
Energy-Efficient Management of Reconfigurable Computers 82

4 cache reuse models

4.1 Overview

Processor caches are critical components of the memory hierarchy that exploit locality to

keep frequently-accessed data on chip. Caches can significantly boost performance and

reduce energy usage, but their benefit is highly workload dependent. In modern power

and energy constrained computer systems, understanding a workload’s dynamic cache

behavior is important for making critical resource allocation and scheduling decisions.

For example, allocating excess cache capacity to a workload wastes power, as large caches

dissipate significant leakage power, while allocating insufficient cache capacity hurts

performance and increases main memory power.

Caches can be made dynamically reconfigurable to enable energy savings by exploiting

workload characteristics. Previous research has explored placing some or all of a cache in

low-power mode [10, 67, 77] or dynamically partitioning the cache to eliminate resource

contention [175, 214]. A recent Intel processor [116] can dynamically reduce its LLC’s

capacity to save power. Researchers [240] have also explored mechanisms to dynamically

reconfigure both the number of sets and the associativity of set-associative caches.

Being able to exploit cache reconfiguration capability will enable our governors to

make the system operate more efficiently if possible. But real systems today offer limited

or no support for user-/OS-driven cache reconfigurations. So, in this chapter and the

next one, we will study cache reconfigurations using a simulator.

Cache reconfigurations incur significant overheads, so we will not consider the

expensive approach of trying out various configurations before deciding on the best

configuration. Instead, we will use online predictors that estimate the temporal locality

in cache accesses and predict the performance of different cache configurations. These

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 83

models will be our focus in this chapter whereas the next chapter will focus on using

these models to develop governors that control both core frequency and cache size to

meet SLApower.

We develop a reuse distance/stack distance based analytical modeling framework

for efficient, online prediction of cache performance for dynamically reconfigurable

set-associative caches that use LRU/PLRU/RANDOM/NMRU replacement policies.

Our framework is inspired by two foundational works: Mattson’s stack distance char-

acterization [150] (also used later as reuse distance [29, 65]) and Smith’s associativity

model [103, 200] for LRU caches.

The central theme of our framework is to decouple temporal characteristics in the

cache access stream from characteristics of the replacement policy. We propose a novel

low-cost hardware circuit, that uses Bloom Filters and sampling techniques, to estimate

cache reuse distance distributions online. These distributions are then used as inputs

to analytical models of replacement policy performance to predict miss ratios. This

separation of aspects brings the advantage of being able to easily refine either aspect in

isolation without affecting the other.

Our work differs from prior art in being suited for online predictions [103, 200],

working with practical replacement policies other than LRU [103, 174, 175, 200, 215],

allowing reconfigurability in the number of sets in addition to associativity [127, 174, 175],

and being very low cost [84]. Our framework unifies existing cache miss rate prediction

techniques such as Smith’s associativity model, Poisson variants, and hardware way-

counter based schemes.

The main contributions of this chapter are:

1. We formulate an analytical framework based on generalized stochastic Binomial

Matrices [212] for transforming reuse distance distributions (Sections 4.4, 4.5).

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 84

2. We formulate new miss ratio prediction models for RANDOM (Section 4.5.2),

NMRU (Section 4.5.3), PLRU (Section 4.5.4) replacement policies.

3. We show that the traditional hardware way-counter based prediction [215] for

varying associativity is a special instance of our unified framework (Section 4.6.2).

Further, we show how way-counter data for LRU may be transformed to apply to

caches with a different number of sets. (Section 4.6.2.2)

4. We propose a novel hardware scheme for efficient online estimation of reuse

distance/stack distance distributions (Section 4.6.1).

The rest of this chapter is organized as follows:

Evaluation Infrastructure: Section 4.2 describes the workloads and simulators that

we used for this study.

Temporal locality metrics: Section 4.3 defines reuse distributions that capture the

temporal locality of address streams. Section 4.4 shows how to modify these to apply for

a cache with a different number of sets.

Replacement policy models: Section 4.5 introduces the notion of cache hit-functions

that, when multiplied with the per-set reuse distribution, produce expected cache hit ratios.

Sections 4.5.1.1 and 4.4.3 consider optimizations for LRU hit ratio prediction. Sections

4.5.2, 4.5.3 and 4.5.4 develops new prediction models for RANDOM, NMRU, PLRU

respectively. Section 4.5.5 discusses prediction accuracy and computation overheads.

Hardware Support: Section 4.6.1 presents the novel, low-cost hardware for estimating

reuse distributions. We also discuss two traditional hardware mechanisms—set-counters

and way-counters (Section 4.6.2).

Index Hashing: Section 4.7 describes the index-hashing scheme that we used to map

addresses to cache sets.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 85

PPPPPPPPPsize
assoc. 2 4 8 16 32

2MB 214 213 212 211 210

4MB 215 214 213 212 211

8MB 216 215 214 213 212

16MB 217 216 215 214 213

32MB 218 217 216 215 214

Table 4.1: Relation between number of sets and associativity for different cache sizes.
Assuming some cache configuration is the current configuration, there are a total of
25-1=24 possible other cache configurations. An inspection of the table reveals that
at most 4 of these possible 24 configurations can have the same number of sets as the
current configuration. For example, with 32MB 32-way as the current configuration,
other configurations with the same number of sets (214) are: 2MB 2-way, 4MB 4-way,
8MB 8-way and 16MB-16-way. Thus, way-counters (Section 4.6.2) can predict for at most
4 of 24 possible other configurations at any time.

4.2 Infrastructure

In our study, caches are characterized by the number of sets S, associativity A, and

replacement policy. We generally use S ′ and A ′ while referring to the target cache

configuration for which we want to predict the miss ratio. We assume a fixed line size of

64 bytes. Table 4.1 shows the relation between S, A and cache size for the configurations

of the Last-Level Cache (LLC) that we study.

Our models estimate hit ratio (hit/access). This is easily converted into other measures:

miss ratio=1-hit ratio; miss rate=miss ratio*access/instruction. For evaluating prediction

quality, we obtain address traces of accesses to a 32MB 32-way LLC in a simulated system

(Table 4.2) for our workloads, run the traces through a standalone cache simulator (that

does not model timing) and compare measured against predicted metrics.

Table 4.2 describes the 8-core CMP we use for gathering traces. We assume an

8-banked L3 cache that is dynamically re-configurable for a total of 25 configurations (see

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 86

Core configuration 4-wide out-of-order, 128-entry window, 32-entry scheduler
Number of cores 8 On-chip frequency 2132 MHz

Technology Generation 32nm Temperature 340K
Functional Units 4 integer, 2 floating-point, 2 mem units

Branch Prediction YAGS 4K PHT 2K Exception Table, 2KB BTB, 16-entry RAS
Disambiguation NoSQ 1024-entry predictor, 1024-entry double-buffered SSBF

Fetch 32-entry buffer, Min. 7 cycles fetch-dispatch time

Inclusive

L1I Cache private 32KB 4-way per core, 2 cycle hit latency, ITRS-HP
L1D Cache private 32KB 4-way per core, 2 cycle hit latency, ITRS-HP
L2 Cache private 256KB 8-way per core, 6 cycle access latency, PLRU, ITRS-LOP

L3 Cache shared, configurable 2–32 MB 2–32 way, 8 banks, 18 cycle access latency,
PLRU, ITRS-LOP, serial

Coherence protocol MESI (Modified, Exclusive, Shared, Invalid), directory
On-Chip Interconnect 2D Mesh, 16B bidirectional links

Main Memory 4GB DDR3-1066, 75ns zero-load off-chip latency, 2 memory controllers,
closed page, pre-stdby

Table 4.2: System configuration.

Workload Time #LLC accesses #unique line #pages in LLC
(seconds) ×106 addresses ×106 accesses ×106

apache 0.562 177.764 3.829 0.136
jbb 0.260 35.474 5.831 0.123
oltp 0.410 150.126 2.401 0.138
zeus 0.322 10.488 1.003 0.048

Table 4.3: Workload Characteristics. Cache line size = 64 bytes. Page size = 4K bytes.

Table 4.1). The cache uses a hashed indexing scheme to map addresses to cache sets (see

Section 4.7). We conservatively assume a constant access latency for all configurations.

We use 4 Wisconsin commercial workloads [4] (apache, jbb, oltp, zeus). Each

workload uses 8 threads and runs for a fixed amount of work (e.g. #transactions or loop

iterations [6]) that corresponds to ∼4B instructions per workload. Each simulation run

starts from a mid-execution checkpoint that includes cache warmup. Table 4.3 shows a

summary of the characteristics of the workload executions.

Figure 4.1 shows the average miss ratios for a 32 MB 32-way LLC over the execution

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 87

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Av
er

ag
e 

M
iss

 R
ati

o 
(P

LR
U

)

Total Accesses (Million) to LLC

APACHE
Instantaneous Cumulative

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35

Av
er

ag
e 

M
iss

 R
ati

o 
(P

LR
U

)

Total Accesses (Million) to LLC

JBB
Instantaneous Cumulative

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Av
er

ag
e 

M
iss

 R
ati

o 
(P

LR
U

)

Total Accesses (Million) to LLC

OLTP
Instantaneous Cumulative

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9 10
Av

er
ag

e 
M

iss
 R

ati
o 

(P
LR

U
)

Total Accesses (Million) to LLC

ZEUS
Instantaneous Cumulative

Figure 4.1: “Instantaneous” and cumulative miss ratios. Granularity is 1000 LLC accesses.

of the workloads. The “instantaneous” miss ratios are computed at the end of every 1000

accesses to the LLC and show a lot of variation for every workload. The cumulative miss

ratio shows the average miss ratio of all LLC accesses in the execution till that point. It

is much more stable than the “instantaneous” ratios. Its final value at the end of the

execution is the overall/long-term average miss ratio. Our miss ratio prediction models

aim to predict this long-term average.

Table 4.4 show why it is useful to consider reconfigurability in both the number

of sets and ways (associativity) for the LLC. For a given cache size, M∗ compares the

maximum to minimum miss ratio for all configurations with that cache size (see Table 4.1

for the configurations). We obtain these numbers by running the access traces through

our standalone cache simulator. As an example, oltp sees up to 57% increase in miss

ratio with a suboptimal configuration for a 2MB LRU cache. MS indicates what happens

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 88

Policy Workload 2MB 4MB 8MB 16MB 32MB
M∗ MS M∗ MS M∗ MS M∗ MS M∗ MS

LRU

apache 1.07 1.07 1.04 1.01 1.19 1.04 1.69 1.04 1.33 1.00
jbb 1.03 1.03 1.14 1.08 1.13 1.02 1.09 1.00 1.08 1.00
oltp 1.57 1.57 1.80 1.30 1.53 1.04 1.45 1.01 1.44 1.00
zeus 1.13 1.13 1.09 1.03 1.07 1.01 1.08 1.00 1.07 1.00

RANDOM

apache 1.01 1.01 1.02 1.00 1.07 1.01 1.17 1.01 1.13 1.00
jbb 1.01 1.01 1.02 1.01 1.03 1.01 1.02 1.00 1.02 1.00
oltp 1.20 1.20 1.34 1.13 1.30 1.03 1.29 1.01 1.23 1.00
zeus 1.02 1.02 1.03 1.01 1.02 1.00 1.02 1.00 1.02 1.00

NMRU

apache 1.03 1.00 1.02 1.00 1.02 1.00 1.07 1.01 1.06 1.05
jbb 1.02 1.00 1.02 1.00 1.03 1.01 1.04 1.03 1.04 1.04
oltp 1.12 1.12 1.21 1.03 1.18 1.00 1.17 1.01 1.11 1.01
zeus 1.04 1.00 1.04 1.00 1.03 1.01 1.03 1.02 1.03 1.03

PLRU

apache 1.06 1.06 1.04 1.01 1.15 1.03 1.49 1.03 1.30 1.00
jbb 1.03 1.03 1.10 1.05 1.11 1.02 1.07 1.00 1.05 1.00
oltp 1.43 1.43 1.59 1.20 1.46 1.04 1.38 1.01 1.34 1.00
zeus 1.10 1.10 1.08 1.02 1.05 1.00 1.05 1.00 1.05 1.00

Table 4.4: Relative miss ratios for difference cache sizes and replacement policies. M∗
shows the max-to-min miss ratio over configurations having all possible number of sets
for the given cache size. Relative ratios > 1.05 are shown in red. MS shows the relative
miss ratio of the configuration having the same number of sets (=214) as that of the largest
cache (32 MB, 32-way) compared to the minimum miss ratio over all configurations for
the given cache size. Entries with relative ratios > 1.05 are shaded .

if only way configurability is present. It assumes the same number of sets (214) as that

for the 32MB 32-way cache. For oltp, this turns out to be the worst configuration for

a 2MB cache (configuration: 2MB, 2-way)—it has 57% more misses than for the best

configuration (2MB 32-way, number of sets = 210). Set configurability is more important

at small cache sizes than at larger sizes.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 89

4.3 Measures of Temporal Locality

In this section we develop metrics of temporal locality in the address stream that are

independent of the cache configuration. These metrics will be used for estimating the

miss ratios for arbitrary cache configurations. For our study, all addresses are (hashed)

line addresses of cache accesses.

Consider an address trace T as a mapping of consecutive integers in increasing order,

representing successive positions in the trace, to tuples (x,m) where x identifies the

address and m identifies its repetition number. The first occurrence of address x in the

trace is represented by (x, 0). Let t = T−1 denote the inverse function. t(x,m) denotes

the position of the mth occurrence of address x in the trace. We now introduce a few

more definitions.

Reuse Interval: The reuse interval (RI) is defined only when m > 0 and denotes the

portion of the trace enclosed between the mth and (m− 1)th occurrence of x. Formally,

RI(x,m) = 
{(z,m ′)|t(x,m− 1) < t(z,m ′) < t(x,m)} if m > 0

undefined otherwise

Unique Reuse Distance: This denotes the total number of unique addresses between

two occurrences of the same address in the trace. Thus,

URD(x,m) =


∣∣∣{z|(z,m ′) ∈ RI(x,m)}

∣∣∣ if m > 0

∞ otherwise

Numerically, this is 1 less than Mattson’s much earlier stack distance [150].

Absolute Reuse Distance: This denotes the total number of positions between two

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 90

occurrences of the same address in the trace. Thus, ARD(x,m) =


∣∣∣RI(x,m)

∣∣∣ = t(x,m) − t(x,m− 1) − 1 if m > 0

∞ otherwise

As an example, in the access sequence a b b c d b a, URD(a, 1) = 3 and ARD(a, 1) = 5.

4.3.1 Reuse Distance Distributions

Our study is concerned with average-case behavior. So instead of focusing on each indi-

vidual point in T , we characterize it using probability vectors that reflect average/expected

distributions.

• The unique reuse distance distribution of trace T is a probability distribution that

we denote by row vector r(T) such that the kth component,

rk(T) = P(URD(x,m) = k), ∀(x,m) ∈ image(T).

• The expected absolute distance distribution of trace T is a row vector that we

denote by d(T) such that the kth component,

dk(T) = E(ARD(x,m)|URD(x,m) = k),∀(x,m) ∈ image(T)

4.3.2 T → r(T) is a Lossy Transformation

The characterization is lossy in the sense that in general, T cannot be recovered from

r(T) even up to permutation of entity identifiers.

Consider two traces TA and TB such that they have disjoint sets of entities and

different values of reuse metrics. Let TAB denote a new trace formed from concatenating,

in order, sequences represented by TA and TB. This operation is not commutative, that is,

TAB and TBA are distinct, yet have the same values for the reuse metrics. So the reverse

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 91

x x

z0z1 z2 z3 zk

{z0}* {z0,z1}* {z0,z1,z2}* {z0,z1,z2,...,zk}*

Figure 4.2: Unique elements z0, z1, ... zk−1 partition dk(t) into subintervals.

mapping from r(T) to T is not unique. The argument can be extended to show that any

trace characterization using position-agnostic metrics must be lossy.

4.3.3 d(T) Estimation

It is obvious that ARD(x,m) > URD(x,m),∀x,m. It then follows that dk(T) > k,∀k such

that rk(T) > 0. Also, d0(T) = 0. We now show how to compute (an approximation to)

d(T) given r(T).

Figure 4.2 shows a schematic of a trace and organization of URDs within a reuse

interval for some address x. z0, z1,...zk denote distinct addresses. This is just a conceptual

tool and does not constrain the actual permutation of addresses in a particular reuse

interval. The immediate next access after reference address x must be something other

than x (otherwise the reuse interval would immediately terminate with k = 0). Between

this first address z0 and the next different address z1, the only possible URDs of accesses

must be 0. Between z1 and z2, the only possible URDs can be 0 and 1. Extending

this reasoning till zk−1 and zk we observe that dk(T) and dk−1(T) differ only in the

last sub-sequence which consists of a run of accesses with URDs in {0, 1, ..,k − 1}. We

approximate the length of this run with the expected number of trials to success in a

geometric distribution with success probability
∑∞
i=k ri(T).

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 92

Figure 4.3: Actual, Moving Average (window size = 100) of Actual, and Estimated d(T).

We thus arrive at the following recurrence:

d0(T) = 0

dk(T) = dk−1(T) +
1∑∞

i=k ri(T)
(4.1)

Expanding the recurrence gives us

dk(T) =

k∑
j=1

1∑∞
i=j ri(T)

=

k∑
j=1

1
1 −

∑j−1
i=0 ri(T)

This is similar to known approximations for the coupon collector’s problem assuming

a given order of coupons [34]. We find good agreement in trends between observed

(Moving Average) and estimated values of d(T) as illustrated in Figure 4.3. The moving

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 93

0

0.1

0.2

0.3

0.4

0.5

0.6

0 4 8 12 16 20 24 28 32

P
ro

ba
bi

lit
y

Per-set unique reuse distance

S=2^14
S=2^13
S=2^12
S=2^11
S=2^10

Figure 4.4: Effect of the number of sets (S) on per-set locality for oltp.

average calculation acts like a low-pass filter that removes short-term variation to reveal

long-term trends. Our estimates are good for workloads with long traces, e.g., apache

and oltp. We expect the differences to reduce for jbb and zeus with longer traces.

4.4 Per-set Locality

Replacement policy decisions (determining which cache line to evict) in traditional caches

happen for each individual set. This in turn influences the miss ratio. So it is essential

to determine the locality in the address stream that each individual set sees on average.

We refer to the temporal locality in the per-set address stream as the per-set locality.

Per-set locality is strongly influenced by the number of sets (S) in the cache. The set

of unique addresses in the address stream is split among the sets based on the index

mapping function. The address stream that any individual set sees is the subset of the

original address stream consisting of all accesses to the addresses mapping to that set. S

thus determines the degree to which the address stream is split. Decreasing S increases

URDs of the per-set address streams since addresses that hitherto mapped to other sets

now get mapped to the reference set, and vice versa.

Accordingly, we extend our previous notations of locality metrics to additionally

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 94

include S as a parameter. Thus r(T ,S) denotes the unique reuse distribution of the

sub-sequence of T that a single set in the cache observes on average. r(T , 1) is the

temporal locality of the original address stream, which is also the per-set locality of a

fully-associative cache (S = 1). Figure 4.4 illustrates how r(T ,S) changes with S for oltp.

d(T) is adapted to d(T ,S) similarly and can be estimated from r(T ,S) using Equation

4.1. For brevity of notation, we will omit specifying one or more parameters when their

values are clear from the context.

As Table 4.1 shows, cache configurations in our study have a range of number of sets

(210 to 218). For efficiently predicting miss ratios it is essential to be able to determine

how r(S) can be transformed to r(S ′) for S ′ 6= S. The rest of this section develops a (new)

methodology for this.

4.4.1 r(S ′) Estimation

For set-associative caches with S ′ > 1 we make the simplifying assumption, similar to

Smith’s model [103, 200], that the mapping of unique lines to cache sets are independent

of each other. While this assumption does not always hold with the traditional bit

selection index function, some processors use simple XOR hashing functions that increase

uniformity [134]. The uniformity assumption enables both the following model and the

use of uniform set-sampling techniques.

Accesses to a given set can thus be modeled as successive Bernoulli trials with the

success of each trial having probability 1
S ′ . While computing r(S ′) from r(1), we note

that rj(S ′) is the sum of the probability of exactly j successes (j addresses mapping to the

reference set) from rk(1), ∀k. The generalized stochastic Binomial Matrix [212] B(x,y) has

the value kCjyjxk−j in row k, column j, where kCj denotes the jth binomial coefficient

and x+ y = 1. This is the same as the probability of exactly j successes in k Bernoulli

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 95

♦♦♦♦♦♦♦♦

0     
0     
0     
0     

0     
0     

0     
0     
0     
0     

0     
0     
0     

0     
0     
0     
0     

♦♦
♦♦♦
♦♦♦♦
♦♦♦♦♦
♦♦♦♦♦♦
♦♦♦♦♦♦♦

■ ■ ■ ■ ■ ■ ■ ■
i

P(URD=i)

k

ir

B

P(k successes in i trials) 
i.e.,
P(k of i to the same set)

0     
0     0     

0     
0     
0     

0     
0     
0     
0     

0     

1     

Figure 4.5: Reuse distribution transformations with stochastic Binomial Matrices.

trials with probability of each success being y. Viewing the computation of r(S ′) from

r(1) through the lens of matrix multiplication, we recognize that the transformer is a

generalized stochastic Binomial Matrix, B(1 − 1
S ′ ,

1
S ′ ). Thus,

r(S ′) = r(1) · B(1 −
1
S ′

, 1
S ′

) (4.2)

Figure 4.5 shows a schematic of the transformation. The transformer, B, is always a

lower triangular matrix.

It is straight-forward to show that the transformation respects
∑∞
i=0 ri(S

′) =
∑∞
i=0 ri(1) =

1. Qualitatively, this transformation results in a re-distribution of mass with r(S ′) getting

compressed as S ′ is increased and dilated as S ′ is decreased (see Figure 4.4).

We will now show how to compute r(S ′) from any starting cache configuration S.

This shows how computations can be reused instead of always needing to start from the

ground configuration (S = 1) and will also be useful in reasoning about way-counters

(Section 4.6.2).

Binomial Matrices are invertible (when the second parameter is non-zero) and closed

under multiplication within the same dimension [212]. Using identities B(x,y)B(w, z) =

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 96

B(x+ yw,yz) and B(x,y)−1 = B(−xy−1,y−1), [212], we get

r(S ′) = r(1) · B(1 −
1
S ′

, 1
S ′

)

= r(S) · (B(1 −
1
S

, 1
S

))−1 · B(1 −
1
S ′

, 1
S ′

)

= r(S) · B(1 −
S

S ′
, S
S ′

) (4.3)

Equation 4.3 is a general form of Equation 4.2. The transformer depends only on the

ratio of the number of the sets in the current cache to that in the target cache. There are

two cases to consider depending on the value of this ratio:

Case 1, S ′ > S: The transformation is always safe in that the computed probabilities

are valid (∈ [0, 1]) even if r(S) has not been computed binomially. Moreover, this allows inter-

mediate steps; for example, computing r(214) from r(1) is equivalent to first computing

r(210) from r(1) and then computing r(214) from r(210). This provides an opportunity to

reuse intermediate computations. So, r(S) can be computed once from r(1) for the smallest

S (210 in our study, see Table 4.1) and used for all other target configurations.

Case 2, S ′ < S: Since B(1 − S
S ′ ,

S
S ′ ) = (B(1 − S ′

S , S ′S ))−1, Case 2 transforms can invert

Case 1 transforms provided Case 1 results have not been truncated (see below). Otherwise,

the computed probabilities may not be valid (6∈ [0, 1]).

For an example transformation, consider S‘ = 2S. The components of the transformed

reuse distribution, r ′, are computed as:

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 97

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
2-

w
4-

w
8-

w
16

-w
32

-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
iss

 R
ati

o

APACHE Actual LRU n=32
n=64 n=128
n=256 n=512

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
iss

 R
ati

o

JBB Actual LRU n=32
n=64 n=128
n=256 n=512

0

0.1

0.2

0.3

0.4

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
iss

 R
ati

o

OLTP Actual LRU n=32
n=64 n=128
n=256 n=512

0

0.1

0.2

0.3

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB
M

iss
 R

ati
o

ZEUS Actual LRU n=32
n=64 n=128
n=256 n=512

Figure 4.6: LRU prediction with reuse information limited to length n at r(210) which is
first computed from r(1) (Equation 4.2).

r ′0 = r0+ (1/2) · r1+ (1/4) · r2+ (1/8) · r3+ . . .

r ′1 = (1/2) · r1+ (2/4) · r2+ (3/8) · r3+ . . .

r ′2 = (1/4) · r2+ (3/8) · r3+ . . .

r ′3 = (1/8) · r3+ . . .

. . .

4.4.2 Matrix dimension and Truncation of r

The dimension of B is determined by the maximum (per-set) URD that we are interested

to maintain to avoid large computational costs. Let n denote the length of the r vector

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 98

that we maintain. That is, r(S) is computed for r0(S) through rn−1(S), with r∞(S)

adjusted so that r∞(S) = 1 −
∑n−1
i=0 r(S).

Assume r(210) is available, computed from r(1) using Equation 4.2. Figure 4.6 shows

predicted miss ratios with r(210) maintained for various values of n. Section 4.5.1 explains

LRU prediction. Although the maximum associativity that we consider is 32, Figure 4.6

shows that n has to be much larger than that (> 512) for good predictions for larger

caches with S ′ > 210, such as 32MB caches (see Table 4.1).

While n = 512 is good for r(210), the equivalent value for r(1) is very large, potentially

up to 512 · 210. To appreciate this, consider the r(1) address stream as a merger of the

210 mutually exclusive per-set address streams, each of which has reuse intervals of up

to 512. Determining the long-tailed r(1) distribution or using large matrices to compute

r(210) from r(1) in software is time-consuming. Section 4.6.1 proposes low-cost hardware

support to approximately estimate r(210) with n = 512.

4.4.3 Poisson approximation to Binomial

Cypher [55, 56] uses a Poisson approximation to binomial for reducing computational

costs – when i is large and 1
S ′ is small, the binomial distribution can be approximated by

a Poisson distribution with parameter λ = i
S ′ . Computing this is faster than the binomial

coefficient.

Figure 4.7 shows pseudo-code for the compute_per_set_r function that computes

Equation 4.3. It uses Poisson approximation to Binomial and assumes that r(210) up to

n = 512 is available. num_set_bits ∈ [1, 8] = log2(
S ′

S ). The computation is done for 2A ′

terms (see Section 4.5).

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 99

void init() {
int i;
for(i=0;i<9;i++)

precomputed_exp_inc[i]=exp(-1.0/(1<<i));
for(i=1;i<64;i++)

precomputed_v[i]=1.0/i;
}

void compute_per_set_r(int num_set_bits, int max_assoc) {
const double *ptr=&r_histogram[0];
double s3=precomputed_exp_inc[num_set_bits];
double s2=1.0;
double base_lambda=1.0/(1<<num_set_bits);
double lambda=0;
int i, rd;
for(i=0;i<512;i++) {

double s1=s2;
for(rd=0;rd<2*max_assoc;rd++) {

per_set_r[num_set_bits][rd]+=ptr[i]*s1;
s1*=lambda*precomputed_v[rd+1];

}
s2*=s3;
lambda+=base_lambda;

}
}

Figure 4.7: Equation 4.3 pseudo-code with Poisson approximation.

4.5 Cache Hit Functions

Given a target cache organization (S ′,A ′,policy) and a trace T , our goal is to determine

a vector φ(r(S ′),S ′,A ′,policy) such that the expected hit ratio for the trace is

h = r ·φ (4.4)

The idea is to characterize workload traces by r and caches by φ so that the effect on hit

ratio for changes in traces or cache configurations can be readily estimated.

We callφ the cache hit function. The value of the kth component,φk is the conditional

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 100

probability of a hit for accesses x such that URD(x,m) = k where m is the repetition count

for x at that point in the trace when the access happens. φk monotonically decreases

with k in this model. This is because non-eviction of a cache-resident address after

accesses involving k other unique addresses implies non-eviction after accesses involving

k− 1 unique addresses and the remaining accesses. If there are no intervening accesses

(k = 0), the access must be a hit. Accesses hitherto never seen (k = ∞) must miss. So,

φk =


1 if k = 0

6 φk−1 if k > 1

0 at k = ∞
(4.5)

Figure 4.8 shows φ curves for common replacement policies. We consider the well-

known, but rarely-implemented1 LRU policy as well as the practical RANDOM, NMRU,

and PLRU policies. In each figure, we superimpose the φ curves for S ′ = 214 and A ′ = 2,

4, 8, 16, and 32. These five curves appear from left to right, in that order, in each figure.

φ(LRU) is always a step function, with the 1-to-0 transition happening at A ′. We show

φ(LRU) on each figure for comparison. Note that φ for RANDOM, NMRU, PLRU are

non-zero beyond A ′. So, computing r ·φ up to A ′ is not sufficient for these replacement

policies. For our evaluations, we compute the dot-product for 2A ′ terms; longer than

that has diminishing returns for our workloads.

Apart from LRU, φ is not independent of r for different replacement policies. As

we shall show later, φ(RANDOM) depends on d, while φ(PLRU) may need more

information.
1LRU is typically not implemented in real caches for associativity larger than 4 due to hardware

complexity.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 101

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 8 16 32 64 128

Hi
t P

ro
ba

bi
lit

y

Unique Reuse Distance

APACHE
LRU
PLRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 8 16 32 64 128

Hi
t P

ro
ba

bi
lit

y

Unique Reuse Distance

APACHE
LRU
RAND
NMRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 8 16 32 64 128

Hi
t P

ro
ba

bi
lit

y

Unique Reuse Distance

JBB
LRU
PLRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 8 16 32 64 128

Hi
t P

ro
ba

bi
lit

y

Unique Reuse Distance

JBB
LRU
RAND
NMRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 8 16 32 64 128

Hi
t P

ro
ba

bi
lit

y

Unique Reuse Distance

OLTP
LRU
PLRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 8 16 32 64 128

Hi
t P

ro
ba

bi
lit

y

Unique Reuse Distance

OLTP
LRU
RAND
NMRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 8 16 32 64 128

Hi
t P

ro
ba

bi
lit

y

Unique Reuse Distance

ZEUS
LRU
PLRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 8 16 32 64 128

Hi
t P

ro
ba

bi
lit

y

Unique Reuse Distance

ZEUS
LRU
RAND
NMRU

Figure 4.8: Representative hit ratio functions (φk) with S ′ = 214 and A ′ = 2, 4, 8, 16, 32
with different replacement policies. φ0(not shown) = 1 for all policies. Note that the
x-axes are in log2 scale. Only LRU has a step function for any associativity.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 102

4.5.1 Estimating φ(LRU)

For a set-associative LRU cache with associativity A ′, it is well known that all accesses

with addresses re-appearing with less than A ′ unique intervening elements must hit and

all other accesses must miss. This leads us to the following characterization of the LRU

hit ratio function.

φk(LRU) =


1 if 0 6 k < A ′

0 if k > A ′
(4.6)

Figure 4.6 shows actual vs estimated (n = 512) miss ratios with LRU using Equations

4.3, 4.6 and 4.4. As observed earlier by Hill and Smith [103], increasing A ′ yields

diminishing returns.

4.5.1.1 Optimization (Smith’s Model)

A naive combination of Equations 4.4, 4.6 and 4.3 results in
(∑A ′−1

i=0 (n− i)
)

− 1 =

nA ′ −
A ′(A ′−1)

2 − 1 multiplications with binomial computations to estimate the hit ratio

for a cache with S ′ sets and associativity A ′. The number of multiplications can be

reduced by observing that due to the step-function nature of φ(LRU), some of the

coefficients will sum to 1. Expanding the computation and simplifying, we get

h(S ′)=

A ′−1∑
i=0

ri(1) +

n−1∑
i=A ′

ri(1)·
A ′−1∑
k=0

iCk·
(

1
S ′

)k
·
(

1−
1
S ′

)(i−k)

(4.7)

Equation 4.7 is an optimized version of Smith’s associativity model [103, 200]. It

requires (n−A ′)A ′ multiplications which is A
′(A ′+1)

2 −1 less than the naive combination.

But computing binomial terms is costly and n is usually much larger than A ′, so the

gains from this optimization are small.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 103

4.5.2 Estimating φ(RANDOM)

The RAND replacement algorithm [25] (also popularly called RANDOM) chooses a line

(uniformly) randomly from the lines in the set for eviction on a miss.

For an A ′-way set-associative cache, the probability of replacement of a given line on

a miss is 1
A ′ . Accounting for the number of misses in between successive reuses of an

address is therefore needed. For expected miss rate θ, the expected number of misses

for a sequence of α accesses is α · θ. This is why d is important for RANDOM whereas

LRU works independent of such information.

We make the simplifying assumption that miss occurrences (not specific addresses)

are independent and hence amenable to be modeled as a Bernoulli process. While this

may not be accurate, it allows us to make reasonably good predictions without tracking

additional state.

Let dk = α. The probability of i misses is estimated by αCi · θi · (1 − θ)(α−i). The

probability that a specific line is not replaced after i misses is
(
1 − 1

A ′

)i. We thus have

h(RANDOM) = r ·φ(RANDOM)

φk(RANDOM) =

α|dk=α∑
i=0

αCi·θi·(1 − θ)(α−i)·
(

1 −
1
A ′

)i
θ = 1 − h(RANDOM) (4.8)

To simplify the computation, we approximate Binomial(α,θ) by Poisson(λ = α · θ). Let

q =
(
1 − 1

A ′

)
. This gives

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 104

φk(RANDOM) =

α|dk=α∑
i=0

αCi · θi · (1 − θ)(α−i) · qi

=

∞∑
i=0

αCi · θi · (1 − θ)(α−i) · qi

≈
∞∑
i=0

e−λ · λ
i

i! · q
i

= e−λ(1−q)
∞∑
i=0

e−λq · (λq)i

i!

= e
−αθ
A ′ (4.9)

The system of equations in 4.8 can now be approximated by the following system.

h(RANDOM) = r ·φ(RANDOM)

φk(RANDOM) = e
−dkθ

A ′

θ = 1 − h(RANDOM) (4.10)

We solve the system of equations in 4.10 with the initial value h = r0. d is estimated

using equation 4.1. Usually 5 or fewer iterations suffice to reach within 1% of a fix-point.

4.5.2.1 Convergence for RANDOM

First note that if a fix-point exists, the solution satisfies the general conditions of φ

(Equation 4.5). This is because d0 = 0 (Equation 4.1) and from Equation 4.10,

φk

φk−1
= e

−(dk−dk−1)θ

A ′ = e
−

(
θ/A ′∑∞
i=k ri(T)

)

6 1 (4.11)

Let H denote a fix-point and h0, h1, h2, ... denote successive approximations. By

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 105

re-arranging the system of equations in 4.10 we have

hj+1 = r0 +

n−1∑
i=0
rie

di(−1+hj)

A ′ (4.12)

Since the exponential function is monotonic, H must be unique. Since 0 6 ri 6 1, ∀i,

r0 6 H 6 1.

Also, it is easy to show that hj > hj−1 =⇒ hj+1 > hj. Thus, successive iterations

produce a chain of values r0 = h0 6 h1 6 h2....

We will now prove that hj 6 H,∀j. This is true at j = 0. For induction, let hj = H− ε

with ε > 0. Then,

hj+1 = r0 +

n−1∑
i=0
rie

di(−1+hj)

A ′

= r0 +

n−1∑
i=0
rie

di(−1+H)

A ′ · e−
diε

A ′

6 r0 +

n−1∑
i=0
rie

di(−1+H)

A ′ = H (4.13)

This shows a convergence chain r0 = h0 6 h1 6 h2... 6 H.

4.5.2.2 Optimization

A better approximation for A ′ = 2 can be obtained by using the fact that for the reference

element not to be evicted at URD > 2, the previous element must be evicted (since the

set can hold only 2 elements). The probability of the previous element to be evicted is

1 −φ1. For the reference element to hit at URD = k, it must hit at URD = k− 1 and the

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 106

0

0.1

0.2

0.3

0.4

0.5

0.6
2-

w
4-

w
8-

w
16

-w
32

-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
is

s 
R

at
io

APACHE Actual RANDOM

Estimated RANDOM

Estimated LRU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
is

s 
R

at
io

JBB Actual RANDOM

Estimated RANDOM

Estimated LRU

0

0.1

0.2

0.3

0.4

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
is

s 
R

at
io

OLTP
Actual RANDOM

Estimated RANDOM

Estimated LRU

0

0.1

0.2

0.3

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB
M

is
s 

R
at

io

ZEUS Actual RANDOM

Estimated RANDOM

Estimated LRU

Figure 4.9: Actual vs estimated miss ratios with RANDOM replacement policy. LRU
estimates are shown as reference. r(210) is first computed from r(1) (Equation 4.2).

above condition must hold. This leads us to the following approximation.

φk = φk−1 · (1 −φ1), k > 2 (4.14)

This approximation is possible since the model can exactly determine the set contents

for URD >= 2. For higher associativities, exact determination of set contents is difficult.

Figure 4.9 shows actual vs estimated (n = 512) values of miss ratios for RANDOM

with the estimates computed using Equations 4.3, 4.10, 4.14 and 4.4.

4.5.3 Estimating φ(NMRU)

The NMRU (or non-MRU) replacement algorithm differentiates the most recently accessed

(MRU) line from other lines in the set [203]. On a miss, a line is chosen (uniformly)

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 107

randomly from among the A ′ − 1 non-MRU lines.

At A ′ = 2, φ(NMRU) = φ(LRU). For the rest of the cases, the framework is similar

to that of RANDOM except that accesses at URD 6 1 are guaranteed to hit. Moreover,

the replacement logic has A ′ − 1 possible choices for an eviction in case of a miss. This

leads to a few simple modifications to the system of equations in 4.10. The modified

system is shown below:

φ1(NMRU) = 1

h(NMRU) = r ·φ(NMRU)

φk(NMRU) = e
−(dk−d1)θ

A ′−1

θ = 1 − h(NMRU) (4.15)

Figure 4.10 shows actual vs estimated (n = 512) values of miss ratios for NMRU with

the estimates computed using Equations 4.3, 4.15 and 4.4.

4.5.4 Estimating φ(PLRU)

Partitioned LRU [203] (also popularly called pseudo-LRU) maintains a balanced binary

tree that, at each level, differentiates between the two sub-trees based on access recency.

Every internal node is represented by a single bit whose value decides which of the two

subtrees was accessed more recently. The cache lines are represented by the leaves of the

tree. Whenever a line is accessed, the nodes on the path from the root to the leaf flip

their bit values, thus pointing to the other subtree at each level. On a miss, the subtree

pointed to is chosen, recursively starting from the root. The line corresponding to the

leaf reached in this way is chosen for eviction. The bit-values along this path are then

flipped.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 108

0

0.1

0.2

0.3

0.4

0.5

0.6
2-

w
4-

w
8-

w
16

-w
32

-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
is

s 
R

at
io

APACHE Actual NMRU

Estimated NMRU

Estimated LRU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
is

s 
R

at
io

JBB Actual NMRU

Estimated NMRU

Estimated LRU

0

0.1

0.2

0.3

0.4

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
is

s 
R

at
io

OLTP
Actual NMRU

Estimated NMRU

Estimated LRU

0

0.1

0.2

0.3

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB
M

is
s 

R
at

io

ZEUS Actual NMRU

Estimated NMRU

Estimated LRU

Figure 4.10: Actual vs estimated miss ratios with NMRU replacement policy. LRU
estimates are shown as reference. r(210) is first computed from r(1) (Equation 4.2).

In the PLRU scheme, the most recently accessed element is always known but the

least recently accessed one is not. In contrast to the LRU scheme, that maintains a total

access order between the lines, PLRU maintains only a partial order. Since there is no

difference between partial and total orders involving 2 elements, PLRU is LRU when

A ′ = 2. In contrast to LRU that guarantees exactly A ′− 1 unique accesses before eviction,

PLRU guarantees at least log2(A
′) (=number of tree levels) unique accesses before the

reference address is evicted.

Since the PLRU tree is symmetric, we can fix any way as reference without loss of

generality. Let the immediate neighbor be denoted by Q0, the next two neighbors be

collectively denoted by Q1 and so on with the most distant group of A/2 neighbors

denoted by Qlog2(A)−1. To calculate the probability that the reference line will be evicted

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 109

on a particular miss we need to consider the immediate past sequence of accesses to that

set. A necessary and sufficient condition for the reference line to be evicted is for the

suffix of the trace to have accesses that match the particular regular expression described

below.

A = 2 : Q+
0

A = 4 : Q0Q
+
1

A = 8 : Q0(Q1 +Q2)
∗Q1Q

+
2

A = 16 : Q0(Q1 +Q2 +Q3)
∗Q1(Q2 +Q3)

∗Q2Q
+
3

A = 32 : Q0(Q1 +Q2 +Q3 +Q4)
∗Q1(Q2 +Q3 +Q4)

∗

Q2(Q3 +Q4)
∗Q3Q

+
4

On a miss, the reference line will be evicted if and only if the immediately preceding

sequence of accesses follows a particular pattern. These patterns can be described using

regular expressions. In contrast to RANDOM, not only the number of misses in the

reuse interval, but also the pattern of accesses determines eviction probability. It is

difficult to estimate φ(PLRU) by computing probabilities of the regular expressions since

the distance to misses within the reuse interval as well as the ways occupied by the

intervening elements are not known. Instead, we use a different approach.

First, we compute φ(A ′ = 4,PLRU) then compute φ(A ′ = 8,PLRU) by dividing

traffic using a binomial distribution and applying φ(A ′ = 4,PLRU) on the divided traffic.

We view an 8-way tree as a composition of two 4-way trees with the top-node dividing

traffic between the two subtrees. Similar observations hold between 8-way and 16-way

trees and so on. This helps us to estimate φ(PLRU) for successively higher associativities.

We assume that the top node divides traffic evenly between its two constituent sub-trees.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 110

4.5.4.1 Base case: A ′ = 4

Since log2(4) = 2, φk is 1 when k 6 2. Let x denote the reference element. We will now

estimate the likelihood that the second occurrence of x in the access sequence x e1 ... e2

... ek x will hit in the cache. The elements e1 through ek all map to the same cache set

and are distinct so that the URD of the sequence is k. φk = φk−1· P(x not evicted by

ek).

First, consider the case when k > 4. To have φk = 1, x must be present in the cache.

Moreover, both ek−1 and ek will also be in the cache as PLRU guarantees that the last

two unique elements seen will remain in the cache. Since A ′ = 4, there is room for

one more element other than x, ek−1, and ek in the cache set. This element must be

ek−2 as it could not have been evicted by either ek−1 or ek. Therefore, ek−3 must have

been evicted by ek. So if ek−3 were to reappear instead of the second occurrence of

x in the above sequence, it would miss. That is, the access sequence ek−3 ... ek−2 ...

ek−1 ... ek ... ek−3 would have caused the second ek−3, with URD 3, to miss. This

probability is (1 −φ3). Thus, P(x not evicted by ek) = P(ek−3 evicted by ek) = (1 −φ3).

So, φk = φk−1 · (1 −φ3).

x

Subtree 1 Subtree 2

Figure 4.11: Schematic showing PLRU subtrees for A ′ = 4. Without loss of generality,
we denote the subtree containing the reference element, x, as Subtree 1. Also, x is not
necessarily the left-most child of Subtree 1.

The case that remains is when k = 3. For this case, we will refer to Figure 4.11 to

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 111

describe our estimation approach. The access sequence that we are considering is x e1 ...

e2 ... e3 x, with e1, e2, e3 being distinct elements. The only scenario where x is evicted

(by e3) before its second occurrence occurs if all of the following conditions hold:

1. e3 misses. e3 has URD > 3. For an approximation, we just consider what would

happen under LRU. It would miss for URD > 3. The probability for this happening

is P(URD > 3|URD > 3) = 1 - P(URD = 3|URD > 3) = 1 - r3
1−r0−r1−r2

.

2. The last access (to either e2 or e3) before the access to e3 causes Subtree 2, not

containing x, to be accessed. We assume this probability to be 1
2 .

3. e1 and e2 map to different subtrees. Since each subtree can have only 2 elements,

Subtree 2 must get at least one of e1 or e2. Thus, the question is whether or not

the other element (e1 or e2) maps to Subtree 1. We assume this probability to be 1
2 .

Thus, φ3 = 1 −
(

1 − r3
1−r0−r1−r2

)
· 1

2 ·
1
2 = 3

4 + 1
4 ·
(

r3
1−r0−r1−r2

)
.

Putting everything together,

φk =



1 if 0 6 k 6 2

3
4 +

1
4 ·
(

r3
1 − r0 − r1 − r2

)
if k = 3

φk−1 · (1 −φ3) if k > 4

(4.16)

4.5.4.2 Recurrence: A ′ > 8

Let L = log2(A
′) and ψ = φ(A ′/2). We will refer to Figure 4.12 to describe our estimation

approach. For the first case, when k 6 L, φk must be 1. For k > L, consider the element

ek in the access sequence x e1 ... e2 ... e3 x. There are two subcases here:

1. It maps to Subtree 2. In this case, φk = φk−1.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 112

x

Subtree 1 Subtree 2

Figure 4.12: Schematic showing PLRU subtrees. Each subtree has A ′/2 leaves. Without
loss of generality, we denote the subtree containing the reference element, x, as Subtree 1.

2. It maps to Subtree 1. If k > A ′

2 + 2, there is at least one other element in Subtree 1

apart from x and ek. This is because at most A ′2 elements can map to Subtree 2

before an element maps to Subtree 1. So, an element within the set {e1 ... eA ′
2 +1}

must map to Subtree 1. If k 6 A ′

2 + 1, the A ′

2 elements other than ekcan all occupy

Subtree 2.

The remaining elements can map to Subtree 1 or Subtree 2. We use a Binomial

distribution with success probability 1
2 to estimate the likelihood of a certain number

of them mapping to Subtree 1. This number plus 1 (for ek) gives the URD for x

considering only accesses to Subtree 1. We then get the hit probability for this URD

from ψ.

Putting everything together,

φk =



1 if 0 6 k 6 L

φk−1
2 +

1
2

k−3∑
i=0

k−3Ci

(
1
2

)(k−3)

·ψ2+i if k >
A ′

2 + 2

φk−1
2 +

1
2

k−2∑
i=0

k−2Ci

(
1
2

)(k−2)

·ψ1+i otherwise

(4.17)

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 113

0

0.1

0.2

0.3

0.4

0.5

0.6
2-

w
4-

w
8-

w
16

-w
32

-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
is

s 
R

at
io

APACHE Actual PLRU

Estimated PLRU

PLRU Way Counter

Estimated LRU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
is

s 
R

at
io

JBB Actual PLRU

Estimated PLRU

PLRU Way Counter

Estimated LRU

0

0.1

0.2

0.3

0.4

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
is

s 
R

at
io

OLTP
Actual PLRU

Estimated PLRU

PLRU Way Counter

Estimated LRU

0

0.1

0.2

0.3

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB
M

is
s 

R
at

io

ZEUS Actual PLRU

Estimated PLRU

PLRU Way Counter

Estimated LRU

Figure 4.13: Actual vs estimated miss ratios with PLRU replacement policy. LRU estimates
are shown as reference. r(210) is first computed from r(1) (Equation 4.2). Section 4.6.2.1
describes PLRU Way-Counters.

In the above, we ignore the case when all of {e1 ... ek} map to Subtree 1 along with

x. This occurrence has a low probability since all of {e1 ... ek} must have been hits

(probability = P(hit)k) and already have been present in Subtree 1 (probability = 2−k).

Figure 4.13 shows actual vs estimated (n = 512) values of miss ratios for PLRU with

the estimates computed using Equations 4.3, 4.16, 4.17 and 4.4.

4.5.5 Estimation Accuracy and Computation Time

Table 4.5 shows miss ratio prediction errors for different policies and workloads. LRU

prediction is the most accurate, with relative errors < 2%, followed by PLRU with relative

errors < 3%. Using the PLRU predictor instead of the LRU predictor when the actual

cache uses PLRU improves prediction accuracy by ~2% for oltp. RANDOM and NMRU

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 114

Workload LRU RANDOM NMRU PLRU LRU→PLRU
Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.

apache 1.23 0.81 5.12 2.67 4.68 2.27 3.41 2.31 3.40 2.23
jbb 3.40 1.12 7.80 2.27 6.58 1.90 5.24 1.59 4.44 1.29
oltp 1.59 1.85 4.04 4.90 3.77 4.05 2.88 2.97 4.88 5.18
zeus 0.69 0.57 2.68 1.96 1.78 1.36 1.21 0.96 1.55 1.19

Table 4.5: Average absolute values of prediction errors over all cache configurations. Abs.
= (predicted - actual) miss ratio ×103, Rel. = (predicted/actual - 1)×102 (to express as a
percentage). LRU→PLRU shows what happens if the LRU predictor is used to predict
for PLRU instead of using the PLRU predictor.

have relative errors < 5%.

A major contributor to hit ratio computation time is the determination of r. Section

4.6.1 proposes low-cost hardware to approximate r(210) (with n = 512) online. Assuming

this is available, the hit ratio computation time per cache configuration on the Haswell

machine (HS, at 3.9 GHz) were – LRU: 6 0.009 msec; PLRU: 6 0.011 msec; RANDOM:

6 0.012 msec; NMRU: 6 0.012 msec. On a Nehalem 2.26 GHz machine, the times were

– LRU: 6 0.016 msec; PLRU: 6 0.018 msec; RANDOM: 6 0.023 msec; NMRU: 6 0.024

msec. This includes the time to compute r(S ′) from r(210) (Equation 4.3), amortized over

all configurations with the same S ′.

4.6 Hardware Support

Section 4.4.2 discussed that to avoid expensive computation to determine r(1) or compute

r(210) from r(1), we need hardware support to directly estimate r(210). Section 4.6.1

presents our proposed hardware technique to do this.

Section 4.6.2 discuss two traditional hardware mechanisms that help in cache miss

ratio estimation—set-counters and way-counters.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 115

Reference address 
register

access

insert

Set 
Filter Control Logic

filtered access

load hit
inc

reset

read

read

1024-bit 
Bloom Filter
2 hash fns

9-bit 
Counter

inc

512-entry 
Histogram 

array

start sample

Figure 4.14: Schematic of new hardware support.

4.6.1 New hardware support to estimate reuse distributions (r(210), n = 512)

The definition of unique reuse distance (URD) depends only on the cardinality of the reuse

interval (RI) and not on the contents of the set. This suggests applicability of hardware

signatures, such as Bloom filters [32], that can construct compact representations of sets.

Whereas shadow tags store entire tag addresses, a Bloom filter uses only one bit per

hash function to represent each address.

Our proposed hardware, shown in Figure 4.14, uses a Bloom filter (to summarize RI),

a counter to determine |RI|, and set-sampling logic. We use a 1024-bit parallel Bloom

filter [187] with two H3 hash functions [42] and a 9-bit counter. The Bloom filter can be

at most half-full (512 elements) before being reset. Larger Bloom filters can be used to

reduce aliasing errors at the cost of more area/power overhead. The hardware uses a

combination of set sampling and time sampling techniques [129, 132, 133, 172, 222]. It

works as follows:

1. Sample Initiation: The Control Logic initializes the Set Filter to match a single set

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 116

of a cache with S = 210. It chooses this value by first time-sampling the incoming

address stream (10% selectivity) and then choosing the set number of the chosen

address as the value for the Set Filter. It also saves this address in the Reference

address register.

2. Sample Continuation: The Control Logic inspects (see step 3) each address that

passes through the Set Filter. Then it inserts the address into the Bloom Filter

and increments the 9-bit Counter provided that the Bloom Filter does not return a

match (already seen) for the address.

3. Sample Termination: This happens in one of two cases—(i) the reference address

is seen again, or (ii) the maximum value (511) for the 9-bit counter is reached before

inserting another new element. For case (i), the Control Logic increments the entry

(whose position matches the 9-bit Counter value) in the Histogram array. For both

cases, it transitions to Sample Initiation mode.

The above process is repeated. Each sequence of steps 1–3 estimates the reuse distance

of a single address in the address stream. This value is between 0–511 (both inclusive)

or considered as ∞ (> 512) otherwise. A separate counter (not shown) tracks the total

number of measurements. This value, together with the histogram entries, is used to

estimate r(210).

The technique can be generalized to estimate r(2x) by sizing the Bloom filter, histogram,

and set filter appropriately.

4.6.1.1 Bloom Filter Analysis

The Bloom Filter is used to estimate the number of unique addresses. Here we analyze

its performance by comparing three kinds of filters:

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 117

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0 64 128 192 256 320 384 448 512

Fa
lse

-h
it 

Pr
ob

ab
ili

ty

Number of elements inserted

Figure 4.15: Probability of false hit in a 1024-bit Bloom filter with 2 hash functions.

1. E (Exact): This assumes that the addresses are fully tracked so that the estimation

of the number of unique addresses is accurate.

2. B (Bloom): This uses traditional Bloom Filters. Addresses are not fully tracked, but

represented by a few bits (2 bits in our study). Aliasing (same bits set for different

addresses) may result in under-reporting of the number of unique addresses seen.

This shortens the reuse distance measured.

3. CB (Bloom with Correction): This uses traditional Bloom Filters, but applies a

correction term, based on the expected number of false aliases, to the measured

reuse distance.

The aliasing probability for a traditional Bloom Filter (B) increases with the number

of elements (addresses) inserted as more bits get set in the filter. For a Bloom Filter of

size m bits and k hash functions, the probability of a false hit (alias) with n elements

already inserted is given by

P(false hit | n elements inserted) ≈ (1 − e−kn/m)k

For our study, m = 1024 and k = 2. So the aliasing probability is

P(false hit | n elements inserted) ≈ (1 − e−n/512)2

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 118

Figure 4.15 plots this probability. We only plot till 511 elements since measurement is

terminated beyond that and the reuse distance is considered as ∞.

To correct for this aliasing, the CB filter tracks the number of lookups for every state

(number of elements already inserted) of the Bloom filter and computes an expectation

of the total number of aliases. It then adds this count to the reuse distance measured.

Note that the computation for the expected number of aliases may not match the number

of unique aliases, so the correction is not exact.

For our analyses, the E, B, and CB filters use the same random numbers. However, the

starting points of the samples can differ. This is because Sample Termination (followed

by Sample Initiation) that happens when a long reuse distance (> 512, equiv. ∞) is

encountered, is affected by how accurately the reuse distance is calculated. So, individual

samples across the three filters are not comparable. We compare the estimated miss

ratios computed from sample results for the three filters.

Figures 4.16, 4.18, and 4.20 show the estimated miss ratios for LRU using E, B, and CB

filters respectively along with the Actual LRU miss ratio. Figures 4.17, 4.19, and 4.21 show

the corresponding errors—absolute = (estimated-actual), relative = (estimated/actual-1).

The errors are also tabulated in Tables 4.6 and 4.7. For each analysis, we replicate the

estimation hardware (except the Histogram array) to experiment with 2, 4, 8, 16, 32, and

64 Filters.

We find that CB filters reduce errors compared to B filters for some, but not all,

cases. But it incurs additional complexity for applying the (approximate) corrections. E

filters can have very low errors, e.g., for apache (#F=16) and oltp (#F=4), but are costly

to implement. The B filters provide reasonable accuracy at low implementation cost.

Surprisingly, increasing the number of filters (for any filter type) does not always increase

accuracy for our experiments. We will discuss this issue shortly.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 119

0

0.1

0.2

0.3

0.4

0.5

0.6
2-

w
4-

w
8-

w
16

-w
32

-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
iss

 R
ati

o

APACHE Actual LRU 1 Filter
2 Filters 4 Filters
8 Filters 16 Filters
32 Filters 64 Filters

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
iss

 R
ati

o

JBB Actual LRU 1 Filter
2 Filters 4 Filters
8 Filters 16 Filters
32 Filters 64 Filters

0

0.1

0.2

0.3

0.4

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
iss

 R
ati

o

OLTP Actual LRU 1 Filter
2 Filters 4 Filters
8 Filters 16 Filters
32 Filters 64 Filters

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB
M

iss
 R

ati
o

ZEUS Actual LRU 1 Filter
2 Filters 4 Filters
8 Filters 16 Filters
32 Filters 64 Filters

Figure 4.16: Online estimation of miss ratios using E filters.

-15%

-10%

-5%

0%

5%

10%

15%

20%

-0.03 -0.02 -0.01 0 0.01 0.02 0.03Re
la
tiv

e 
Er

ro
r

Absolute Error

APACHE

1 Filter

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

-0.07 -0.02 0.03 0.08 0.13 0.18 0.23

Re
la
tiv

e 
Er

ro
r

Absolute Error

JBB
1 Filter
2 Filters
4 Filters
8 Filters
16 Filters
32 Filters
64 Filters

-10%

0%

10%

20%

30%

40%

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

Re
la
tiv

e 
Er

ro
r

Absolute Error

OLTP

1 Filter

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

-100%

0%

100%

200%

300%

400%

500%

600%

700%

800%

-0.2 0 0.2 0.4 0.6 0.8

Re
la
tiv

e 
Er

ro
r

Absolute Error

ZEUS

1 Filter

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

Figure 4.17: Online estimation errors with E filters.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 120

0

0.1

0.2

0.3

0.4

0.5

0.6
2-

w
4-

w
8-

w
16

-w
32

-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
iss

 R
ati

o

APACHE Actual LRU 1 Filter
2 Filters 4 Filters
8 Filters 16 Filters
32 Filters 64 Filters

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
iss

 R
ati

o

JBB Actual LRU 1 Filter
2 Filters 4 Filters
8 Filters 16 Filters
32 Filters 64 Filters

0

0.1

0.2

0.3

0.4

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
iss

 R
ati

o

OLTP Actual LRU 1 Filter
2 Filters 4 Filters
8 Filters 16 Filters
32 Filters 64 Filters

0

0.1

0.2

0.3

0.4

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB
M

iss
 R

ati
o

ZEUS Actual LRU 1 Filter
2 Filters 4 Filters
8 Filters 16 Filters
32 Filters 64 Filters

Figure 4.18: Online estimation of miss ratios using B filters.

-15%

-10%

-5%

0%

5%

10%

15%

20%

-0.03 -0.02 -0.01 0 0.01 0.02 0.03Re
la
tiv

e 
Er

ro
r

Absolute Error

APACHE

1 Filter

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

-20%

-15%

-10%

-5%

0%

5%

-0.07 -0.05 -0.03 -0.01 0.01

Re
la
tiv

e 
Er

ro
r

Absolute Error

JBB

1 Filter

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

-50%

0%

50%

100%

150%

200%

-0.03 -0.01 0.01 0.03 0.05 0.07 0.09

Re
la
tiv

e 
Er

ro
r

Absolute Error

OLTP

1 Filter

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

-20%

0%

20%

40%

60%

80%

100%

120%

140%

-0.2 -0.1 0 0.1 0.2

Re
la
tiv

e 
Er

ro
r

Absolute Error

ZEUS

1 Filter

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

Figure 4.19: Online estimation errors with B filters.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 121

0

0.1

0.2

0.3

0.4

0.5

0.6
2-

w
4-

w
8-

w
16

-w
32

-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
iss

 R
ati

o

APACHE Actual LRU 1 Filter
2 Filters 4 Filters
8 Filters 16 Filters
32 Filters 64 Filters

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
iss

 R
ati

o

JBB Actual LRU 1 Filter
2 Filters 4 Filters
8 Filters 16 Filters
32 Filters 64 Filters

0

0.1

0.2

0.3

0.4

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
iss

 R
ati

o

OLTP Actual LRU 1 Filter
2 Filters 4 Filters
8 Filters 16 Filters
32 Filters 64 Filters

0

0.1

0.2

0.3

0.4

0.5

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB
M

iss
 R

ati
o

ZEUS Actual LRU 1 Filter
2 Filters 4 Filters
8 Filters 16 Filters
32 Filters 64 Filters

Figure 4.20: Online estimation of miss ratios using CB filters.

-15%

-10%

-5%

0%

5%

10%

15%

20%

-0.03 -0.02 -0.01 0 0.01 0.02 0.03Re
la
tiv

e 
Er

ro
r

Absolute Error

APACHE

1 Filter

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

-20%

-15%

-10%

-5%

0%

5%

-0.07 -0.05 -0.03 -0.01 0.01

Re
la
tiv

e 
Er

ro
r

Absolute Error

JBB

1 Filter

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

Re
la
tiv

e 
Er

ro
r

Absolute Error

OLTP

1 Filter

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

-0.2 -0.1 0 0.1 0.2 0.3

Re
la
tiv

e 
Er

ro
r

Absolute Error

ZEUS

1 Filter

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

Figure 4.21: Online estimation errors with CB filters.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 122

Filter Workload #F=1 #F=2 #F=4 #F=8 #F=16 #F=32 #F=64

E

apache 12.21 8.34 8.98 8.74 1.75 1.77 3.29
jbb 167.64 41.22 10.46 19.57 28.84 25.60 19.68
oltp 7.89 4.27 2.45 2.47 2.66 2.23 1.85
zeus 620.31 87.51 152.39 143.10 96.35 61.90 52.98

B

apache 10.77 12.66 7.15 8.46 5.68 3.37 4.28
jbb 19.87 39.38 18.83 21.51 18.53 18.26 25.84
oltp 62.43 3.60 3.87 4.38 4.65 4.70 4.49
zeus 56.45 62.20 134.82 117.29 73.88 29.01 46.41

CB

apache 10.80 8.38 3.14 3.13 2.00 3.88 5.21
jbb 22.16 38.67 24.12 27.44 32.59 35.08 35.47
oltp 11.81 7.45 6.59 4.94 5.54 6.61 5.88
zeus 76.16 148.57 165.43 127.42 76.96 72.78 65.11

Table 4.6: 103× Average of absolute error = abs(estimated - actual) miss ratio, over all
cache configurations. Entries with values > 50, that is, average error > 0.05 are shaded .

Filter Workload #F=1 #F=2 #F=4 #F=8 #F=16 #F=32 #F=64

E

apache 4.94 3.44 3.89 3.42 0.86 1.16 1.44
jbb 43.74 9.62 2.52 4.96 7.37 6.57 4.97
oltp 15.33 6.21 3.37 3.78 4.15 3.27 2.60
zeus 506.07 74.87 125.10 116.71 76.62 48.36 40.91

B

apache 7.25 6.22 2.62 4.44 3.67 1.95 2.16
jbb 5.64 11.39 4.70 5.71 4.72 4.13 6.69
oltp 97.88 6.01 6.30 5.53 4.59 7.14 6.49
zeus 41.54 49.50 107.24 92.18 56.93 21.88 35.29

CB

apache 7.91 5.29 1.28 1.38 1.01 1.86 2.39
jbb 6.04 10.39 5.95 7.12 8.61 8.83 9.23
oltp 13.70 10.16 11.42 9.78 11.61 13.72 12.78
zeus 60.83 113.93 129.96 100.55 60.52 56.96 50.81

Table 4.7: 102× Average of relative error = abs(estimated/actual -1) miss ratio, over all
cache configurations. Entries with values > 10, that is, average error > 10% are shaded .

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 123

Workload apache jbb oltp zeus
#Filters
& Type E B CB E B CB E B CB E B CB

1 332 235 509 48 62 88 236 89 782 4 16 17
2 725 487 1041 132 133 186 554 377 1412 28 26 29
4 1450 1060 2210 277 233 351 1154 812 2608 46 37 50
8 2748 2232 4454 596 471 720 2273 1816 5144 97 80 119
16 5581 4421 8940 1225 926 1468 4584 3544 9681 232 208 287
32 11385 8547 17627 2433 1818 2941 9397 7855 18894 542 557 603
64 22689 17042 35109 4755 3807 5936 19093 15513 38120 1142 987 1243

Table 4.8: Number of samples selected with different sampling configurations. Configu-
rations that selected less than 385 samples are shaded (also see Section 4.6.1.3).

Table 4.8 shows the number of samples selected for reuse distance estimation in each

experiment. The large prediction error for zeus using 1 E filter is due to selecting very

few (4) samples for reuse estimation. We show more details for the 4 samples below. In

the following, the notation [n1,n2] indicates that the sample started at access number n1

(to the LLC) and ended at access number n2.

1. [22, 54]: Reuse distance of 0 was measured. That is, no intervening access happened

that passed through the Set Filter.

2. [84, 3299679]: Reuse distance of ∞ was measured. That is, at least 512 intervening

access happened that passed through the Set Filter. So, measurement for this

sample was terminated.

3. [3299697, 10292166]: Reuse distance of ∞ was measured. That is, at least 512

intervening access happened that passed through the Set Filter. So, measurement

for this sample was terminated.

4. [10292169, 10488064]: End of execution without seeing the reference address again.

Reuse distance of ∞ was taken.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 124

Workload apache jbb oltp zeus
#Filters
& Type E B CB E B CB E B CB E B CB

1 118 89 141 29 34 51 56 37 82 1 8 8
2 171 134 193 69 61 83 81 68 113 10 11 15
4 217 196 248 100 88 109 123 103 144 15 14 20
8 256 239 297 145 132 157 167 151 203 23 24 32

16 311 278 345 213 188 226 238 205 274 46 49 51
32 351 326 402 290 256 300 324 301 359 78 76 82
64 411 375 464 386 350 400 406 390 440 119 116 126

Table 4.9: Number of entries in the Histogram array (Figure 4.14) populated with different
sampling configurations. The Histogram array has 512 entries (for reuse distances 0–511).

As can be seen above, measuring long reuse distances “uses up” a significant number

of accesses in the trace resulting in a small number of samples for a given trace length.

This is due to the fact that the absolute distance, d(T), increases rapidly with the reuse

distance r(T) (see Section 4.3.3). This effect can be reduced by limiting the range of cache

sizes that we want to predict for (n = 512 for our study due to the large range of cache

sizes that we consider; see Section 4.4.2).

Table 4.9 shows how much of the Histogram array is touched by the different filter

configurations. For the detailed example that we just discussed (zeus with 1 E filter),

only 1 entry (for reuse distance 0) was touched. For every workload and filter type, the

number of entries touched increases with the number of filters. There is thus a strictly

monotonic reduction in the sparsity of the estimated reuse distribution. However, none of

the filter configurations touch all 512 entries for our traces. Moreover, the reuse distances

corresponding to the touched entries are not all contiguous. It is difficult to reason about

accuracy of miss ratio predictions based on sparsely populated reuse distributions. Short

traces tend to exacerbate the non-monotonicity in prediction error rates with the number

of filters. We expect longer address traces to resolve this issue.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 125

0

0.1

0.2

0.3

0.4

0.5

0.6
2-

w
4-

w
8-

w
16

-w
32

-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
iss

 R
ati

o

APACHE Actual LRU 1 Filter
2 Filters 4 Filters
8 Filters 16 Filters
32 Filters 64 Filters

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

Re
la
tiv

e 
Er

ro
r

Absolute Error

APACHE

1 Filter

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

Figure 4.22: Online estimation of miss ratios using E filters and with a set sample
randomly chosen at the start of every sample.

4.6.1.2 Time Sampling vs Set Sampling

In the Sample Initiation mode, the Control Logic time-samples the incoming address

stream, then chooses the set address of the selected address for initializing the Set Filter.

An alternative approach is to first choose a set address (select a sample over all possible

set addresses) and initialize the Set Filter with that set address.

Figure 4.22 shows prediction errors for apache with this approach. The errors are

larger than those when the Set Filter is initialized using time sampling (Figure 4.17).

One reason is that LLC accesses are not equally distributed to all sets—some sets are

accessed more often than others. Time sampling reflects these variations better than set

sampling. More samples get chosen with time sampling than with set sampling, since

with the latter, the Control Logic has to wait till an address accepted by the Set Filter

arrives before using it as the reference address for the reuse measurement.

4.6.1.3 CLT criteria

The Central Limit Theorem (CLT) states that for large sample sizes, the distribution of the

sample means approaches a Normal distribution. We will use this to develop a guideline

for the minimum sample size that should be selected before the miss ratios are computed.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 126

We will use the following notation:

• µ: Population mean.

• σ: Population standard deviation.

• n: Sample size.

• X: Sample mean for a given sample.

• α: 1 - confidence level. For a confidence level of 95%, α = 1 − 0.05.

• Zα/2: The value v such that the area under the standard Normal curve between

0–v is α/2.

Then, if the CLT theorem holds, it is well-known [33] that X − Zα/2

(
σ√
n

)
< µ <

X+ Zα/2

(
σ√
n

)
. So, ∣∣X− µ

∣∣ < Zα/2

(
σ√
n

)
(4.18)

For a 95% confidence level, Zα/2 = 1.96 [33].

The metric that we are interested in this study is the average miss ratio, µ, which is

the probability that an access to the cache will miss. Let Mt denote an indicator random

variable such that

Mt =


1 if the tthaccess is a miss

0 otherwise
(4.19)

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 127

We compute its expectation, E(Mt), and variance, Var(Mt), as follows:

E(Mt) =1 · P(access is a miss) + 0 · P(access is a hit)

=µ (4.20)

Var(Mt) =E(M2
t) − (E(Mt))

2

=µ− µ2

=µ(1 − µ) (4.21)

LetN denote the total number of accesses (population size). Then, the random variable

M =
∑N
t=1Mt

N tracks the average number of misses (µ) over all accesses. Assuming that

all Mt’s are identically and independently distributed, we get

σ =
√

(Var(M))

=

√√√√(Var(∑N
t=1Mt

N

))

=

√√√√(∑N
t=1 Var(Mt)

N

)

=
√
Var(M1)

=
√
µ(1 − µ) (4.22)

The expression µ(1 − µ) is maximized when µ = 1 − µ =⇒ µ = 0.5. Therefore,

σ 6
√

0.5 ∗ 0.5 = 0.5. Combining this with Equation 4.18, we can get
∣∣X− µ

∣∣ < 0.05 for a

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 128

confidence level of 95%, by satisfying

∣∣X− µ
∣∣ <1.96

(
σ√
n

)
6 1.96

(
0.5√
n

)
< 0.05

that is, 1.96
(

0.5√
n

)
< 0.05

=⇒ n > 385 (4.23)

So, for a sample size of at least 385, the absolute error of the average miss ratio of

the sample from the average miss ratio of the entire trace should be less than 0.05. We

call this restriction on the sample size as the CLT criteria.

Table 4.8 shows shaded entries for experiments that did not meet this criteria. Fig-

ures 4.23, 4.24, and 4.25 show estimation accuracy by the E, B, and CB filters only for

configurations that satisfy the CLT criteria. Experiments for workloads other than zeus

passed this criteria in the sense that the absolute errors in miss ratio were less than 0.05.

Our CLT criteria can fail to contain the maximum error within a specified bound

because some assumptions may not hold in practice. For example, access are not

necessarily independent, so iid assumptions may not hold. Moreover, we are sampling

reuse distances whereas the derivation assumes sampling addresses to check whether

they missed or not. These are not orthogonal aspects, since for LRU and the same number

of sets, there is a one-to-one mapping between the reuse distance and whether or not

the address missed in the cache. However, set locality predictions for a different number

of sets can introduce errors.

We propose doing an additional test once the CLT criteria has been satisfied. This is

to predict the miss ratio for the current cache configuration and compare with the actual

value. If the difference is more than a threshold, additional sampling is needed before a

cache configuration decision based on estimated miss ratios can be made.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 129

-15%

-10%

-5%

0%

5%

10%

15%

20%

-0.03 -0.02 -0.01 0 0.01 0.02 0.03Re
la
tiv

e 
Er

ro
r

Absolute Error

APACHE

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

-20%

-15%

-10%

-5%

0%

5%

-0.07 -0.05 -0.03 -0.01 0.01

Re
la
tiv

e 
Er

ro
r

Absolute Error

JBB

8 Filters

16 Filters

32 Filters

64 Filters

-10%

0%

10%

20%

30%

40%

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

Re
la
tiv

e 
Er

ro
r

Absolute Error

OLTP

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

-10%

0%

10%

20%

30%

40%

50%

60%

-0.05 0 0.05 0.1
Re

la
tiv

e 
Er

ro
r

Absolute Error

ZEUS

32 Filters

64 Filters

Figure 4.23: Online estimation errors using E filters and CLT criteria.

-15%

-10%

-5%

0%

5%

10%

15%

20%

-0.03 -0.02 -0.01 0 0.01 0.02 0.03Re
la
tiv

e 
Er

ro
r

Absolute Error

APACHE

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

-20%

-15%

-10%

-5%

0%

5%

-0.07 -0.05 -0.03 -0.01 0.01

Re
la
tiv

e 
Er

ro
r

Absolute Error

JBB

8 Filters

16 Filters

32 Filters

64 Filters

-20%

-10%

0%

10%

20%

30%

40%

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

Re
la
tiv

e 
Er

ro
r

Absolute Error

OLTP

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

-10%

0%

10%

20%

30%

40%

50%

-0.05 0 0.05 0.1

Re
la
tiv

e 
Er

ro
r

Absolute Error

ZEUS

32 Filters

64 Filters

Figure 4.24: Online estimation errors using B filters and CLT criteria.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 130

-15%

-10%

-5%

0%

5%

10%

15%

20%

-0.03 -0.02 -0.01 0 0.01 0.02 0.03Re
la
tiv

e 
Er

ro
r

Absolute Error

APACHE

1 Filter

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

-20%

-15%

-10%

-5%

0%

5%

-0.07 -0.05 -0.03 -0.01 0.01

Re
la
tiv

e 
Er

ro
r

Absolute Error

JBB

8 Filters

16 Filters

32 Filters

64 Filters

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

Re
la
tiv

e 
Er

ro
r

Absolute Error

OLTP

1 Filter

2 Filters

4 Filters

8 Filters

16 Filters

32 Filters

64 Filters

-10%

0%

10%

20%

30%

40%

50%

60%

70%

-0.05 0 0.05 0.1 0.15
Re

la
tiv

e 
Er

ro
r

Absolute Error

ZEUS

32 Filters

64 Filters

Figure 4.25: Online estimation errors using CB filters and CLT criteria.

4.6.2 Set-Counters, Way-Counters, and Shadow Tags

Set-counters [215] use counters that track the number of accesses per set or a group of

sets. However, since they can only track changes in the number of accesses per set but

not changes in per-set locality, they do not model the behavior shown in Figure 4.4.

Way-counters [215] increment a counter associated with each logical stack position

(ordered by access recency) on every cache hit. The number of hits for associativity A ′ is

the sum of the counter values from 0 to A ′ − 1.

The above assumes A ′ 6 A where A is the associativity of the current/predicting

cache (32MB 32-way in this study). In applications such as dynamic reconfiguration

situations, this is problematic since the cache may need to be sized up, not only sized

down. Shadow tags [172] (or auxiliary tag directories [175]) circumvent this difficulty

by maintaining a copy of the tags that is not deactivated during reconfigurations. This

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 131

always maintains a stack depth to the maximum desired value and facilitates simulating

the effect of hits and misses on a cache with associativity larger than that of the current

cache. Qureshi et al. [174] used dynamic set sampling to reduce storage and power costs

of the shadow copy.

Way-counter values, converted to probabilities, estimate r(S) up to length A. The

estimation is exact for LRU caches. Their operation can be understood by deriving

Equation 4.7 from Equation 4.3 instead of from Equation 4.2. We get

h(S ′)=

A ′−1∑
i=0

ri(S)+

n∑
i=A ′

ri(S)·
A ′−1∑
k=0

iCk·
(
S

S ′

)k
·
(

1−
S

S ′

)(i−k)

Under the assumption S ′ = S, h(S ′) =
∑A ′−1
i=0 ri(S) which is computationally extremely

efficient.

4.6.2.1 Way-counters for PLRU

In PLRU, the MRU line is known with certainty but the rest of the logical ordering is not

precisely known. Kedzierski et al. [127] proposed a heuristic for approximating logical

stack positions for PLRU caches to enable way-counter based prediction . Let waynum

be the way number of the accessed line and pathbits denote the bit-values of the tree

nodes along the path from the root to the leaf with root bit in MSB position. Let the

function reverse(b) reverse bit positions in the binary representation of b. The following

heuristic is used to approximate URD(x,m):

ˆURD(x,m) = A− 1 − (reverse(waynum)⊕ pathbits)

This approach aims to compute r·φ(LRU) with r approximately measured using the above

mechanism. However, apart from the traditional limitations of way-counters (Section

4.6.2.2), it also ignores the fact that φ(PLRU) 6= φ(LRU) for A 6= 2. Interestingly, it fails

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 132

i h j k
(a) 4-way

j e k f b g d i
(b) 8-way

Figure 4.26: PLRU trees demonstrating non-inclusion. The 8-way tree does not include
element h of the 4-way tree.

to accurately estimate the hit ratio even for a 2-way cache where φ(PLRU) = φ(LRU)

when the current configuration that does the estimation has A 6= 2 (see, for example, Figure

4.13 where the current/predicting configuration has A=32). In contrast, our framework

overcomes this by decoupling hit ratio estimation from the organization of the current cache.

4.6.2.2 Way-Counter Limitations

Way-counters (+shadow tags) have the following fundamental limitations:

Fixed number of sets: The relation (S ′ = S) that makes way-counters efficient also

implies the restriction that the number of sets must be fixed. As can be observed from

Table 4.1, miss ratios for only 4 of 24 configurations can be predicted at any time; other

predictions must be preceded by (time-consuming) re-training for the changed S ′.

However, our framework reveals that Equation 4.6.2 may be used to transform way-

counter values when S ′ > S (also see discussion for Case 1 in Section 4.4). With reference

to Table 4.1, maintaining shadow tags corresponding to S = 210 allows conversion of

values for any S ′ 6= S. But, Figure 4.6 shows that to use way-counter values for a cache

with a larger number of sets, the shadow tags and counter values must be maintained

for n(> A) positions.

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 133

Replacement policies with stack inclusion: Way-counters exploit the stack inclusion

property [150] of LRU to predict miss ratios ∀A ′ 6 A. For replacement policies that do

not guarantee stack inclusion (PLRU/RANDOM/NMRU), this is no longer true.

For example, consider the access sequence: a b c d e d f e g h f i j i k simul-

taneously to an 8-way PLRU set and a 4-way PLRU set. Figure 4.26 shows the two sets

and associated PLRU trees after the sequence. The arrows in the figures point to the less

recently used subtree. Initially, both sets were empty and the eviction bits in each tree

were pointing to the “left” subtrees. At the end of the sequence, the two sets together

contain 9 distinct elements (i h j k e f b g d) whereas a policy satisfying inclusion

would have exactly 8 elements. Thus, maintaining information for 8 ways is not sufficient

to accurately predict miss ratios for both a 4-way and an 8-way cache even if S ′ = S.

Tight coupling with replacement policy implementation: Since way-counters are

tightly coupled with the implementation of replacement policies that track stack positions

(e.g. LRU), they are unusable with other policies such as RANDOM that can also

be predicted well using reuse information. Way-counters depend on the replacement

policy mimicking stack operation, so they run into trouble when the stack is absent

(PLRU/RANDOM/NMRU) (see Section 4.6.2.1 for a discussion on PLRU) or reconfigured

(S ′ 6= S).

Shadow Tag overhead: For very large caches, tag area and power are significant.

Loh and Hill [142] propose novel tag management schemes for such caches. Maintaining

additional shadow tags in those systems seem difficult.

4.7 Index Hashing

All the experiments in this chapter use an XOR-based hashed indexing scheme for the

LLC. The hashing scheme is inspired by prior work [55, 56].

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 134

Let x = log2(S). Given a 32-bit byte address b, a “plain” cache interprets the bits of

b as follows:

• [0 : 5] :- block address. (Each cache line is 64 bytes.)

• [6 : 6+(x-3)-1] :- set address

• [6+(x-3) : 6+(x-1)] :- bank address. (Our LLC has 8 banks.)

• [6+x : 31] :- tag

Our “hashed” cache interprets the bits of b as follows:

• [0 : 5] :- block address. (Each cache line is 64 bytes.)

• Let k1 = bits 6 : (6+(x-3)-1) from b. (This is the set address for the “plain cache”.)

Let k2 = bits 20 : 31 from b. Compute k3 = k1⊕ k2. Bits 0 : ((x-3)-1) from k3 form

the set address for the “hashed cache”.

• [6+(x-3) : 6+(x-1)] :- bank address. (Our LLC has 8 banks.)

• [6+x : 31] :- tag

Figure 4.27 shows the savings in miss ratio with hashed indexing compared to

plain indexing, computed as 1 - (miss ratio with hashed indexing/miss ratio with plain

indexing). While there is no guarantee that hashing will always reduce miss ratios, it

reduces it in most cases. Depending on the bit patterns in the addresses, the savings can

be non-trivial, e.g., up to ~27% (absolute difference in miss ratio of 0.036) for apache.

Hashed indexing aims to distribute the total number of unique addresses uniformly

over all the cache sets. This is corroborated by Table 4.10 that shows the coefficient of

variation of the number of unique addresses mapped to each cache set for a 32-way

cache of the given size. The coefficient of variation is significantly lower with hashed

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 135

-5%

0%

5%

10%

15%

20%

25%

30%

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
iss

 R
ati

o 
Re

du
cti

on

APACHE LRU
PLRU
RAND
NMRU

-1%

0%

1%

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MBM
iss

 R
ati

o 
Re

du
cti

on

JBB LRU
PLRU
RAND
NMRU

-5%

0%

5%

10%

15%

20%

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB

M
iss

 R
ati

o 
Re

du
cti

on

OLTP LRU
PLRU
RAND
NMRU

-1%

0%

1%

2%

3%

4%

5%

2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w 2-
w

4-
w

8-
w

16
-w

32
-w

2MB 4MB 8MB 16MB 32MB
M

iss
 R

ati
o 

Re
du

cti
on

ZEUS LRU
PLRU
RAND
NMRU

Figure 4.27: Miss ratio reduction with hashed indexing.

indexing compared to plain indexing. The Table also shows the minimum and maximum

number of unique addresses mapping per set over all sets. As expected, the min–max

range is higher with plain indexing than hashed indexing although the average is the

same for both schemes. However, its impact on miss ratio reduction is less due to two

reasons—(i) the associativity of 32 is much less than the average number of unique

addresses mapping to each set, so conflict misses cannot be eliminated, and (ii) some

addresses will compulsorily miss irrespective of how they map to cache sets.

Since the mapping of unique addresses to cache sets is more uniform with hashed

indexing than with plain indexing, the former is also more suited for applying the

models that we developed in this chapter. (Section 4.4.1 discusses the uniform mapping

assumption made by our models.)

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 136

Workload Size Avg. Plain Hashed
(MB) Min. Max. Coeff. Min. Max. Coeff.

apache

2 3739.28 2513 4900 0.115 3444 4033 0.028
4 1869.64 1238 2481 0.116 1705 2027 0.025
8 934.82 603 1283 0.117 839 1038 0.033
16 467.41 284 658 0.120 406 530 0.042
32 233.71 132 337 0.125 186 278 0.054

jbb

2 5694.68 5526 6259 0.013 5603 5798 0.006
4 2847.34 2741 3143 0.015 2769 2936 0.008
8 1423.67 1358 1578 0.017 1364 1485 0.012
16 711.83 660 798 0.022 668 759 0.018
32 355.92 320 400 0.029 324 392 0.025

oltp

2 2345.03 1375 8037 0.584 2213 2513 0.022
4 1172.52 664 4094 0.585 1066 1303 0.030
8 586.26 311 2048 0.586 504 658 0.041
16 293.13 145 1085 0.589 246 348 0.053
32 146.56 67 622 0.593 103 194 0.075

zeus

2 979.65 589 1311 0.107 901 1083 0.031
4 489.82 289 681 0.110 422 559 0.043
8 244.91 138 365 0.117 196 299 0.060
16 122.46 66 192 0.128 89 155 0.080
32 61.23 29 100 0.147 37 90 0.117

Table 4.10: #Unique. line addresses mapping to each set of a 32-way cache with plain
and hashed indexing. Coeff. (Coefficient of Variation) = Standard Deviation/Average.

4.8 Limitations

Our models currently do not handle the following:

1. Short-term Effects: Our models predicts long-term averages for cache performance.

Reconfiguration policies based on these models will not be able to react to high-

frequency (short-term) variations in cache performance. The main reason for this is

that the reuse sampling framework needs long traces, e.g., over several seconds of

execution time, to get a reasonable number of samples that can be used for miss ratio

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 137

predictions. High-frequency reconfigurations for large caches may anyways not be

feasible due to (i) latency and energy overheads in writing back a potentially large

amount of dirty data to memory when downsizing the cache and (ii) significant

cache warmup delays when upsizing the cache.

2. Prefetching Effects: Our models do not consider variability in the address stream

that may be caused by prefetching. Currently, we assume that all demand and

prefetch accesses to the LLC are included in the address stream presented to the

reuse estimation hardware and that the characteristics of this address stream will

remain unchanged with a reconfigured cache.

3. Cache Hierarchy Effects: Our models also do not consider variability in the address

stream due to inclusion policies in the cache hierarchy. For example, in a strictly

inclusive hierarchy, evictions at the LLC may cause evictions at L1 and/or L2. This

in turn can cause additional misses at those cache levels, resulting in a different

address stream arriving at the reconfigured LLC. This effect would be larger at

smaller LLC sizes than at larger sizes.

4. Other replacement policies: We have not modeled other proposed replacement

policies [117, 119] that improve upon LRU. One way to handle those could be to

model their relative advantage over LRU and use that in conjunction with the LRU

model described in this work to predict cache performance.

4.9 Conclusion

The central theme of this chapter is an online modeling framework, new analytical models,

and efficient hardware support, to predict cache performance at runtime for a range

of replacement policies and cache organizations. Our framework uses the concept of

©2016 Rathijit Sen



Energy-Efficient Management of Reconfigurable Computers 138

reuse/stack distances and transformations of probability vectors with Binomial matrices.

The framework unifies previous analytical models such as Smith’s associativity model,

Cypher’s Poisson model, and hardware techniques such as way-counters. We discussed

limitations of set and way-counters, gave a method to convert way-counter values for

caches with a different number of sets and showed that this requires maintaining shadow

tags for more than the maximum associativity. We also proposed a new predictor

that is decoupled from the cache configuration, uses hardware signatures for compact

representation of reuse intervals and can be used as an alternative to way-counters for

miss ratio predictions.

These models will enable governors to also decide optimal cache configurations,

without needing to profile numerous potential target cache configurations, in addition

to configurations for other knobs. Chapter 5 demonstrates one such governor that uses

these models and meets SLApower by simultaneously reconfiguring core frequency and

size of the last-level cache.

©2016 Rathijit Sen


