
Energy-Efficient Management of Reconfigurable Computers 176

6 related work

6.1 Overview

In this chapter we briefly discuss related work in characterization and governance of

reconfigurable computers. These include:

• Characterizations of energy efficiency (Section 6.2). We describe our work in this

area in Chapter 2.

• Descriptors for system power-performance states (Section 6.3). We propose using

Π-states and the Π-dashboard ([192], Chapter 2).

• Power-performance goals targeted by governors (Section 6.4). We discuss the SLAs

that we target in Chapter 3.

• Analytical models for cache performance (Section 6.5). We develop new models

([191], Chapter 4) that are based on cache reuse distances.

• Examples of system reconfiguration studies and reconfigurable knobs (Section 6.6).

We describe the knobs that we study and their governance mechanisms in Chapters 3

and 5.

Finally, in Section 6.6.1 we propose a new classification system for governance studies that

is based on the behavioral semantics of the reconfiguration capabilities instead of on the

components that are reconfigured. Semantics-based classification enjoys the advantages

of being more compact and perhaps more insightful than the other classifications.

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 177

6.2 Energy Efficiency Characterization

Energy proportionality has been extensively studied [22, 106, 122, 141, 184, 213, 231, 232].

Barroso and Hölzle [22] introduced the concept and argued that energy proportionality

should be one of the main design goals. They compute power efficiency as Utilization
Power .

We use the same definition for efficiency, but relabel utilization as percentage of peak

performance.

David Lo et al. [141] proposed a relaxed model of energy-proportionality, called

Dynamic Energy Proportionality, that ignores idle power. This corresponds to the

Dynamic EP line in Figure 2.1. This linear model has also been studied in other prior

works [223, 232]. Daniel Wong and Murali Annavaram [232] name the region that we

call Sub-Linear as Superlinear. We prefer to use “Sub-” in the sense that operating in

this region lowers efficiency compared to that of Linear (Dynamic EP).

A number of metrics for characterizing energy efficiency exist. Efficiency (Performance
Power)

can be computed at individual loads [22], or as Total Performance
Total Power over all loads [205]. Metrics

based on the dynamic power range compute the ratio between the idle and peak power

consumptions [223]. Other metrics consider the deviation of the power curve from an

ideal curve, e.g., maximum relative power difference with respect to Dynamic EP [223],

area enclosed by the power curve relative to that by Dynamic EP [232] or EP [184, 232],

power used in excess to that by EP [232], etc. These metrics continue to be useful with

the new ideals, EOP and Dynamic EO, replacing the conventional ideals.

Wong and Annavaram [232] introduced the notion of the EP Wall that needs to be

overcome. They proposed leveraging heterogeneity to improve energy efficiency at low

utilization. Our work with prefetch control and cache power budgeting will further

help to overcome the wall. Wong and Annavaram [231] also investigated techniques for

quantifying energy proportionality of a cluster of servers.

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 178

We observe that both Pegasus [141] and Knightshift [232] report data appearing

to show occasional incursions into super-proportional regions. Chung-Hsing Hsu and

Stephen W. Poole [106] observed real machines doing better than the conventional “ideal”

system that assumes linear proportionality. They proposed quadratic proportionality

(Power(u) ∝ u2, where u is the load level) as the new ideal model. However, this makes

ideal system efficiency load-dependent
(

u
Power(u) = 1

u

)
, with higher efficiency at lower

loads than at higher loads.

Our view is that the design ideal, EOP, will have maximum efficiency (ηmax) inde-

pendent of load and will consume power linearly proportional to load, as proposed in

the original EP model, but the constant of proportionality is different: it is defined by

the most efficient configuration instead of by the configuration achieving the maximum

performance. The Pareto frontier (Dynamic EO) is the operational ideal for the system and

its efficiency is load-dependent. The most efficient configurations lie at the intersection

of the EOP and Dynamic EO curves.

Song et al. [204] proposed Iso-energy-efficiency (EE) as the energy ratio between se-

quential and parallel executions of a given application. Our CPUE, LUE and RUE metrics

do not use specific execution modes (e.g., sequential/parallel, homogeneous/heteroge-

neous, speculative/non-speculative, cache-conscious/cache-oblivious, etc.) for reference,

but compare system states to the Pareto frontier (Dynamic EO) or to EOP. The definitions

of our metrics are oblivious to which configurations created the frontier.

The EE model focuses on maintaining equal efficiency as systems and applications

scale up. In contrast, the EP and EOP models focus on maintaining equal efficiency

under changing loads. So our metrics include load, along with the configuration, as a

parameter for quantifying excess energy used. On the other hand, EE does not quantify

its dependence on load.

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 179

Barroso and Hölzle [104] compute datacenter energy consumption as PUE × SPUE ×

energy to electronic components. While PUE [16] accounts for non-compute overheads in

datacenter building infrastructure, SPUE (Server PUE) accounts for overheads, e.g., power

supply losses, to computing energy. Our RUE and LUE metrics do not separate SPUE

losses from computing energy but separate energy-wasting operating configurations and

loads from optimal ones.

6.3 Power-Performance States

ACPI: The Advanced Configuration and Power Interface (ACPI) specification [102] is an

open standard that allows devices (resources) to specify discrete operating states identified

by alphanumeric names. For example, P0, P1, P2,... represent processor performance

states. ACPI enumerations lack quantification of system-wide power-performance impacts

by not accounting for inter-resource interactions or dynamic execution profiles. A static

enumeration of possible states for individual knobs, as in the ACPI [102] approach, is

insufficient because it does not quantify power-performance impacts at the system level

or take into account correlated effects across different knobs (e.g., prefetching). So, it is

difficult to answer questions such as: which system configuration performs the best for a

given power budget? which system configuration has the minimum energy-delay (ED)

or ED2 product?

New P states: Eckert et al. [70] proposed new processor P-states and L2 cache P-

states, but did not provide a framework for optimal system configuration selection.

The new processor states save power by reconfiguring pipeline front-end structures

and mechanisms, e.g., register and fetch buffer sizing, simplified speculation control,

limited checkpoint state, etc. (Sharkey et al. [193] also explored different fetch throttling

mechanisms that differed in local (per-core) vs global chip information and per-core vs

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 180

chip-wide settings.) New states for L2 include drowsy and power-gating states. Dirty

data from power-gated L2 ways is written to the L3 cache.

Π-states: Sen and Wood [192] proposed Π-states that overcome the limitations of

ACPI state enumerations. This is motivated by the observation that individually ordered

lists of operating states for different resources, as in ACPI, do not identify ordering for

combinations of states across resources, required for system-level coordinated manage-

ment. ACPI enumerations lack quantification of system-wide power-performance impacts

by not accounting for inter-resource interactions or dynamic execution profiles.

Each Π-state is a 4-tuple (slowdown, dynamic energy, static power, work) that describes

the effect of using a configuration of a system component. A centralized coordinator

stitches these descriptors together to determine system-wide impacts if multiple compo-

nents are reconfigured. The system computes a Π-dashboard consisting of Pareto-optimal

Π-states that are numbered in decreasing order of performance. The user or operating

system selects a desired Π-state, that corresponds to the optimum value of a metric

(e.g., minimum energy, minimum EDP, etc.), causing the system to transition to the

corresponding configuration.

6.4 Optimization Goals

There exists a variety of flavors of the power/energy management problem. The power-

budgeting problem seeks to partition a maximum power budget among resources to

maximize performance [115]; the energy-minimization problem seeks to find configurations

that minimize energy consumption (equivalently, maximizes performance/watt); the min-

EDP problem seeks to minimize the energy-delay product (EDP) [82] so that configurations

that reduce energy but cause unacceptable delays are not chosen. Snowdon et al. [202]

generalized this metric to include non-integral exponents for power and delay. Our

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 181

two-level governors, described in Chapter 3, can be easily retargeted to optimize system

operations for these metrics.

A number of works have studied power/energy management while meeting tail

latency and response time deadlines [122, 141, 152]. Targeting this SLA may require that

workload-specific semantic knowledge be available to the objective selector. Our current

governors do not have high-level knowledge about the workloads and we do not target

this SLA in this work.

6.5 Cache Models

The goal of these models is to predict cache performance (miss ratio) as a function of

cache organization and workload properties. Here we briefly describe various approaches

to solve this problem.

Power-Law models: Chow [50], Hartstein et al. [100], and others used power laws

based on cache capacity to predict miss ratios. One instance of such a power law predicts

that the miss ratio reduces by
√

2 if the cache capacity doubles, and is popularly known

as the 2-to-
√

2 rule. These models have practically zero overhead but may have large

errors since they do not account for working-set sizes and cache access patterns.

Unique and absolute reuse distance models: Mattson [150] introduced the concept

of predicting miss ratios from (unique) stack distances for caches that use replacement

policies having the inclusion property. This technique has been subsequently used in

many works [29, 55, 56, 65, 103, 140, 191, 196, 200, 242]. Guo and Solihin [91] proposed

circular sequence profiles that are similar to stack distances in reuse intervals.

Stack distance distributions can be determined offline or online. In offline algorithms,

stack distances are computed offline from an address trace. Previous work has exten-

sively studied cache miss rate prediction using offline estimation of LRU stack/reuse

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 182

distances [12, 29, 103, 196, 200], but have limited applicability for online use.

Computation time to determine the distributions can be reduced with efficient algo-

rithms [13] or by approximate analysis [242]. Hill and Smith [103] introduced techniques

for estimating miss ratios for many different cache organizations from a single pass

over an address trace. Shi et al. [196] perform single-pass stack simulation to project

cache performance and to study the impact of data replication for various L2 cache

configurations. Online determination of the stack distance distribution cannot directly

apply techniques from offline methods due to constraints on computational state and

complexity.

Tam et al. [220] use hardware mechanisms for address sampling and post-processing

software for computing stack distance distributions. Since distribution estimation and hit

ratio computation is offline, it cannot react to workload changes in real time.

Online methods have severe restrictions on space and time complexity, but must

achieve good accuracy. Way counters [127, 175, 215] exploit the LRU stack property to

predict miss rates for configurations smaller than the current cache. Shadow tags [172]

(or Auxiliary Tag Directories [175]) extend way counters to predict configurations with

higher associativity than the active cache configuration. Dynamic set-sampling can reduce

overheads [174]. Way counters have been extended to work with PLRU replacement [127]

using a heuristic that estimates the LRU stack depth using the PLRU tree bits. Suh et

al. [214], Qureshi et al. [175] proposed mechanisms for partitioning of shared caches

(L2) among competing processes using way-counters. Suh et al. [215] also proposed

set-counters in LRU order, with each counter tracking accesses to a group of sets. We

discuss a limitation of set counters in Chapter 4, Section 4.6.2. Gordon-Ross et al. [84]

used a hardware TCAM to track stack distances for LRU miss-ratio predictions. However,

area overheads probably limit this approach to small caches. In contrast, our methods

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 183

([191], Chapter 4) have very low area and power overheads, so they can used for large

caches. We predict miss ratios for caches that are configurable in both the number of

sets as well as ways.

StatCache [28] and StatStack [71] used sampling on the cache access stream to estimate

the absolute distance distributions, then use that to estimate miss ratios for fully-associative

LRU or RANDOM caches. Estimating absolute distances is easier than estimating unique

distances. We also use absolute distances for RANDOM cache estimations, but estimate

average absolute distances from unique distances. We use unique distances for LRU caches.

Pan and Jonsson [167] use absolute distance distributions and Markov models to estimate

performance of set-associative caches. Inter-Reference Gaps in IRG models [169, 219] are

basically absolute reuse distances.

Binomial and Poisson models: Smith [200] and Hill [103] introduced the technique

of using Binomial distributions along with stack distances to model set-associative LRU

caches. We use the same approach in our work ([191], Chapter 4) but can handle

some implementable, non-LRU, policies as well. Agarwal et al. [3] also use Binomial

models, in conjunction with other models, e.g., Markov models, for cache performance

estimations. Their models also account for block sizes, degree of multiprogramming, and

task switching intervals. Stone and Thiebaut [211], Falsafi and Wood [75] use binomial

probability models to model cache reload transients due to context switches based on

the footprints of the competing programs and cache size. The Binomial model assumes

independent mapping of addresses to cache sets. Pan and Jonsson [167] improved

prediction accuracy by considering the actual mapping achieved.

Cypher [55, 56] proposed using Poisson distributions to estimate cache miss ratios

from estimated stack distances. We use a similar approximation in Chapter 4 to reduce

the computational costs associated with using the Binomial model. Cypher also used

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 184

filter fraction metrics that reduce the effective distance to be tracked. Computing filter

fractions can be expensive.

Markov models: These models consider the evolution of cache states with transition

probabilities between states [90, 91, 167] but can be computationally expensive. Guo

and Solihin [91] proposed Replacement Probability Functions (RPFs) that describe the

probability that a line at a certain stack position will be replaced given that a miss

happens to that cache set. (Our cache hit function, φ, describes the probability that a line

at a certain stack position will hit given that an access happens to that line.) Guo and

Solihin’s Markov model tracks the evolution of states described by reuse intervals and

stack positions. Grund and Reineke [90] proposed replacement policy tables that improve

upon Guo and Solihin’s approach by decoupling policy characterization from workload

properties. Agarwal et al. [3] used Markov models to characterize spatial locality. Others

have used Markov models to analyze the behavior of context switch misses [138].

Closed-form models: These models express cache performance in terms of easily-

computable, non-recursive expressions having a small number of terms. The power-law

models are examples of closed-form models (parametrized with an initial measurement).

Cache Calculus [24] developed a system of differential equations, solving which produces

closed-form expressions of (fully-associative) cache performance in terms of cache size

and high-level data structures, e.g., array sizes in array access workloads. One challenge

is to be able to formulate the cache access stream in terms of high-level data structures.

Worst-case models: Reineke and Grund [180] prove relations on best and worst-case

bounds of cache performance for several replacement policies. Our work, in contrast,

studies average case behavior.

A number of prior works [14, 89, 179] have explored applying static analysis techniques,

such as abstract interpretation, to determine bounds on cache performance for real-time

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 185

systems. Lv et al. [144] provide a survey of the area.

Xiang et al. [235] developed a higher-order theory of locality (HOTL) that interrelates

a number of locality metrics—reuse distance, fill time, footprint, miss ratio, and time

between cache misses.

6.6 Reconfiguration Knobs

In this section we briefly discuss some microarchitectural and runtime knobs for power-

performance management where a dynamic choice can be made on whether or not to

execute using a certain system/component configuration or on the extent/degree of such

reconfiguration. Our goal is to present different kinds of reconfigurable architectures/ca-

pabilities, not necessarily to catalog all prior studies within each class.

Core DVFS: Dynamic voltage and frequency scaling (DVFS) and dynamic frequency

scaling (DFS) for cores are well-known techniques [86, 110, 111, 229].

Isci et al. [115] introduced the concept of maximizing performance for a given power

budget, using a global power manager and per-core monitors to set per-core DVFS

modes. Their MaxBIPS policy predicts the power and performance for each possible

configuration. This can limit scalability to larger number of cores. A global manager

selects the configuration predicted to have the highest throughput within the power

budget.

Ma et al. [145] explored the problem of selecting different per-core DVFS levels

for systems that have the capability. Their mechanism first uses feedback control to

determines an aggregate frequency that does not exceed the specified power budget.

Next, this is partitioned among groups of cores where all cores within the same group

run threads of the same application. Finally, cores within the group are allocated their

frequency settings based on thread criticality.

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 186

Koala [202] developed a power-performance management framework in the OS. It uses

DVFS to manage tradeoffs between performance and energy consumption. Koala uses

performance counters to characterize an offline model to predict energy for all frequency

settings. It then uses this model online to select the best setting. Koala proposed a

new metric called generalized energy-delay (P1−αT 1+α, α ∈ [−1, 1]) that extends the ED

metric by allowing non-integral exponents for both power (P) and delay (T).

Spiliopoulos et al. [207] proposed green governors that improve energy efficiency

by controlling core frequency and voltage settings. The governors use performance

counters (to obtain IPC and stall counts) and measurements of idle static power to

predict the performance and energy consumption for different frequency settings. The

governors choose the best frequency that optimizes a given metric, e.g., minimum

EDP, minimum ED2P, minimum EDP with a performance constraints. Our frequency

governors, described in Chapter 3, use a profiling-based approach that interpolates

power and performance from a few measurements. Our prefetching governor profiles

prefetching modes and selects the best-performing mode. Our governor for SPECpower

does not predict power/energy for any configuration. Its goal is to reduce the number

of idle cycles while maintaining the current performance. It only profiles for prefetch

modes but not frequencies. A profiling-based approach removes the need for building

accurate performance and power models from performance counters, but is only possible

for knobs that allow fast reconfiguration, e.g., processor frequency or prefetching. Our

governor for cache sizing, described in Chapter 5, builds a performance and power model

from performance counters.

Rubik [125] uses per-core DVFS to reduce power while still meeting latency constraints

of work requests. It maintains two tables that describe distributions of per-request core

and memory completion times in cycles. These tables are updated periodically (every

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 187

100ms). Every time a request completes or a new request is admitted, the tables are

consulted and a frequency is calculated that meets completion time constraints for all

current requests. Rubik uses a power model based on performance counters to guide

its decisions. A proportional-integral (PI) controller runs over a longer interval (1 sec)

to compare predicted with measured latencies and calculate adjustments. Rubik also

studies consolidating batch and latency-critical applications together to reduce total idle

power of servers.

Prekas at al. [171] propose mechanisms that control per-core DVFS and the number of

logical cores (physical cores and hyperthreads) allocated to applications running on the

IX [26] operating system. Their controller keeps track of network queueing delays to help

in resource management and can migrate applications and network processing between

cores. They propose two schemes, one for reducing computing energy and the other

for reducing idle power through consolidation. In both schemes, latency constraints are

maintained.

Rangan et al. [177] proposed maintaining different homogeneous cores at different

voltage/frequency levels. Depending on its runtime characteristics, a workload can

be rapidly migrated from one core to another so that it can be executed at a different

frequency. This scheme aims to reduce DVFS transition times from microseconds, with

voltage regulators, to nanoseconds by inter-core migration.

A number of prior works [141, 182, 213] have explored the use of RAPL [113] in

specifying power caps. Rountree et al. [182] used RAPL to reduce power for HPC (High

Performance Computing) applications and observed that power limits can transform

power variations across machines into performance variations. Lo et al. [141] used RAPL

to improve energy efficiency of OLDI (online data intensive) workloads. As we have

discussed in Section 3.9, current RAPL implementations do not deal with reconfiguration

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 188

knobs such as cache prefetching.

Memory DFS/DVFS: Deng et al. (MemScale) [62] and David et al. [59] proposed

using DFS/DVFS for main memory.

Core DVFS and memory DVFS: Subramaniam and Feng [213] explored using RAPL

for both cores and DRAM to improve energy efficiency of enterprise workloads and

found that limiting power for the core domain provides the most benefits compared to

other domains.

CoScale [61] demonstrated coordinated management of core DVFS and memory DVFS.

It uses a gradient-descent heuristic that is related to the greedy solution strategy for the

integer knapsack problem. The approach in CoScale is to arrange operating states in

decreasing order of marginal utility (∆power/∆performance) and greedily pick states

till a maximum slack is not violated. Although theoretically the greedy strategy can have

up to a 2-approximation factor [58], CoScale demonstrates a tighter approximation in

practice. Their default epoch length is 5ms.

Number of cores/threads and core DVFS: Li and Martinez [136] explored simulta-

neous management of the number of cores and DVFS levels for the chip (all cores at

the same level). Their algorithm performs a binary search on the number of processors,

starting from the middle number. For each number, it tries lowering the DVFS level till

the performance target is just missed. This process is repeated on the upper or lower

halves of the search space on the number of processors till no improvement is found.

Heuristics are used to speed up the search for the appropriate DVFS level for each setting

of the number of cores. Overall, the complexity is O(αlog(N)) for N cores and α << L

for L DVFS levels.

Vega et al. [224] explored coordinated management of core DVFS and the number of

enabled cores. This is driven by heuristics based on core utilizations. The utilization is

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 189

averaged over a number of intervals, with the best choice of history length being 3. They

consider a time interval of 1 second for reconfiguration decisions.

Curtis-Maury et al. [54] studied varying the number of threads, mapping of threads

to cores, and core DVFS levels. This involves sampling the execution with a few config-

urations before a reconfiguration decision is made. The applications are instrumented

around OpenMP parallel regions. Varuna [208] also changes parallelism dynamically,

but does not need to make changes to application source code.

Cache size: Albonesi [10] introduced mechanisms for disabling cache ways to save

energy. Dropsho et al. [67] proposed the accounting cache that uses way counters

to evaluate configurations with different associativities. Yang et al. proposed cache

reconfiguration in the number of sets [238] and in both sets and ways [237]. Kaxiras et

al. [126] introduced cache decay that exploits generational behavior of cache line usage

to reduce cache leakage with (area-expensive) power-gating control per line and a (small)

performance hit. Instead of fully disabling cache lines and losing state, Flautner at al. [77]

introduced the drowsy cache where cache lines can be put into a low-power state-saving

mode for saving energy. Our work (Chapters 4 and 5, [190]) studies reconfiguring the

cache for both associativity and the number of sets, but not enabling/disabling at the

granularity of cache lines, and considers power gating the disabled regions for maximum

power savings.

Intel processors/microarchitectures such as the Core Duo [163], and Ivy Bridge [181]

dynamically size caches based on activity. In contrast, reuse-based predictors track

locality and hence select a smaller cache for highly cache-active but cache-insensitive

workloads whereas activity-based models would select a large cache. Some recent Intel

processors allow core-wise monitoring and partitioning of the LLC capacity [53].

Yang et al. [237, 238] compare the number of misses to a bound/threshold to drive

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 190

reconfiguration decisions. Keramidas et al. [128] compared the number of misses and

conflict misses to bounds/thresholds to decide reconfigurability in the number of sets

and ways of LRU caches. Sundararajan et al. [216] considers both the LRU stack distance

and number of dead sets to determine the configuration for the number of sets and

associativity.

Gordon-Ross et al. [84] proposed a one-shot cache reconfiguration scheme. It uses a

hardware TCAM to determine stack distances of addresses and tracks stack hit counts

for various cache sizes, assuming stack inclusion. It (time-)samples the address stream to

reduce the average processing time. The hardware TCAM results in a 12% area overhead

for the ARM920T that has 16KB instruction and data caches. As we have discussed

in Chapter 4, tracking stack distances for large multi-megabyte caches is prohibitively

expensive.

Albericio et al. [8] proposed the reuse cache, an LLC organization where the data

array is sized depending on the amount of data that is reused. The tag array is decoupled

from the data array. On a miss in the tag array, data is fetched from memory but not

placed in the LLC data array. On a hit to the tag array for a line that is not present in

the data array (indicates reuse), that line is fetched from memory and placed in the data

array. This scheme requires modifications to the coherence protocol, forward pointers in

the tag array, reverse pointers in the data array, and uses a different replacement policy

for the tag and data arrays. Traditional cache resizing, in the form that we have studied,

does not need these changes but incurs overheads during resizing due to subsequent

warmup.

Cache compression: Compression helps to store more data in a cache of a given size

compared to storing in uncompressed form. Compression may reduce misses but makes

hits more costly due to the decompression latency. Alameldeen and Wood [5] proposed

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 191

an adaptive compression scheme that uses stack distance information to decide whether

to allocate cache lines in compressed or uncompressed form. Further benefits can be

derived by combining compression with adaptive prefetching [7].

Cache size and compression: Hajimiri et al. [97] studied cache size reconfiguration

along with code compression.

Cache partitions: The fraction of shared cache space available to each core or

application can also be dynamically controlled. Cache partitioning [49, 178] can be

application-utility-aware [175, 214], LLC-bank-aware [124], MLP-aware [159], spatial-

locality-aware [93], cooperative [217] etc. The partitions may be coarse-grained [49, 178,

217] or fine-grained [146, 186].

Cache hierarchy: Albonesi [9] studied simultaneous reconfiguration of L1 and L2

cache sizes in an exclusive hierarchy. Balasubramonian et al. [20] studied reconfigurable

L1, L2, and TLBs for energy-efficient performance. A single large cache organization

serves as a configurable 2-level non-inclusive hierarchy. The optimal cache configuration

is selected by exploration—successive cache sizes are chosen till the miss rate is sufficiently

small. The reconfiguration intervals for the cache and TLB are 100K cycles and 1M cycles

respectively.

Cache content replication: Chang and Sohi [45], Beckmann et al. [23] explored

replicating cache blocks from a remote LLC bank in the private or local LLC bank. The

advantage is that hits to local banks are faster than those to remote banks. However,

replicating blocks reduces effective capacity of the cache that in turn can potentially

increase the miss rate. The degree of replication can be varied based on cost-benefit

tradeoffs.

Cache insertion/promotion/eviction: Caches are of finite size and hence must even-

tually evict some existing data to make room for new data when needed. A number

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 192

of works have proposed new management policies that decide whether or not to insert

new data [79, 94, 165], where (in terms of recency) to insert new data [79, 118, 119,

120, 123, 173, 234], and how to promote [119, 120, 131, 135, 236] or protect [69] or

evict [169, 176, 185, 219] data.

Access granularity:Veidenbaum et al. [225], Yoon et al. [239] proposed dynamically

reconfiguring the width/granularity for cache and memory accesses.

Cache size and core DVFS: Meng et al. [155] explore cache resizing (in the number

of ways) and changing core DVFS levels. They use way counters and analytic power-

performance models for power management. In contrast to MaxBIPS, they use a greedy

search strategy to decide the final configuration.

Their work has several limitations as follows. First, they assume true LRU replacement,

which is impractical to implement for highly associative last-level caches. This is critical,

because practical implementations such as PLRU do not have the stack property and thus

a single tag array cannot both provide replacement decisions and miss-rate predictions for

larger sized caches. While Meng et al.’s work could probably be extended to use shadow

tags and dynamic set sampling [172, 175], the extra area and power would far exceed

that of our reuse sampling approach. Second, their study evaluates 600µsecs observation

intervals, which are far to short to amortize the reconfiguration overhead of large, e.g.,

32MB LLCs. Finally, their approach only handles limited cache reconfigurability (number

of ways, not sets), does not consider thermal effects on leakage power, and optimizes for

the lowest-power configuration, not the highest-performance configuration.

Cache size, memory bandwidth, and core DVFS: Bitirgen et al. [31] used a machine

learning approach for resource management. They construct a per-application artificial

neural network (ANN) that takes as input the power budget, bandwidth, cache size, and

various performance counter values to predict performance as output. These ANNs are

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 193

queried by a global resource manager that uses a stochastic hill-climbing algorithm to

select a configuration predicted to achieve the highest performance.

Chip-wide DVFS and thread packing: Cochran et al. [51] explored simultaneous

management of DVFS levels and packing of threads on to a subset of cores. They use

an offline characterization process to analyze performance counters and power caps

to create a lookup table. This is queried at run time for all potential configurations

to determine the optimal setting. The online lookup uses performance counter values

including information from thermal sensors, but does not require power information.

The control activation period is in the order of seconds.

Core organization: Reconfiguring various components in both the frontend and

backend of cores has been well studied. Albonesi [9] proposed Complexity-Adaptive

Processors (CAP) with reconfigurable resources (instruction queue size, L1 and L2

cache sizes). Manne et al. [147] proposed mechanisms that reduce energy consumption

by adapting control speculation to prevent potentially wrong-path instructions from

being dispatched. Ghiasi et al. [80] proposed switching between in-order and out-

of-order executions. Bahar and Manne [18] explored changing the issue width and

the number of enabled functional units. Buyuktosunoglu et al. [39, 40] studied issue

queue reconfiguration and fetch gating. Forwardflow [81] dynamically tracks dataflow

dependencies in the instruction stream and uses a dataflow queue whose capacity can be

dynamically reconfigured, thereby changing the instruction window size. The dataflow

queue is organized into banks that can be independently activated/deactivated by system

software.

Core throttling and memory throttling: Felter et al. [76] demonstrated performance

benefits through power-shifting between the core and memory within a power budget.

They achieve this by throttling core and memory operations depending on workload

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 194

characteristics. Core throttling is done at the instruction dispatch unit. Memory throttling

is done by limiting the number of memory request per unit time (allowed bandwidth).

Their throttling mechanism affects shifting of active power. They studied interval sizes

in the range of 5µ sec to 1ms.

Core organization and number of cores: Ipek et al. proposed core fusion [114]

where resources of independent cores are dynamically grouped/fused together to form

a larger core resulting in asymmetric CMPs. WiDGET [228] dynamically changes the

number of instruction engines and the number of execution units allocated to each engine.

Instructions are steered from the instruction engines to the execution units dynamically

allocated to it.

Cache size and core organization: Albonesi et al. [11] explored adaption of the L1

cache sizes and core resources. Dropsho et al. [68] also studied dynamic reconfiguration of

these resources in GALS (Globally Asynchronous, Locally Synchronous) microprocessors.

The L1I, L1D, and L2 caches have reconfigurable associativities. The branch predictor has

a configurable history length. The L1D and L2 caches are sized together. Similarly, the

L1I cache and branch predictor are sized together. The sizes of the integer and floating

point issue queues are configured depending on the ILP that is available.

Core organization and DVFS: Sasanka et al. [189] explored changing the DVFS level

along with core instruction window size, issue width, and the number of functional units.

This study aims to reduce energy consumption for multimedia applications while still

meeting deadlines. The DVFS decision seeks to eliminate idle time between processing

different frames whereas reconfiguring the other resources aims to reduce processing

energy within each frame without affecting execution time.

Core organization and memory idle states: Li et al. [137] studied reconfiguration of

both core resources (instruction window size, issue width, number of functional units)

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 195

and memory idle states (standby, nap, powerdown). Each application phase is profiled,

with the number of profiling intervals per phase being equal to the number of processor

configurations. This overhead is amortized over multiple occurrences of each phase for

long running applications. The decision algorithm aims to optimally distribute the target

slack between the core and memory.

Dynamic task reassignment: Chakraborty et al. [43, 44] proposed computation

spreading in over-provisioned multicore systems (OPMS). This uses a light-weight virtual

machine monitor (VMM) to assign similar computation fragments (parts of software

threads) to cores. For example, OS code is executed on a different core than user code.

The idea is to improve energy efficiency through dynamic specialization (e.g., predictive

structures such as branch predictors, etc., can work better if similar code is executed on

the same core) as well as manage peak power consumption by limiting the number of

simultaneously active cores in OPMS.

Prefetching: Data prefetching is a well-known speculative technique [17, 41, 74, 209]

for improving performance. However, inaccurate prefetching will use more energy either

due to unneeded or inadequate fetches or due to lack of timeliness. Both the number

of blocks prefetched [57] as well as the lookahead distance [85] may be dynamically

configured. Gornish and Veidenbaum [85] combined hardware prefetching with software

(compiler-directed) prefetching. Guo et al. [92] developed a power-aware prefetch engine

that uses analysis information from the compiler to decide on the prefetch mechanism.

Prefetching, DVFS: In Chapter 3, we demonstrate governors that improve energy

efficiency by simultaneously controlling DVFS levels and enabling/disabling of L2 cache

prefetching.

Prefetching, DVFS, and number of cores/threads: Kamruzzaman et al. [121] pro-

posed using helper threads to prefetch data needed by the main computation. A number

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 196

of helper threads can be used, each of which can prefetch a different chunk of data.

Once the data is fetched, the compute thread is migrated to that core whereas the helper

thread is shifted elsewhere. The helper threads can run at lower frequencies whereas the

compute thread can run at higher frequencies.

Frequency control and sleep states: SleepScale [139] investigated coordinated man-

agement of frequency levels and sleep state selection. Running at higher frequencies

consumes more power, but finishes tasks earlier leaving more time to enter and remain

in deep sleep states. The best policy is determined by factors such as job size and desired

average response time. They logically partition the execution into epochs of 5mins. Once

every epoch, the best policy is determined based on the estimated interarrival times,

response times, and utilization. Considering each policy requires ~6ms for a total of < 1s

to consider all policies.

Networks: Abts et al. [2] proposed making datacenter networks consume energy

in proportion to their traffic by using a flattened butterfly topology and dynamically

changing the frequency of the communication links. Changing the link frequency

changes both its data rate and its power consumption. RAFT [157] dynamically varies

the frequencies and number of virtual channels in routers. PowerNetS [241] explores

joint optimization of workload consolidation and network traffic routing to minimize

total power.

Kim et al. [130] use spatial speculation to reduce the number of flits/bit-flips trans-

mitted thereby reducing interconnect energy. On a miss, L1 caches fetch block-sized data

from the next level. However, not all words within the block may be used in future and

hence need not be fetched. It uses a predictor to determine which parts of the requested

block is likely to be reduced. A misprediction causing a required word not to be fetched

would cause it to be fetched when the word is requested resulting in latency overheads.

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 197

Accelerators: Being specialized, accelerators (including GPGPUs) are more energy-

efficient than general purpose processing elements. The DySER [87] accelerator uses

specialized circuit switching between computation units to eliminate instruction execution

overheads. Venkatesh et al. [226] proposed specialized processors called conservation

cores (c-cores) to reduce energy and energy-delay of hot code paths. The CPU and

c-cores communicate through scan chains. KnightShift [232] uses a heterogeneous

server architecture that adds a low power compute node along with the primary server.

DreamWeaver [154] proposed using a co-processor called the Dream processor, that

monitors and suspends incoming work requests along with a Weave scheduler that aligns

and increases idle times.

6.6.1 Classification

We will now present a new classification system for power-performance management

studies by the semantics of reconfiguration capabilities. Our classification system has

five main semantic types, each of which have several subtypes with a total of twelve

subtypes.

1. Computation:

• Organization: Number and organization of structures, such as functional units,

instruction windows, issue queues, pipelines, etc. that make up or control

how processing elements (CPU cores, network routers, etc.) do computations.

Examples: [9] [18] [40] [39] [81] [114] [228] [11] [68] [189] [137] [157].

• Speed: Time to process and transform information. Core DVFS and RAPL

studies are included in this class. We also include network router DVFS in

this class, but place memory controller DVFS in the Storage class (see below).

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 198

Examples: [229] [86] [115] [145] [202] [207] [125] [171] [177] [182] [213] [141]

[61] [192] [136] [224] [54] [190] §5 [155] [31] [51] [189] §3 [121] [139] [157].

• Concurrency: Number of processing elements or threads to do a computa-

tion. This includes core parking, hyperthreading, task creation/stealing, and

workload consolidation studies.

Examples: [171] [136] [224] [54] [208] [51] [114] [228] [44] [43] [241].

2. Communication:

• Latency: Time to transmit a bit of information over an interconnect. This

includes frequency scaling of memory and network links.

Examples: [213] [62] [59] [61] [2].

• Bandwidth: Number of bits of information that are moved per unit time. This

includes fetch bandwidth and memory bandwidth throttling.

Examples: [213] [62] [59] [61] [192] [31] [76] [2].

3. Storage:

• Size: Number of storage cells available to applications. Not all cells may be

available—they can be shut down or allocated to other applications. This

includes cache power-gating and partitioning studies.

Examples: [192] [10] [67] [238] [237] [126] [77] [190] §5 [128] [216] [84] [8] [97]

[49] [178] [214] [175] [124] [159] [93] [217] [186] [146] [9] [20] [155] [31] [11] [68].

• Content: Information stored in allocated storage cells. This includes cache

replication, replacement, bypass, and compression studies.

Examples: [5] [97] [45] [23] [79] [94] [165] [123] [173] [118] [119] [120] [131]

[236] [69] [176] [185] [135] [234] [169] [219] [7].

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 199

• Latency: Time to read or modify storage cells. This include memory DVF-

S/RAPL studies.

Examples: [213] [62] [59] [61] [192].

4. Scheduling:

• Spatial: Particular processing elements on which to do the computation. This

includes scheduling work on specific cores or accelerators.

Examples: [177] [54] [80] [44] [43] [121] [87] [226] [232].

• Temporal: When to do the computation. It may be scheduled later for coordi-

nated management with sleep states.

Examples: [137] [154] [139].

5. Speculation:

• Control: This includes adapting structures that affect branch prediction and

dealing with the predicted results.

Examples: [147] [68].

• Data: Amount of extra/less data to access than requested. This includes

prefetching and access granularity studies.

Examples: [225] [239] [17] [57] [85] [92] §3 [121] [130] [7].

Tables 6.1–6.3 summarize how the studies can be classified according to this system.

The Count column in the tables show tuples of the form (n1,n2) where n1 is the

number of types and n2 is the number of subtypes considered by the corresponding

study. In these examples, at most three of the five possible types and at most four of

twelve possible subtypes have been considered in any single study. This suggests the

existence of potentially unexplored combinations. For example, simultaneous adaptivity

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 200

of communication and scheduling (such as, how can Varuna [208] coordinate with

interconnect frequency scaling), communication and speculation (such as, how can

MemScale[62] coordinate with adaptive prefetching), or storage and scheduling (such

as, how can ICP [121] coordinate with cache resizing) does not seem to have been well

explored.

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 201

Refs. Computation Communication Storage Scheduling Speculation CountOrg. Speed Conc. Latency BW Size Content Latency Spat. Temp. Control Data
[18] X 1,1
[39] X 1,1
[40] X 1,1
[81] X 1,1
[141] X 1,1
[115] X 1,1
[86] X 1,1
[229] X 1,1
[125] X 1,1
[145] X 1,1
[182] X 1,1
[202] X 1,1
[207] X 1,1
[189] X X 1,2
[157] X X 1,2
[241] X 1,1
[208] X 1,1
[228] X X 1,2
[114] X X 1,2
[171] X X 1,2
[136] X X 1,2
[224] X X 1,2
[51] X X 1,2
[76] X 1,1
[2] X X 1,2
[67] X 1,1
[10] X 1,1
[8] X 1,1

[178] X 1,1
[216] X 1,1
[159] X 1,1
[217] X 1,1
[20] X 1,1
[84] X 1,1
[77] X 1,1

Table 6.1: Classification, by semantic types, of system reconfiguration capabilities.

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 202

Refs. Computation Communication Storage Scheduling Speculation CountOrg. Speed Conc. Latency BW Size Content Latency Spat. Temp. Control Data
[128] X 1,1
[93] X 1,1
[126] X 1,1
[238] X 1,1
[186] X 1,1
[237] X 1,1
[214] X 1,1
[124] X 1,1
[49] X 1,1
[175] X 1,1
[146] X 1,1
[9] X X 2,2
[11] X X 2,2
[190] X X 2,2

§5 X X 2,2
[155] X X 2,2
[31] X X X 3,3
[5] X 1,1

[169] X 1,1
[120] X 1,1
[236] X 1,1
[135] X 1,1
[79] X 1,1
[165] X 1,1
[219] X 1,1
[69] X 1,1
[173] X 1,1
[185] X 1,1
[131] X 1,1
[234] X 1,1
[119] X 1,1
[176] X 1,1
[94] X 1,1
[118] X 1,1
[45] X 1,1

Table 6.2: Classification (cont.), by semantic types, of system reconfiguration capabilities.

©2016 Rathijit Sen

Energy-Efficient Management of Reconfigurable Computers 203

Refs. Computation Communication Storage Scheduling Speculation CountOrg. Speed Conc. Latency BW Size Content Latency Spat. Temp. Control Data
[123] X 1,1
[23] X 1,1
[97] X X 1,2
[62] X X X 2,3
[59] X X X 2,3
[213] X X X X 3,4
[61] X X X X 3,4
[192] X X X X 3,4
[80] X 1,1
[232] X 1,1
[87] X 1,1
[226] X 1,1
[177] X X 2,2
[43] X X 2,2
[44] X X 2,2
[54] X X X 2,3
[154] X 1,1
[137] X X 2,2
[139] X X 2,2
[147] X 1,1
[68] X X X 3,3
[85] X 1,1
[225] X 1,1
[239] X 1,1
[57] X 1,1
[92] X 1,1
[130] X 1,1
[17] X 1,1
§3 X X 2,2
[7] X X 2,2

[121] X X X 3,3

Table 6.3: Classification (cont.), by semantic types, of system reconfiguration capabilities.

©2016 Rathijit Sen

