated by this application will be primarily a
huge collection of raster images, arriving at the rate of 3-5
Mbytes/second for 10 years. Typical queries over this data set
involve selecting a set of images that are of interest to the scien-
tist; these images or portions of images can be specified using
scalar attributes such as date and instrument; much more inter-
estingly, portions of images could be retrieved by “clipping”
these rasters by a polygon (e.g., a political or geographical spatial
feature.) Another class of queries over this data set are those that
select images or portions of images based upon their content. For
example, one might ask for all images of northern Wisconsin in
which more than 50% of the lakes were covered with ice. The
Sequoia 2000 benchmark [Ston93] captures many of the types of
queries expected in the EOSDIS project. While few applications

will match EOSDIS in terms of sheer data size, many more ap-
plications will also have very large data sets by today’s stan-
dards; more significantly, many of these applications will have
data sets that are far more complex than the EOSDIS data set.
One factor in this is the recent decision of the US government to
relax restrictions on the level of resolution allowable in a pub-
licly available satellite image. Until 1995, it was illegal to dis-
tribute a satellite image with a resolution less than 10 meters.
Now, satellite images down to 1 meter resolution are legal. This
has given rise to a number of commercial ventures to launch
satellites and download images, since 1 meter resolution images
support far more commercially viable applications than do 10
meter resolution images. A key piece of these applications is
identifying and storing “objects” (polygons and polylines) de-
rived from the images, and running queries based on a combina-
tion of these “objects” and the images themselves. For example,
one might take a one-meter resolution image of a city. Then a
pre-processing application could identify and store objects corre-
sponding to every structure (building, roads, trees, walkways,
cars, etc.) larger than one meter in diameter. The applications
enabled by such a data set are just now being invented, but it is
clear that they will involve complex queries about spatial rela-
tionships between objects.

Moving to 1 meter resolution will have three profound implica-
tions on geo-spatial applications:

1. The number of applications storing, processing, and que-
rying geo-spatial data will grow tremendously.

2. The size of the raster data itself will grow by a factor of 100.

3. The number of polygons and polylines associated with this
data will also grow by two orders of magnitude.

To a database developer or researcher, the challenge implicit in
all of this is clear: techniques are needed that provide scalable
performance for complex queries over geo-spatial data sets. One
might wonder if anything new is really needed. After all, parallel
relational database systems have been very successful in applying
parallelism to complex queries over large data sets. Some of the
techniques used in parallel relational database systems are indeed
very useful for geo-spatial workloads. For example, a generali-
zation of a parallel “select” operator, which applies a complex
function to every image in a large set of images, is a natural way
to speed up a large class of geo-spatial queries. The Informix
Universal Server includes this capability.

Unfortunately, parallel function apply plus the traditional paral-
lel database techniques are not sufficient to fully support scalable
geo-spatial query processing. Some of the most important differ-
ences are:

1. Geo-spatial database systems allow spatial objects as their
attributes. Applying parallelism to queries over such ob-
jects requires spatial partitioning. Unfortunately, since most
interesting queries over spatial types involve proximity
rather than exact matching, at query processing time opera-
tions can rarely be localized to a single spatial partition of
data. Such queries must be evaluated by a combination of
replication of data and operations, which introduce tradeoffs
that do not exist in typical parallel relational applications.

2. Very large objects (e.g., raster images) make it reasonable to
consider applying parallelism to individual objects. For ex-
ample, if we have a 40 megabyte object (such as a large sat-
ellite imge), it may make sense to decluster the object itself
over multiple nodes. This in turn means that at query time
we need to decide if a query can be satisfied by a fragment
of the object, or whether we need to assemble the object in
order to execute the query. This also raises a set of issues
that are not present in relational systems. Perhaps most
dramatically, assembling large objects is most naturally
done by “pulling” the fragments from multiple nodes rather
than “pushing” the data to a node. This requires a commu-
nication paradigm (pulling) that is not generally used in par-
allel relational database systems.

3. Operations such as “closest” cannot be answered by consid-
ering just a pair of objects. For example, if we are given
objects A and B, we cannot know if B is the closest object
to A until we verify that there are no other objects in the cir-
cle with radius distance(A,B) about A. While this implies
operators that are similar in spirit to traditional aggregates
(which, after all operate on sets of tuples), there is an im-
portant difference here because a single object may be a
member of multiple “groups” . For example, if we want to
find the closest toxic waste dump to every city, each dump
will probably have to be considered with respect to multiple
cities. This in turn necessitates multi-step operators more
complex than those used by parallel relational systems.

We have designed and implemented techniques to handle these
new aspects of parallel geo-spatial databases. The resulting
system, Paradise, runs both on single processor and multi-
processor systems. In this paper we describe results from run-
ning Paradise on a multiprocessor built out of commodity Pen-
tium processors linked by a high-speed interconnect.

In order to validate these techniques, we sought a large geo-
spatial database with which to experiment. Our answer was to
acquire 10 years of world-wide AVHRR satellite images along
with DMA [DCW92] polygonal map-data from the entire globe.
The size of this data set is about 30 GB - about 30 times larger
than the regional Sequoia 2000 benchmark. We also produced
60 GB and 120 GB versions of this data set to test system scale-
ability. Over these data sets we ran a set of queries closely pat-
terned after the Sequoia 2000 benchmark. Furthermore, since the
state of the art has advanced considerably since the Sequoia 2000
benchmark was defined, we have included a number of more
complex queries that stress the optimizer and query evaluation
subsystems of a DBMS far more than does the Sequoia bench-
mark. Our results show that the techniques designed and imple-
mented in the Paradise object-relational database system do in-

deed provide good speedup and scale-up performance on geo-
spatial workloads.

2. Techniques for Geo-Spatial Scaleability

In this section we describe the basic software techniques used by
Paradise. We begin with an overview of its data model, espe-
cially the spatial and image ADTs. Section 2.2 describes the
basic software architecture of the system. After describing the
basic parallelization and query processing mechanisms used by
Paradise in Sections 2.3 and 2.4, respectively, in the final sec-
tions we describe how these mechanisms had to be extended to
achieve geo-spatial scalability for the storage and processing of
spatial and image data types.

There is a substantial, and growing, body of work related to per-
formance on geo-spatial workloads; throughout this section we
discuss relevant related work where applicable. In general
terms, perhaps the system with a stated goal most similar to ours
is the Monet system [Bonc96], which also explicitly names par-
allelism as a project goal.
�����

Paradise Data Model and Query Language

Paradise provides what can be loosely interpreted as an object
relational data model. In addition to the standard attribute types
such as integers, floats, strings, and time, Paradise also provides
a set of spatial data types including point, polygon, polyline,
swiss-cheese polygon, and circle. The spatial data types provide a
rich set of spatial operators that can be accessed from an ex-
tended version of SQL.

Paradise also provides several additional data types that are de-
signed to facilitate the storage and retrieval of image data in-
cluding sensor data and satellite images. Three types of 2-D
raster images are supported: 8 bit, 16 bit, and 24 bit. An N-
dimensional array data type is also provided in which one of the
N dimensions can be varied. For example, four dimensional data
of the form latitude, longitude, and measured precipitation as a
function of time might be stored in such an array. Finally, Para-
dise provides support for MPEG-encoded video objects.

This extended set of types can be used in arbitrary combinations
when defining new table types. For example, a table might mix
terrain and map data for an area along with the latest reconnais-
sance photo. The use of a geo-spatial metaphor simplifies the
task of fusing disparate forms of data from multiple data sources
including text, sensor, image, map, and video data sets.

All types (including the base types) are implemented as abstract
data types (ADTs). Currently these types are defined using C++.

2.2 Paradise Architectural Overview

The overall process structure of Paradise is shown in Figure 2.1.
Several types of clients currently exist. Graphical front-ends for
browsing, querying, and updating spatial data sets exist for Win-
dows NT and UNIX. For application development, a C++ class
library is available. In addition to providing support for dynamic
SQL, this library includes Paradise's abstract data types, allowing
applications to manipulate instances of these types returned by
the interface.

Application
Process

QUERY

RESULT
TUPLES

Query
Coordinator

Schema Cache
C

SchedulerData
Server

Data
Server

Data
Server

Data
Server

Figure 2.1 Paradise Process Structure.

The Paradise database system consists of one Query Coordinator
(QC) process and one or more Data Server (DS) processes. The
QC and DS processes communicate via a communication infra-
structure that automatically selects the most efficient transport
mechanism. When a message is between processes that do not
share a common memory system, a transport protocol like TCP
or MPI is used. However, when the communication is between
processors on an SMP, memory is used as the transport vehicle.

Clients (applications or GUIs) connect to the QC process. After
parsing and optimization, the QC controls the parallel execution
of the query on the DS processes. Results sets are collected by
the QC for delivery back to the client. Special attention is given
to the efficient delivery of result tuples containing large objects
such as images. In particular, such attributes are not returned
until they are actually used by the application program (typically
by invoking a method on the attribute). In addition, only the
portion of the object actually needed by the client is retrieved
from the relevant DS. Thus, if the attribute is a large multidi-
mensional array and client needs only a small subarray out of the
middle of the array, only the subarray itself is fetched. However,
if the client needs a large portion or the entire attribute, the QC
establishes a data pipeline from the DS through the QC to the
application so that data can be transferred efficiently and with
minimal delay.

The QC and DS are implemented as multithreaded processes on
top of the SHORE Storage Manager [Care94]. The SHORE Stor-
age Manager provides storage volumes, files of untyped objects,
B+-trees, and R*-trees [Beck90, Gutm84]. Objects can be arbi-
trarily large, up to the size of a storage volume. Allocation of
space inside a storage volume is performed in terms of fixed-size
extents. ARIES [Moha92] is used as SHORE’s recovery mecha-
nism. Locking can be done at multiple granularities (e.g. object,
page, or file) with optional lock escalation. Because I/O in UNIX
is blocking, SHORE uses a separate I/O process for each
mounted storage volume. The I/O processes and the main
SHORE server process share the SHORE buffer pool which is
kept in shared memory. [Yu96] describes an extension of
SHORE and Paradise to handle tape-based storage volumes.

2.3 Basic Parallelism Mechanisms

Paradise uses many of the basic parallelism mechanisms first
developed as part of the Gamma project [DeWi90, DeWi92].
Tables are fully partitioned across all disks in the system using

round-robin, hash, or spatial declustering (to be discussed be-
low). When a scan or selection query is executed, a separate
thread is started for each fragment of each table.

Paradise uses a push model of parallelism to implement parti-
tioned execution [DeWi92] in which tuples are pushed from
leaves of the operator tree upward. Every Paradise operator (e.g.
join, sort, select, ...) takes its input from an input stream and
places its result tuples on an output stream. Streams are similar
in concept to Volcano’s exchange operator [Grae90] except that
they are not active entities. Streams themselves are C++ objects
and can be specialized in the form of "file streams" and "network
streams". File streams are used to read/write tuples from/to disk.
Network streams are used to move data between operators either
through shared-memory or across a communications network via
a transport protocol (e.g. TCP/IP or MPI). In addition to pro-
viding transparent communication between operators on the
same or different processors, network streams also provide a
flow-control mechanism that is used to regulate the execution
rates of the different operators in the pipeline. Network streams
can be further specialized into split streams which are used to
demultiplex an output stream into multiple output streams based
on a function being applied to each tuple. Split streams are one
of the key mechanisms used to parallelize queries [DeWi92].
Since all types of streams are derived from a base stream class,
their interfaces are identical and the implementation of each
operator can be totally isolated from the type of stream it reads or
writes. At runtime, the scheduler thread (running in the QC
process), which is used to control the parallel execution of the
query, instantiates the correct type of stream objects to connect
the operators.

2.4 Relational Algorithms

For the most part, Paradise uses relatively standard algorithms
for each of the basic relational operators. Indexed selections are
provided for both non-spatial and spatial selections. For join
operations, the optimizer can choose from nested loops, indexed
nested loops, and dynamic memory Grace hash join [Kits89].
Paradise's query optimizer (which is written using OPT++
[Kabr96]) will consider replicating small outer tables when an
index exists on the join column of the inner table.

Most parallel database systems [Shat95] use a two phase ap-
proach to the parallel execution of aggregate operations. For
example, consider a query involving an average operator with a
group by clause. During the first phase each participating thread
processes its fragment of the input table producing a running sum
and count for each group. During the second phase a single
processor (typically) combines the results from the first phase to
produce an average value for each group.

Since standard SQL has a well defined set of aggregate operators,
for each operator the functions that must be performed during the
first and second phases are known when the system is being built
and, hence, can be hard coded into the system. However, in the
case of an object-relational system that supports type extensibil-
ity, the set of aggregate operators is not known in advance as
each new type added to the system may introduce new operators.
For example, a point ADT might contain a "closest" method
which finds the spatially closest polyline.. Like the min aggre-
gate, “closest” must examine a number (possible large) of
polylines before finding the correct result.

Our solution to this problem is to define all aggregate operators
in terms of local and global functions. The local function is exe-
cuted during the first phase and the global function during the
second phase. Each function has a signature in terms of its input
and output types. When the system is extended either by adding
new ADTS and/or new aggregate operators, the aggregate name
along with its local and global functions are registered in the
system catalogs. This permits new aggregates to be added with-
out modifying the scheduler or execution engine. A similar ap-
proach is used in Illustra/Informix.

Paradise has two algorithms for executing spatial join operations.
When an R-tree exists on the join attribute of one of the two
relations being joined, an indexed nested loops algorithm is gen-
erally used. Otherwise, the PBSM algorithm [Pate96] is used.

2.5 Dealing with Large Satellite Images

A key focus of the Paradise DBMS project has been the devel-
opment of techniques for dealing with large satellite images and
arrays of scientific data. In this section we describe the tech-
niques developed for storing and processing instances of such
attribute types. Unlike many other systems, Paradise stores such
attributes inside the database system and not as files in the file
system.

2.5.1 Storage Issues

The Paradise array ADT provides support for N-dimensional
arrays in which one of the dimensions can optionally be unlim-
ited in size. From the array ADT type, a 2D, geo-located raster
ADT is derived which is used to store satellite images. The array
ADT automatically handles small and large arrays efficiently.
Small arrays are inlined directly inside the tuple as any normal
attribute would be. Arrays larger than a certain fraction of a
SHORE page (currently set at 70%), are made into separate ob-
jects. In this case the metadata for the array (i.e. the number of
dimensions and the size of each dimension) is left inlined along
with the OID of the object containing the actual array. This ap-
proach has a number of advantages. First, the SHORE object
containing the array can be automatically migrated between sec-
ondary and tertiary storage. Second, the tuples in the relation
remain physically clustered with one another, significantly re-
ducing the cost of a sequential scan. Third, queries not requiring
access to the array do not pay the cost of reading the array from
disk into the buffer pool.

For very large arrays the array ADT code chunks [Suni94] the
array into subarrays called tiles such that the size of each tile is
approximately 128 Kbytes. Each tile is stored as a separate
SHORE object as is a mapping table that keeps track of the ob-
jects used to store the subarrays. Each subarray has the same
dimensionality as the original array and the size of each dimen-
sion is proportional to the size of each dimension in the original
array as proposed in [Suni94]. Figure 2.3 illustrates this process
for a 2-D array. Decomposition of an array allows Paradise to
fetch only those portions that are required to execute an opera-
tion. For example, when clipping a satellite image by one or
more polygons only the relevant tiles will be read from disk or
tape.

As a final performance enhancement, when a tile is written to
disk it is compressed using a lossless compression algorithm
(LZW [Wel84]). To handle the unpredictability of the compres-
sion algorithm, the array ADT examines the size reduction

achieved by compression. If compression does not reduce the
size of the tile significantly, the tile is stored in its uncompressed
form (a flag in the mapping table is used to indicate whether or
not a particular tile is compressed). Thus, some tiles of an array
can be compressed while others may not be.

Original 2D Raster

Compress Tiles

Break into tiles and add
map table

Figure 2.3

2.5.2 Temporary Tables and Large Objects

Arrays and other large attributes present special challenges when
processing queries in an object-relational DBMS. These chal-
lenges involve insertion of such attributes into intermediate rela-
tions produced in the process of executing a query and the crea-
tion of new instances of such attributes during the course of
executing a query.

In a relational DBMS, when an intermediate relation is produced
in the process of executing a query, copies of all the necessary
attributes from the underlying base table are made. This process
can be repeated multiple times during the course of executing a
complex query. If one of the attributes happens to be a 50 MB
satellite image this approach will not have very good perform-
ance.

In Paradise, tuples in temporary tables produced during the
course of executing a query share (by reference) the original
copy of any large attributes. Copies of any large attributes are
made only when a tuple is inserted into a permanent relation.
While this copy could be avoided by using the SQL3 [SQL3]
notion of a reference attribute, the copy ensures that the raster
data will be located at the same node as the rest of the tuple.
This has the advantage of preventing unnecessary network traffic
during the execution of subsequent queries. Large attributes may
also be created as part of an intermediate result (for example, a
query with a clip on an array attribute in the projection list) or
during predicate evaluation (for example, a query with a clip on
an array attribute in the where clause).

Paradise uses three mechanisms for dealing with the storage of
large attributes. Large attributes belonging to tuples in a base
table are stored in their own SHORE file that is deleted when the
base table is deleted. Large attributes of an intermediate table are
stored in a SHORE file associated with the (temporary) interme-
diate table and deleted when the intermediate table is deleted.
Finally, large attributes produced as a part of predicate evalua-
tion are stored in a SHORE file that is associated with the op-
erator performing the predicate evaluation and which is deleted
when the operator has completed execution. The copy on insert
mechanism described above is used to copy large attributes cre-
ated during query execution into permanent tables, as necessary.

2.5.2 The Need for Pull

As discussed in Section 2.3, Paradise use a push model of par-
allelism. Unfortunately, the push model of parallelism breaks
down when dealing with large attributes such as satellite images.
In particular, in the process of executing a query involving the
redistribution of intermediate tuples between processors one does
not want to unnecessarily copy large attributes.

Paradise uses two tactics to deal with this problem. First, when-
ever possible, the optimizer avoids declustering tuples containing
large attributes. When this is not possible, Paradise turns to us-
ing a pull model of parallelism. Consider a query involving the
clip of a set of raster images by a set of polygons corresponding
to selected areas of interest (e.g. wetlands). Assume that the two
relations are not spatially partitioned on the same grid so that the
tuples of one of the two relations must be redeclustered in order
to process the query. Assume further that the optimizer decides
that it is less expensive to redecluster the tuples "containing" the
raster images. One approach would be to push both the tuples
and their associated images. While this approach would produce
the correct result, more data than is actually needed to process
the query will be moved between processors.

Instead, Paradise uses a pull model in this situation. In particu-
lar, when the clip() method is invoked on an instance of the
array ADT, if the array is not stored on same node as the node
on which the clip is being performed, the array ADT starts an
operator on the node on which the array is stored to fetch only
those tiles containing portions of the array covered by the clip().

Pull is also used when a redistributed tuple is inserted into a
permanent result relation. As discussed in the previous section, a
copy of any large attributes are made in this case. Using pull
insures that only the required data is actually moved between
processors.

In general, pull is an expensive operation because each pull re-
quires that a separate operator be started on the remote node. In
addition, the pull operator results in extra random disk seeks.
While we were aware of these costs we were not able to architect
a good solution that totally avoided the use of pull and, in the
end, concluded that overhead of the pull was acceptable relative
to the size of the objects being pulled.

2.6 Declustering Arrays - Good or Bad?

A fundamental question with respect to the parallelization of
operations in Paradise is whether the tiles of a single large image
should be declustered across multiple disks. This is relatively
easy to do in Paradise. First, the Paradise array ADT already
decomposes large arrays into multiple tiles. Second, as discussed
in the previous section, the array ADT knows how to pull pieces
of an array residing on a disk attached to a different processor.

Just as partitioning the tuples of a table facilitates parallelization
of relational operations, partitioning a large image across multi-
ple disks facilitates the parallel application of a function to the
entire image (e.g. searching the image for Scud missile launchers
or clipping the image by a set of polygons). While partitioning a
table is almost always beneficial (except for very small tables),
the same is not true for arrays. For example, clipping many im-
ages by a few polygons or searching a large collection of photos
for ones that contain red sunsets provides almost no benefit as
long as the number of images to be processed is much larger than

the number of processors. However, computing the pixel-by-
pixel average of a few arrays would benefit from declustering
each of the arrays.

There seems to be no right answer. It may be best to store the
tiles from each image on one or two disks on the same processor
and then repartition "on the fly" when a query involves a com-
putationally intensive operation on only a few images. This ap-
proach has the added benefit of simplifying the task of migrating
images between secondary and tertiary storage. In Section 3 we
experimentally explore the tradeoffs associated with partitioning
images.

2.7 Spatial Query Parallelization

2.7.1 Spatial Declustering

In addition to hash and round-robin partitioning, Paradise can
also spatially decluster the tuples in a table. The basic idea of
spatial declustering is to divide the spatial domain into multiple
2-D partitions which are, in turn, mapped to storage units either
by hashing or in a round-robin fashion. As a spatially declustered
table is being loaded, a spatial attribute of each tuple is used to
determine which partition the tuple belongs to. The same spatial
partitioning scheme can be used for multiple tables in order to
maximize the amount of "local" processing for queries involving
spatial join operations between the two tables. In addition to
point, polyline, and polygon data, one can also spatially decluster
geo-located image data such as satellite images or oil field seis-
mic data.

While spatial declustering is attractive from a performance view-
point, several factors complicate its use. First, as illustrated by
Figure 2.4, when spatial partitioning non-point data (i.e.,
polylines or polygons), it is impossible to map every polyline or
polygon to a single partition (unless there is only one partition!).
In particular, polylines or polygons spanning multiple partitions
must be replicated in order to insure that queries on the spatial
attribute produce the correct result. One can either replicate the
entire tuple (which complicates updates) or simply replicate the
bounding box of the spatial feature (which complicates query
processing).

Partition 0

Partition 3Partition 2

Partition 1

Figure 2.4

The second problem with spatial partitioning is skew. If one
divides the spatial domain into a small number of partitions (e.g.
equal to the number of storage partitions), skew becomes a major
problem. Consider, for example, a relation of road data for the
State of Wisconsin. If one spatially divides the state into say 16
partitions, then those partitions containing data from Madison,
Milwaukee, and Green Bay will contain many more tuples than

the partition corresponding to the area around Rhinelander
(which is in north-central Wisconsin). Likewise, partitions con-
taining large areas of Lake Michigan or Lake Superior will have
relatively few tuples mapped to them.

As proposed in [Hua91, DeWi92b], one way to reduce the effects
of partition skew [Walt91] is to significantly increase the number
of partitions being used. Unfortunately, increasing the number
of partitions, increases the number of tuples spanning multiple
partitions and, hence, the percentage of tuples that must be repli-
cated. Our preliminary tests showed that one needs thousands of
partitions to smooth out the skew to any significant extent. An
alternative approach to dealing with skew is to decluster based
upon the distribution of the data set. Koudas et al. [Koud96]
describe an interesting approach based upon declustering the
leaves of an R-tree. One difficulty with such an approach is that
it makes the parallelization of queries of multiple data sets less
efficient, since the multiple data sets will not be declustered on
the same boundaries.

2.7.2 Parallel Spatial Join Processing

Like a normal join operation, execution of a spatial join query in
parallel is a two phase process. During the first phase, tuples of
the two relations to be joined are redeclustered on their join at-
tributes in order to bring candidate tuples together. For non-
spatial attributes this is normally done by hashing the join attrib-
ute values to map each attribute value to a processor. In the sec-
ond phase, each of the participating processors joins the two
partitions of tuples it receives during the first phase. Any single
processor spatial join algorithm (e.g. PBSM [Pate96]) can be
used during this second phase. If either of the input tables are
already declustered on their joining attributes, then the first phase
of the algorithm can be eliminated for that table.

For joins on spatial attributes the process is slightly more com-
plicated. First, the partitioning function must be a spatial parti-
tioning function mapping tuples to partitions of a 2-D space (see
Section 2.7.1). Second, in order to minimize the effects of spa-
tial skew during the second phase of the algorithm, many more
partitions than processors must be used. Third, since the spatial
attributes of some tuples will span multiple spatial partitions,
replication must be used during the repartitioning phase to insure
that the correct result is produced. Finally, replicating tuples
introduces the possibility that duplicate tuples will be produced.
Consider, for example, tables of river and road data for Wiscon-
sin and a query to determine whether the Wisconsin river and
U.S. 90 cross each other. Both the Wisconsin river and U.S. 90
span multiple spatial partitions and it turns out that they cross
each other in two places. In the process of redeclustering the
river and road data during phase one, both objects will get repli-
cated once for each partition they overlap. If the two partitions
where they cross get mapped to different processors, then the
result of the query will contain two identical result tuples.

We have also designed and implemented other parallel spatial
join algorithms involving the replication of only bounding box
information and not full tuples. A description and analysis of the
performance of these algorithms can be found in [Pate97].

2.7.3 Spatial Aggregation Processing

A geo-spatial database system opens up an entire new spectrum
of operations that cannot be handled efficiently by normal rela-
tional query processing techniques. Consider, for example a

query to find the river closest to a particular point. To process
this operation one must iteratively expand a circle around the
point until the circle overlaps the polyline corresponding to some
river. Since an expansion step may find more than one candidate
river, all but the closest must be eliminated. We consider this
type of operation to be a form of "spatial aggregate" query as it
not totally dissimilar to the task of executing a SQL min opera-
tion.

This type of operation can be extended to include what we term a
"spatial join with aggregation" query. Consider the query to find
the closest river to cities with populations greater than one mil-
lion. First the selection predicate is applied to the Cities table to
filter out all cities with populations less than one million. The
remaining cities must then be "joined" with the Rivers table. But
the notion of join in this case is not overlap but rather a spatial
aggregate function which defines join satisfiability as spatially
closest.

Figure 2.5 illustrates the problems encountered in trying to par-
allelize spatial join with aggregate queries. The grids in this
figure correspond to the boundaries of the spatial partitions.
Consider Madison. Note that the closest river to Madison (in
this map) is in a different spatial partition. As a processor ex-
pands a circle around Madison looking for an overlapping river it
will eventually encounter the northern boundary of the spatial
partition containing Madison without having found a river. Since
the closest river may or may not be in the tile to the north, Para-
dise sends a copy of the Madison tuple to the processors that
contain river data for each of the surrounding tiles. Assume that
each processor finds some candidate river (the implementation
works correctly when this is not case but the solution is too com-
plex to explain in the confines of this paper). These processors
use a spatial-based split table to forward their matches to another
operator which combines the results to find the closest river. An
evaluation of this type of query is contained in Section 3.

Madison

Figure 2.5

3. Benchmark Description and Performance Evaluation

3.1 Benchmark Description

Generating a meaningful test suite for a parallel geo-spatial data-
base system turned out to be a non-trivial project. Although the
Sequoia 2000 benchmark [Ston93] was about what we wanted,
there were several problems in using it “as is” . First, although the
paper alludes to a “national” size benchmark, the only available
data set is a “state” level benchmark, which, at approximately

1GB, was far too small to use for testing scaleup or speedup.
Second, the spatial queries in the benchmark are relatively sim-
ple. Third, the original Sequoia benchmark provided no mecha-
nism for scaling the database. We address each of these issues in
turn.

3.1.1 A Global Sequoia Data Set

Following the Sequoia lead of using “ real” data for the bench-
mark, we used 10 years of 8 Km. resolution AVHRR satellite
images obtained from NASA for our raster images. Each raster is
a composite image covering the entire world. For polygon data,
we used a DCW [DCW92] global data set containing a variety of
information about such things as roads, cities, land use, and
drainage properties. Both data sets were geo-registered to the
same coordinate system. The definition of the five tables used is
given below.

raster (date Date,
channel Integer, // recording channel
data Raster16); // raster image

populatedPlaces (id String, // unique feature identifier
containing_face String, // feature-id of containing polygon
type Integer,// category of populated place (6 values)
location Point, // spatial coordinates of the place
name String);// name of the place

landCover (id String, // unique feature identifier
type Integer, // type of the water-body (16 categories)
shape Polygon); // boundary of the water body

roads (id String, // unique feature identifier
type Integer, // type of road (8 possible categories)
shape Polyline); // shape of the road

drainage (id String, // unique feature identifier
type Integer, // drainage feature type (21 categories)
shape Polyline); // shape of the drainage feature

3.1.2 Query Descriptions

The benchmark contains fourteen queries. The first nine corre-
spond directly to the first nine queries in the original Sequoia
2000 benchmark while the last five are new queries which test
geo-spatial functionality not covered by the Sequoia 2000
benchmark.

Query 1: Load the benchmark database and build indices.

Query 2: Select all raster images corresponding to a particular
satellite channel, clip each image by a fixed polygon, and sort the
results by date. The polygon1 used is a rectangular region
roughly corresponding to the continental United States and is
approximately 2% of each raster image.

select raster.date, raster.data.clip(POLYGON) from raster
where raster.channel = 5 order by date;

Query 3: Select all the raster images for a particular date, clip-
ping each image by a constant polygon. Average the pixel values
of the clipped images to produce a single result image.

1 Whenever the “constant” POLYGON is used in future queries, it refers
to this polygon.

select average (raster.data.clip(POLYGON) from raster
where raster.date = Date("1988-04-01");

Query 4: Select a raster image for a particular date and satellite
channel, clip that image by a fixed polygon, perform lower reso-
lution on the clipped portion, and insert the result into a perma-
nent relation.

select raster.date, raster.channel,
raster.data.clip(ClosedPolygon(POLYGON)).lower_res(8)
from raster where raster.channel = 5 and
raster.date = Date("1988-04-01");

Query 5: Select one city based on the city’s name.

select * from populatedPlaces where name = "Phoenix";

Query 6: Locate all polygons which overlap a particular geo-
graphical region and insert the result into a permanent relation.
This query requires a spatial selection.

select * from landCover
where shape overlaps POLYGON;

Query 7: Select all polygons which lie within a fixed radius of a
specified point and that have a maximum area. This query re-
quires a combination of a spatial and non-spatial selection.

select shape.area(), LCPYTYPE from landCover
where shape < Circle(POINT, RADIUS)
and shape.area() < CONSTANT;

Query 8: Find all polygons which are nearby any city named
Louisville. A polygon is nearby a city if it is within a specified
square centered at the city’s location. This query requires a spa-
tial join.

select landCover.shape, landCover.LCPYTYPE
from landCover, populatedPlaces
where populatedPlaces.name = "Louisville" and
landCover.shape overlaps
populatedPlaces.location.makeBox(LENGTH);

Query 9: Select all raster data for a particular date and channel
which lies over an oil field. This query involves the join of a
raster with a set of polygons.

 select landCover.shape, raster.data.clip(landCover.shape)
from landCover, raster
where landCover.LCPYTYPE = OIL_FIELD and
raster.channel = 5 and
raster.date = Date("1988-04-01");

Query 10: Select all rasters whose average pixel value over a
particular geographical region (POLYGON) is greater than a
fixed constant. This query is interesting because it requires the
creation of a new large attribute (the clipped raster) during predi-
cate evaluation and because it selects rasters based on a calcu-
lated property of the raster data.

select raster.date, raster.channel,
raster.data.clip(POLYGON) from raster where
raster.data.clip(POLYGON).average() > CONSTANT;

Query 11: Find the closest road of each type to a given point.
This query requires the evaluation of a spatial aggregate
“closest” . Geo-spatial systems need to be able to handle spatial
aggregates as well as traditional relation aggregates.

select closest(shape, POINT), type from roads
group by type;

Query 12: Find the closest drainage feature (i.e. lake, river) to
every large city. This query requires the evaluation of a spatial
aggregate on a cross product of two relations. To make this
query work efficiently in parallel, a system must have spatial
declustering and must support spatial semi-join.

select closest(drainage.shape, populatedPlaces.location),
populatedPlaces.location from drainage, populatedPlaces
where populatedPlaces.location overlaps drainage.shape and
populatedPlaces.type = LARGE_CITY
group by populatedPlaces.location

This query demonstrates one of the novel techniques that Para-
dise uses for handling geo-spatial data. Since we have not de-
scribed this approach elsewhere, we digress for a moment to
describe the approach here. This query is executed as follows:

1. Declustering the drainage relation: The spatial region in
which all the drainage features lie (the “universe2” of the
shape attribute) is broken up into 10,000 tiles. The tiles are
then numbered in a row-major order starting at the upper-
left corner. Each tile is mapped to one of the nodes by
hashing on tile number. The drainage relation is then spa-
tially declustered by sending each tuple to the node corre-
sponding to the tile in which its shape attribute is located.
Drainage features that span tiles mapped to multiple nodes
are replicated at all the corresponding nodes.

2. Declustering the points relation: The points are spatially
declustered using the same declustering policy used in the
previous step.

3. A spatial index on the shape attribute of the declustered
drainage relation is built on the fly. (The index is local to
each node, and is built only on the fragment of the drainage
relation at that node).

4. Finally, the operator tree in Figure 3.1 is executed.

S e le c t

S c a n C ity

 S p a tia l
s e m i- jo in

In d e x S c a n
o n D ra in a g e

J o in w ith
a g g re g a te

In d e x S c a n
o n D ra in a g e

 G lo b a l
A g g re g a te

T u p le s c ro s s
n o d e b o u n d a ry

T u p le s tra n s fe rre d
b e tw e e n o p e ra to rs
o n th e s a m e n o d e

Figure 3.1

The “spatial semi-join” looks at the city tuple, and forms the
largest circle that is completely contained in the tile correspond-
ing to that node. It then uses this circle to probe the index on the
drainage feature. If any tuple falls within this circle, then the
closest drainage feature has to be one of these features, in which

2 The universe of a relation for a spatial attribute is any rectangular box

that completely encloses the spatial attribute for every tuple in that
relation.

case, the city tuple is sent to the “ join with aggregate” operator
on the same node. If the index probe does not return any tuples,
then the closest feature could be on any node in the system, and
the city tuple is replicated and sent to all the nodes in the system.
The next operator in the pipeline, namely the “ join with aggre-
gate operator” , takes each incoming city tuple and probes the
index on the drainage with a small circle (currently, the system
starts with a circle that has an area roughly a millionth of the area
of the entire universe). If the index probe returns some tuples,
then the operator finds the feature that is closest to the point and
sends that tuple to the next operator (the global aggregate opera-
tor) in the pipeline. If the index probe does not return any tuples,
then the “ join with aggregate” operator forms a new circle, which
is twice the area of the previous circle, and probes the index
again. This expansion of the “probing” circle continues until the
circle expands beyond the boundary of the universe, after which
the index scan is changed to a file scan on the drainage relation.

The final operator in the pipeline is the global aggregate opera-
tor, which collects the closest drainage feature to a point from all
the nodes, and produces the final result. Currently, there is only
one global aggregate operator in the entire system. This operator
represents a sequential portion of the query execution, and hurts
the speedup and scaleup somewhat.

Another approach to this problem would have been to use modi-
fications of R-tree search algorithms, as suggested in [Kim96,
Rous95]. We did not explore that approach here.

Query 13: Find all drainage features (lakes, rivers, etc.) which
cross a road. This query joins two large spatial relations and
tests the efficiency of a system’s spatial join algorithms.

select * from drainage, roads
where drainage.shape overlaps roads.shape;

Query 14: Select all rasters for a particular year and channel and
clip those rasters by all oil fields. This query requires the join of
a large number of rasters with a large number of polygons.

select landCover.shape, raster.data.clip(landCover.shape)
from landCover, raster where landCover.LCPYTYPE =
OIL_FIELD and raster.channel = 5 and
raster.date >= Date("1988-04-01") and
raster.date <= Date("1988-12-31");

3.1.3 Spatial Data Set Scaleup

A fundamental goal of the Paradise project is to test the scalabil-
ity of various geo-spatial query processing techniques. This
requires a data set that can be “ instantiated” at various different
sizes. Finding a way to scale our benchmark data set was diffi-
cult partially because the data is spatial and partially because the
data is “real world”.

Fundamentally, when we scale a data set we are attempting to
model a larger instance of the same data set. There are two or-
thogonal ways a spatial data set could grow larger. First, the
domain of the spatial data set could be expanded. For example,
we could double the data set size by using the northern hemi-
sphere as our base data set and both hemispheres as the scaled
data set. We call this kind of scaleup boundary expansion
scaleup. A second way to scale a geo-spatial data set is to keep
the region under consideration constant, but to view it at a higher
resolution. We call this kind of scaleup resolution scaleup.
Clearly both boundary expansion and resolution scaleup cause a

data set to grow, and both are of interest. For our experiments,
we chose to use resolution scaleup. We considered a number of
approaches for simulating resolution scaleup on a fixed-
resolution real-world data set, and settled on the following.

The primary idea is that when a user moves to a data set with a
higher resolution, the existing spatial features will be more de-
tailed, and at the same time a number of smaller “satellite” fea-
tures that hover around the existing feature will now become
visible. As an example, consider scaling up a river. At higher
resolution, the shape of the river will be described in more detail,
and at the same time a number of small tributaries that were not
initially visible will become visible. Figure 3.2 diagrams our
resolution scaleup scheme, the details of the scheme are de-
scribed below.

Polygon Scaleup Polyline Scaleup

New Polyline

New Point added to
existing ObjectOriginal Polyline

New Polygon

Original Polygon

Figure 3.2

Polygons: Consider a polygon having N points that needs to be
scaled up by a factor of 2. To do this, we increase the number of
points in the polygon by 50%, and generate one new “satellite”
polygon with N/2 points. The satellite is a regularly shaped poly-
gon inscribed in a bounding box that has sides one tenth the size
of the corresponding sides of the original polygon’s bounding
box. The satellite is randomly placed near the original polygon.
Increasing the number of points in the original polygon is done
by randomly picking N/2 edges of the original polygon and
breaking each of them into two edges. Note that this process
doubles the number of polygons as well as doubles the total
number of points in the data set.

In general, to scale up a polygon S times, we increase the num-
ber of points for that polygon by N×(S-1)/S, and we add (S-1)
new “satellites” each having N×(S-1)/S points.

Figure 3.2 shows an 8-point polygon scaled up 4 times. In this
example, 6 new points are added to the original polygon and 3
new satellite polygons, each with 6 points, are created.

Polylines: Polylines are scaled similarly to polygons. Figure 3.2
shows a 8-point polyline scaled up by a factor of 4.

Points: Scaling up point data S times, is achieved by adding S-1
points randomly distributed near the original point.

Raster: To scale the raster data, the resolution of each image is
increased S times; no new images are added. To increase the
resolution, every pixel of the raster is over-sampled S times. We

perturb the pixel values of the over-sampled pixels slightly to
prevent artificially high compression ratios.

3.2 Testbed Description and DBMS Configuration

For the tests conducted in this paper we used a cluster of 17 Intel
eXpress PCs configured with dual 133 Mhz Pentium processors,
128 Mbytes of memory, dual Fast & Wide SCSI-2 adapters
(Adaptec 7870P), and 6 Seagate Barracuda 2.1 Gbyte disk drives
(ST32500WC). Solaris 2.5 was used as the operating system.
The processors are connected using 100 Mbit/second Ethernet
and a Cisco Catalyst 5000 switch which has an internal band-
width of 1.2 Gbits/second. Five of the six disks were configured
as “ raw” disk drives (i.e. without a UNIX file system). Four
were used for holding the database and the fifth for holding the
log. The sixth disk was initialized with a UNIX file system.
This disk was used for holding system software as well as swap
space. The four disk drives used to hold the database were dis-
tributed across the two SCSI chains.

Paradise was configured to use a 32 MByte buffer pool. Al-
though this is a small buffer pool relative to the 128 MByte of
physical memory available, Paradise does much of its query
processing outside the buffer pool in dynamically allocated
memory. The maximum process size we observed during
benchmark execution was about 90 Mbyte. Thus, no swapping
occurred. In all test configurations, all relations were partitioned
across the four disk drives used for database storage. The buffer
pool was flushed between queries. This command is used before
each query to insure that the query sees a cold buffer pool.

3.3 Scaleup Experiments

First a set of scaleup experiments were conducted using 4, 8, and
16 nodes (16, 32, and 64 disks respectively). Table 3.1 specifies
the data set sizes used in each scaleup configuration. The results
obtained for each query are contained in Table 3.2.

Nodes Raster Pop. Places Roads

4 # tuples 1440 0.25M 0.7 M

size 29.1 GB 19.9 MB 101.0 MB

8 # tuples 1440 0.51 M 1.40 M

size 58.2 GB 41.0 MB 208.7 MB

16 # tuples 1440 101.1 M 2.80 M

size 116.4 GB 88.6 MB 417.4 MB

Nodes Drainage LandCover

4 # tuples 1.74 M 0.57 M

size 292.2 MB 121.1 MB

8 # tuples 3.48 M 1.15 M

size 592.6 MB 243.2 MB

16 # tuples 6.96 M 2.30 M

size 1179.8 MB 488.1 MB

 Table 3.1. Scaleup Data Set Sizes

4 nodes 8 nodes 16 nodes

Query 2 118.19 125.33 113.00

Query 3 8.97 13.57 21.68

Query 4 3.34 5.73 10.13

Query 5 1.09 1.01 1.04

Query 6 14.40 14.12 11.93

Query 7 1.79 1.83 1.86

Query 8 11.70 12.26 12.47

Query 9 17.12 26.80 42.46

Query 10 79.96 73.62 73.49

Query 11 24.83 29.19 31.25

Query 12 308.43 328.63 367.74

Query 13 1156.47 974.51 929.69

Query 14 100.83 123.72 167.52
Table 3.2: Scaleup Execution Times in Seconds

Discussion of Scaleup Results

Query 1: Since a substantial portion of the work done in this
load process was outside of the Paradise system we do not pres-
ent load numbers in this paper.

Query 2: This query touches data from 360 rasters. These
rasters are more or less uniformly distributed in each of the con-
figuration, and as a result we see close to perfect scaleup. The
small fluctuations in the numbers are because Paradise uses
compression of the raster tiles; now even though the tuples are
uniformly distributed, one node might end up being the slowest
operator if the content of the tiles at its node are such that com-
pression and decompression are expensive.

Query 3 and 4: These queries look at data from a few raster
images (4 and 1 respectively). Thus in a 8 node configuration,
the operators at a few nodes are doing twice the work done in the
4 node case. The time does not quite double because some costs
like moving the disk arm to the first tile in the raster being ex-
amined remain the same.

Query 5, 6, 7 and 8: Each of these queries perform index look-
ups (query 8 is a nested index join) and each shows linear
scaleup. The spatial index on landCover is better packed since
the new “satellite” features are smaller and are easier to pack
when bulk loading the index [DeWi94]. This, however, benefits
mainly Query 6 as it scans a substantial portion of the index.

Query 9: Query 9 selects the “oil field” polygons and sends
them to all the nodes. These polygons are joined with one raster.
As we double the size of the database, the node having the se-
lected raster does twice the work. Since the newer “satellite”
polygons added during scaleup are smaller than the original
polygons, the result of the clip increases at a rate slower than the
scaleup. This accounts for the fact that query execution time is
less than double.

Query 10: This query scales up perfectly as the cost of evaluat-
ing the where clause remains the same at each node.

Query 11: This query is only somewhat successful at scaling −
it is particularly bad from 4 to 8 nodes. We are not sure of the
exact cause for this behavior, but speculate that it is due to our

method of scaling the data set. CPU time accounts for a large
portion of the execution time of this query in order to check dis-
tances between shapes and points. As the database is scaled, the
shapes get many more points which makes the distance compu-
tation per shape more expensive.

Query 12: As the number of nodes increase, the number of
points that do not find a local drainage feature during the spatial
semi-join also increase. Since these points have to be replicated,
we see sub-linear scaleup.

Query 13: The scaleup is super linear, because the size of the
result does not double as we double the database size. In par-
ticular, with the scaled database we add many small polylines
and these have a smaller probability of joining.

Query 14: The comments for query 9 also apply here, but this
query shows better scaleup as it involves 36 rasters (instead of
just one.)

3.4 Speedup Experiments

The speedup experiments were conducted using 4, 8, and 16
nodes (16, 32, and 64 disks respectively) using the database size
specified in Table 3.3 The speedup results are contained in Ta-
ble 3.4.

Speedup Data Size # tuples Size

Raster 1440 29.1 GB

Populated Places 0.25 M 19.9 MB

Roads 0.7 M 101.0 MB

Drainage 1.74 M 292.2 MB

Landcover 0.57 M 121.1 MB
Table 3.3

4 nodes 8 nodes 16 nodes

Query 2 118.19 50.29 23.99

Query 3 8.97 7.12 7.80

Query 4 3.34 3.60 4.32

Query 5 1.09 0.62 0.43

Query 6 14.40 8.07 5.41

Query 7 1.79 1.02 0.70

Query 8 11.70 7.28 7.36

Query 9 17.12 14.58 14.29

Query 10 79.96 39.99 21.44

Query 11 24.83 12.29 6.53

Query 12 308.43 153.28 91.38

Query 13 1156.47 514.41 268.02

Query 14 100.83 57.96 43.04
Table 3.4: Speedup Execution Times in Seconds

Discussion of Speedup Results

Query 2: This query shows super-linear speedup because more
disks results in fewer tiles per disk. This in turn results in shorter
disk seeks while reading the raster tiles.

Query 3 and 4: These queries look at data from only a few
raster images (4 and 1 respectively). Since the individual raster
images reside on single disks, these queries do not exhibit
speedup.

Query 5, 6, 7 and 8: These queries involve index lookups
(query 8 is a index nested loops spatial join). As the data is
spread among more nodes, the indices become smaller at each
node. The speedup is less than linear because the index size de-
creases at a logarithmic rate.

Query 9: There is no parallelism in this query, since it involves
only a single raster, and all the processing for the query is done
at the node that holds the selected raster.

Query 10: Most of the work involved in this query lies in evalu-
ating the predicate in the “where” clause. Since this work is
evenly distributed, we see good speedup.

Query 11 and 12: The local aggregation at each node benefits
from increasing the degree of parallelism. However, as we dis-
cussed in the scaleup section, the global aggregate evaluation
remains sequential, reducing speedup slightly below linear.

Query 13: The PBSM spatial join algorithm, just like relational
hash join algorithms, forms partitions that are joined. When in-
creasing the nodes from 4 to 8 all the partitions fit in memory,
resulting in super-linear speedup

Query 14: The performance of this query is similar to that of
query 9, but here we see better speedup because more rasters are
selected.

3.5 Decluster Rasters Experiments

As mentioned in Section 2.6, an interesting design issue is
whether or not to decluster the tiles of individual raster images.
To shed some light on this issue, we ran a series of tests using
raster images whose tiles were declustered over multiple nodes.
We chose queries 2 and 3 for these tests. Query 2 selects and
clips a large number of rasters. Because it touches so many
rasters, there is no advantage in declustering individual rasters in
order to benefit from parallelism. Query 3, on the other hand,
examines just four rasters. This seemed to be a good candidate
for illustrating the potential benefits of declustering.

To understand why Query 3 is a good candidate, consider its
execution without declustering. This query computes the average
of a clipped region of four rasters. First, an “average” operator is
started on some node, say p0. This operator contacts the proces-
sors on which the four rasters reside, say p1 through p4, in order
to pull the tiles of each image that overlap the clipped region.
Once all the relevant tiles have been pulled, their average can be
computed. This process is clearly sequential.

Now suppose that the tiles of each raster image are spatially de-
clustered. In this case, each processor can compute the average
of the tiles of each image stored locally. Note that if the clipped
region is very small this will not be effective since only a few of
the processors will have tiles within the clipped region. For this
reason we experimented with a variant of Query 3, Query 3’ ,
which is identical to Query 3 except that the clipped region is
now the entire raster instead of just 2% of the image

From the results in Table 3.5, we see that Query 2’s response
time actually increases with declustering. Query 3 has slightly

better performance. Only Query 3’ , with its larger clip region,
benefits significantly from declustering. This confirms our intui-
tion that declustering rasters is only worth the added complexity
it entails when one needs to speed computations on large por-
tions of a few rasters.

With Declustering W/O Declustering

Query 2 336.6 112.9

Query 3 15.3 21.68

Query 3’ 53.5 417.8
Table 3.5 (Seconds)

4. Conclusions

In this paper we described the design of the parallel version of
the Paradise database system. While Paradise employs many of
the parallel database techniques first developed as part of the
Gamma project, it also incorporates a number of new techniques
for parallelizing geo-spatial database queries and evaluates their
effectiveness using a comprehensive set of queries against a 120
GB geo-spatial data set.

As we examine our performance results with a critical eye, it
appears we have been only somewhat successful at achieving
scaleup and speedup over geo-spatial workloads. A closer look,
however, reveals a much more encouraging story. The queries
that had sub-optimal speedup and scaleup performance were
precisely those that already ran efficiently on a small number of
nodes, while those that ran slowly on a few nodes uniformly
showed good speedup and scaleup. In particular, all queries with
running times over 20 seconds on four nodes exhibited good
speedup and scaleup on eight and sixteen nodes. This suggests
that, with the addition of the new features described in this paper,
the historical success of parallel database systems in the tradi-
tional relational environment can indeed be duplicated in the
new, more challenging world of large and complex geo-spatial
workloads.

5. Acknowledgments

We would like to thank both Intel and IBM for their generous
hardware donations to the Paradise project. Funding for the
Paradise project is provided by NASA under contracts #USRA-
5555-17, #NAGW-3895, and #NAGW-4229 and ARPA
through ARPA Order number 017 monitored by the U.S. Army
Research Laboratory under contract DAAB07-92-C-Q508.

We would also like to especially thank Ms. Lola M. Olsen at
NASA Goddard for her assistance in helping us acquire the
AVHRR data sets used in this benchmark.

6. References

[Beck90] Beckmann, N. et. al., “The R*-tree: An Efficient and
Robust Access Method for Points and Rectangles,” Proceed-
ings of the 1990 ACM-SIGMOD Conference , June 1990.

[Bonc96] Peter A. Boncz, Wilko Quak, Martin L. Kersten:
Monet And Its Geographic Extensions: a Novel Approach to
High Performance GIS Processing. EDBT 1996: 147-166

[Care94] "Shoring Up Persistent Applications," M. Carey, D.
DeWitt, J. Naughton, M. Solomon, et. al., Proceedings of the
1994 SIGMOD Conference, Minneapolis, MN, May 1994.

[DCW92] VPFView 1.0 Users Manual for the Digital Chart of
the World, Defense Mapping Agency, July 1992.

[DeW90] D. DeWitt, et. al., “The Gamma Database Machine
Project” , IEEE Transactions on Knowledge and Data Engi-
neering, March, 1990.

[DeWi92] D. DeWitt and J. Gray, “Parallel Database Systems:
The Future of Database Processing or a Passing Fad?,”
Communications of the ACM, June, 1992.

[DeWi92] DeWitt, D., Naughton, J., Schneider, D, and S. Se-
shadri, “Practical Skew Handling in Parallel Joins,” Proceed-
ings of the 1992 Very Large Data Base Conference, Vancou-
ver, CA, August 1992.

[DeWi94] DeWitt, D. J., N. Kabra, J. Luo, J. M. Patel, and J. Yu,
"Client-Server Paradise". In Proceedings of the 20th VLDB
Conference, September, 1994.

[EOS96] See: http://eos.nasa.gov/

[Grae90] Graefe, G., "Encapsulation of Parallelism in the Vol-
cano Query Processing System," Proceedings of the 1990
ACM-SIGMOD International Conference on Management of
Data, May 1990.

[Gutm84] A. Gutman, “R-trees: A Dynamic Index Structure for
Spatial Searching,” Proceedings of the 1984 ACM-SIGMOD
Conference , Boston, Mass. June 1984.

[Hua91] Hua, K.A. and C. Lee, "Handling Data Skew in Multi-
processor Database Computers Using Partition Tuning," Pro-
ceedings of the 17th VLDB Conference", Barcelon a, Spain,
September, 1991.

[Info96] See http://www.informix.com/

[Illu96] See http://www.illustra.com/

[Moha92] Mohan, C., et. Al., “ARIES: A transaction recovery
methods supporting fine-granularity locking and partial roll-
backs using write-ahead logging,” ACM TODS, March 1992.

[Kabr96] Kabra, N. and D. DeWitt, Opt++ - An Object Ori-
ented Implementation for Extensible Database Query Optimi-
zation, submitted for publication. See also:

http://www.cs.wisc.edu/~navin/research/opt++.ps

[Kits90] Kitsuregawa, M., Nakayama, M. and M. Takagi, “The
Effect of Bucket Size Tuning in the Dynamic Hybrid Grace
Hash Join Method,” Proceedings of the 1989 VLDB Confer-
ence, Amsterdam, August 1989.

[Koud96] Nick Koudas, Christos Faloutsos, Ibrahim Kamell,
“Declustering Spatial Databases on a Multi-Computer Archi-
tecture,” EDBT 1996: 592-614

[Kim96] Min-Soo Kim and Ki-Joune Li. “A Spatial Query Proc-
essing Method for Nearest Object Search Using R+-trees”.
Paper submitted for publication.

[Pate96] Patel, J. M., and D. J. DeWitt, "Partition Based Spatial-
Merge Join". In Proceedings of the 1996 ACM-SIGMOD
Conference, June, 1996.

[Pate97] Patel, J. M., and D. J. DeWitt, "A Study of Alternative
Parallel Spatial Join Algorithms". Submitted to the 1997
VLDB Conference, August 1997.

[Prep88] Preparata, F.P. and M. Shamos, editors, “Computation
Geometry”, Springer, 1988.

[Rous95] Nick Rossopoulos, Steve Kelly, and F. Vincent,.
“Nearest Neighbor Queries” . Proc. of ACM-SIGMOD, pages
71-79, May 1995.

[Shat95] Shatdal, A., and J. F. Naughton,, Aggregate Process-
ing in Parallel RDBMS, Proceedings of the ACM SIGMOD
Conference, San Jose, California, May 1995.

[Shat96] Shatdal, A., The Interaction between Software and
Hardware Architecture in Parallel Relational Database Query
Processing, PhD Thesis, Computer Science Department, UW-
Madison,1996.

[Ston93] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith,
“The SEQUOIA 2000 Storage Benchmark,” Proceedings of
the 1993 SIGMOD Conference, Washington, D.C. May,
1993.

[SQL3] ISO/IEC SQL Revision. ISO-ANSI Working Draft Da-
tabase Language SQL (SQL3), Jim Melton - Editor, document
ISO/IECJCT1/SC21 N6931, American National Standards In-
stitute, N.Y., NY 10036, July 1992.

[Suni94] S. Sarawagi. “Efficient Processing for Multi-
dimensional Arrays,” Proceedings of the 1994 IEEE Data En-
gineering Conference, February, 1994.

[Tera85] Teradata, DBC/1012 Database Computer System Man-
ual Release 2.0, Document No. C10-0001-02, Teradata Corp.,
NOV 1985.

[Yu96] Yu, J. and D. DeWitt. “Query Pre-Execution and
Batching: A Two-Pronged Approach to the Efficient Process-
ing of Tape-Resident Data Sets,” Submitted for publication,
September, 1996.

[Walt91] Walton, C.B., Dale, A.G., and R.M. Jenevein, "A Tax-
onomy and Performance Model of Data Skew Effects in Par-
allel Joins," Proceedings of the SeventeenthVLDB Confer-
ence", Barcelon a, Spain, September, 1991.

[Welc84], Welch, T.A., “A Technique for High Performance
Data Compression,”, IEEE Computer, Vol 17, No. 6, 1984.

