Linux File Streaming

Ahmed Ayad Nermeen Bassiouny
ahmed@cs.wisc.edu nermeen(@cs.wisc.edu

Abstract

In this paper, we are investigating a claim about the performance of the Linux ext2 file
system under streaming I/O. A look on the ext2 does reads and writes is presented
together with an extensive testing of the file system performance under streaming reads
and writes. The tests aim at comparing the performance of ext2 with that of the raw
performance of the underlying storage device.

The results of the benchmarks show no evidence of a problem in ext2 performance. Ext2
is able to exploit the full bandwidth of the underlying storage device in both reading and
writing at its worst case; that is, without the help of its buffering techniques.

1. Introduction

Linux is a Unix-like operating system suitable for the PC environment. Linux has gained
a worldwide acceptance since its first release in the early 90s. The fact that Linux is both
free and open source was the major contribution towards its wide use and acceptance.
This fact also makes Linux an excellent environment for research and experimenting.
After all, this is how it was developed in the first place.

With the increasing use of multimedia files, file system support to streaming I/O is
crucial to the performance of multimedia applications. The performance gain is generally
achieved through clever caching techniques using file system buffers. Those techniques,
however, are of limited effect if the file system is unable to fully utilize the full
bandwidth of the underlying storage device. The purpose of this paper is to investigate
the performance of the Linux ext2 file system under streaming I/O. One of the main goals
is to verify a claim about the ext2 performance. The claim is that there exists a
performance gap between the ext2 performance and the raw throughput of the underlying
storage device. If the problem is verified, we should proceed with more investigation of
the source of the problem and propose an appropriate solution.

To verify the problem, we designed a series of benchmarks to compare the ext2
performance with the raw device performance. The outcome of the benchmarks did not
confirm the existence of a problem in the file system performance. Hence, this paper is
solely dedicated to the description of the benchmarks and the discussion of the resulting
numbers. The benchmarks were done on two different systems having different types of
storage devices. So a side benefit of this paper is to serve as a benchmarking report on the
performance of these two types of storage devices and the performance of ext2 on top of
them.

The rest of the paper is organized as follows: section 2 looks at how the ext2 file system
performs its read and write optimizations. Section 3 describes the setting on which the
different benchmarks were run plus a detailed description of each experiment and its
results. Finally, section 4 concludes the paper with the major findings.

mailto:ahmed@cs.wisc.edu

2. The Linux Ext2 File System

The Ext2 provides standard Unix-like file system functionalities. It has the same notions
of regular files, directories, special files and symbolic links. A detailed description of the
design and features of ext2 can be found in [1]. In the next two subsections we will
explain briefly the read and write process for the ext2 file systems and the optimizations
done to improve their performance.

2.1. Ext2 Reads

The Ext2 file system uses the function generic file read (kernel function) to
perform read operations. This function tries to determine if the file is being read
sequentially or randomly. If the file is accessed sequentially it tries to read ahead the
next pages in the file. It is important to understand the read ahead mechanism before
explaining the read operation. There are two global constants MIN. READAHEAD (3
pages) and MAX READAHEAD (33 pages). When a read operation is issued on a
certain file, a number of pages in a previously set read ahead window — which starts
initially at the MIN READAHEAD value - are read. For the next read, if the read falls in
the previously read window and in the second half of it, the read ahead limit is doubled
but it is not allowed to go above MAX READAHEAD. If the second read is in the read
ahead window, but didn’t cross the half window boundary, the read ahead window is kept
at its size. Finally, if the read is outside the previously read window, it is deduced that the
file is being read randomly and the read ahead is disabled.

That said, we can briefly explain the generic file read:

e If the current read is in the set read ahead window, then the file is accesses
sequentially. If it is not then the file is accessed randomly and the read ahead is
disabled.

e [Itcalls find page to see if page exists in cache.

e If page is not found, a page is allocated by calling get free page. The page
is added to the cache.

e The required data is reads from disk into the allocated page.

e Whether the page was already in cache or was brought from disk to cache, the
contents of that page are copied from the page to the buffer.

The performance of this read operation will be studied in detail.

2.2. Ext2 Writes

The write operation is implemented explicitly in the ext2 file system. Some optimizations
were done in order to improve the write performance.

e Related inodes and data are clustered together in block groups. This reduces head
seeks made when reading an inode and its data blocks.

e When writing data to a file, Ext2fs pre-allocates up to 8 adjacent blocks when
allocating a new block. If the pre-allocated bock is not used it is returned back to
the pool of free blocks. This pre-allocation achieves good write performances
under heavy load. It also allows contiguous blocks to be allocated to files, which
could speed up sequential file reads.

The write operation of the Ext2 file system proceeds as follows:

e The arguments are checked for errors in the write request. This includes the check
for write flag, max size of ext2 files.

e If the file is opened with the Sync flag, the metadata of the file is also set to be
synchronous.

e [t performs a write loop as long as there is remaining data to be written.

e It allocates a buffer to write the data. It writes the data in the buffer and marks the
buffer as dirty by calling the function mark buffer dirty.

e Once all the data is written the file inode and descriptor are updated.

3. Benchmarks Description

3.1. Environment Settings and parameters

The benchmarks were done on two different environments. The first one is a PC with a
Pentium III 667MHz processor with 128 MB of main memory and an 8 GB IDE hard
drive. The second is the Wisconsin DB cluster of workstations each with a dual Xeon
550MHz processor and a GB of main memory and an 8GB IBM SCSI hard drive.
Henceforth, the first setting will be referred to as the IDE setting and the second will be
referred to as the SCSI setting.

Some general notes on the parameters of the benchmarks:

1- The measured value in all the experiments is the data rate in mega bytes per
second (MB/s). Data rate is measured by simply measuring the wall clock time of
the operation and dividing it by the size of the data read or written.

2- File sizes in almost all the tests start at 50 MB to 1GB in SCSI and 50MB to
250MB in IDE, with a step size of 50 MB. The reason for the different end sizes
in both settings is due to the fact that the SCSI machine had a 1GB of memory so
we had to go up to 1GB of file size to preclude the effect of the file system buffer
cache. On the other hand a 250MB file can easily overwhelm the 128MB memory
of the IDE machine.

3.2. Read Benchmarks
3.2.1. Sequential read

This benchmark compares the performance of the Ext2 file system to the performance of
the read from the raw device. A sequential read of incremental file sizes was performed.
In this experiment, and all subsequent ones, we are reading portions of a big file on the
drive. For every read size the data rate is measured in MB/sec. The read is performed in
chunks of 1 MB each. The first read result for the ext2 was ignored in order to see the
buffering effect. The trend of the performance is the same in the two systems. The raw
disk rate is steady for all file sizes at 20MB/sec for the SCSI drive and about the same for
the IDE drive. In both cases the read starts at a high rate due to the use of the buffer
cache. When the memory is exhausted (depending on the memory size on each machine)
the performance of the reads saturates at the same rate of the raw disk reads. Fig(1) and
fig(2) show the result of this benchmark on the SCSI drive and the IDE drive
respectively.

Buffering effect on reads (IMB chunks) Sequential Reads (64 KB) IDE
T T T T T T

250

——————©Bxm ——Y — RAW
-0~ RAW DISK \ —— EXT2
J \
\
\
\
\ J
\
\
\

-
@
=}

[
I
S

200+

Rate in MB/sec
= e
o] (=] n
o o o

Rate in MB/sec

@
=]

-
@
=}

=
Q
S

N
S

501

N}
s

o

.
100 200 300 400 500 600 700 800 900 1000 50 100 150 200 250
Read Size in MB Read Size

Figure 1. Sequential reads on SCSI Figure 2. Sequential reads on IDE

3.2.2. Comparison with memory mapped I/O

This benchmark compares the performance of the Ext2 file system to the performance of
memory-mapped I/O. The same settings of the previous experiment except that for the
case of memory mapped /O, instead of reading the chunk from the file in memory using
the normal read interface, the read size was mapped into the program and then copied
from the mapped area into the buffer. The raw disk performance was also measured in
that case to compare the Ext2 and the mmap() interface to the raw bandwidth of the disk.
The trend of the performance is the same. The raw disk rate is steady for all file sizes at
20MB/sec. The rate is high in the beginning for both the normal read and the mmapped
read due to the use of the buffer cache. When the memory is exhausted (at around
700MB) the performance of the reads starts to saturate at the same rate of the raw disk
reads.

It is important to note in this plot that the read rate in case of mmap() interface starts at a
lower rate that the normal read interface. This can be attributed to the use of virtual
memory in the mmap(). Even though the page might be in the file system’s buffer cache,
there is still the overhead of trapping into the virtual memory system. Fig(3) shows the
result of this benchmark on the SCSI machine.

Sequential Reads (64 KB)
T T T T

T T T T T
160 — o . — mmap ||

\ —— Raw

Rate in MB/sec

20¢—

100 200 300 400 500 600 700 800 900 1000
Read Size

Figure 3. Sequential reads using memory-mapped /O

3.2.3. Buffer size effect on read performance

To answer the question of whether the 1MB file in the previous benchmarks is significant
with regard to performance, this benchmark measures the effect of the change of the
buffer size on the read performance of the ext2 file system. This is also compared to the
performance of the raw disk reads. A file of size 1G is read sequentially with incremental
buffer sizes. Buffer sizes start at 4KB up to 16 MB and doubling each time. Again the
same test is performed for the SCSI and the IDE drive. Fig (4) and fig (5) show the
performance of the SCSI and IDE drives respectively. The plots show that in the SCSI
case, read performance is almost unaffected with the increase in the buffer size. On the
other hand, the size of the buffer matters for the IDE case. In the raw reads, data rate
almost doubles with doubling the buffer size until it saturates around 20MB/s at buffer
size of 16KB. The Ext2 performance is steady at 20MB/s for all buffer sizes.

Sequential Read of 1GB Sequential Read of 200MB
T T T T T T

35

T T 35

T T T T
— EXT2 — EXT2
—— Raw Disk —— Raw Disk

)
S
W
S

N
a
N
a

N
=)
|

|

|

|

|
N
=)

Rate in MB/sec
Rate in MB/sec

= =
S) o
= =
S) o

o
o

o

0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 20 40 60 80 100 120
Buffer Size in KB Buffer Size in KB

Figure 4. Sequential reads on SCSI with varying Figure S. Sequential reads on IDE with varying
buffer size buffer size

3.2.4. Simultaneous sequential reads

This benchmark measures the impact of simultaneous reads to two files in the ext2 file
system. The benchmark starts by forking two processes. Each process opens a different
file and reads a portion of it sequentially. The size read is again varied as described in
section 3.2.1. The size of the buffer size being read is fixed at 1 MB. Fig(6) and fig(7)
show the performance of the SCSI and IDE drives respectively. What should be expected
is that the data rate will be almost equal and around half the full throughput of the data
sequential rate of reads of the same size. In the SCSI case, this is true to a certain extent.
Data rates for reading both files are catching up with each other throughout the
experiment. The data rates increases steadily in the beginning as the buffer is warmed
with pages of the two files, then, when the buffer starts filling performance drops. This
happens at about S00MB of read size, which is about 60% of the estimated size of buffer
cache for a single read (see section 3.2.1). The rate saturates towards the end at about
25% of the raw performance for a single read (SMB/s). The intuition suggests that the
rate should be half the raw rate, the lost throughput can be attributed to the time spent
seeking between the two files.

On the IDE machine, the same trend can be observed (bearing in mind the difference in
memory size between the SCSI machine and the IDE one). The difference is that when

both throughputs saturate, they do so at 50% of the raw rate. Again this can be attributed
to the time spent in seeking between the two files. We included numbers for a similar
experiment on the raw device, in which two processes simultaneously read from two
distinct places on the device to imitate the behavior of reading two files using the file
system. The results in fig(7) show that the two processes saw a steady data rate of SMB/s
for all read sizes which is 25% of the raw throughput and significantly less than the file
system rate. We think the reason for this is due to the lack of knowledge on how Ext2
lays out files on the disk, so an honest imitation of the experiment on the raw device is
hard to achieve and may result in varying seek times between the two.

Sequential Reads from two files (1 MB) Sequential Read to two files (1 MB)
60 : : ; — . ; : : 35 : . :
— Filel — Filel EXT2
—— File2 —7 File2 EXT2
ol \ | 30t <= Raw#l |4
| —+ Raw#2

40+

301

Rate in MB/sec
Rate in MB/sec

201

10r

0

.
0 100 200 300 400 500 600 700 800 900 1000 50 100 150 200 250
read Size Read Size

Figure 6. Simultaneous sequential reads on SCSI Figure 7. Simultaneous sequential reads on IDE

3.3. Write Benchmarks

3.3.1. Sequential write

This benchmark compares the performance of the Ext2 file system to the performance of
the write on the raw device. The experiment settings are exactly as those in section 3.2.1.
replacing the reads with writes and since there is actually no warming up for the buffer
cache in writes, every experiment is run once. For the file system performance, we tested
the case for overwriting files, recreating files and writing with the buffer cache disabled.
In the SCSI system, as shown in fig(8), due to the effect of write behind cache in writes,
Ext2 performance is superior to that of the raw device until around 400MB when it starts
to fall down and catch up with the raw device rate. Disabling the buffer cache, however,
will result in both Ext2 and file system being almost identical as shown in fig(9). It is also
worth noting, that the performance in the case of overwriting files is slightly higher than
in the case or recreation. We think this is due to the time spent deciding for file
allocation.

Also worthy of notice that the raw write performance, being about 6.7MB/s, is
significantly lower than the throughput in the raw reading case, which is about 20MB/s.
Which makes the write rate about 33% of the read one.

Repeating the same benchmark on the IDE machine, resulted in a different behavior. In
the case of sequential writes (with buffer cache disabled), the performance trend is almost
the same as on the SCSI, with two main differences. First, the raw write performance is

about 18MB/s which is comparable to the rate in the raw read case. Second, the gap
between Ext2 writes and raw writes is much wider this time at about 82% of the raw
throughput. Time couldn’t permit more investigation as to the cause of this difference.
Results of this experiment can be seen in fig(11). On the other hand, when the buffer
cache was enabled (fig(10)), the performance results where drastically different. The
rates in both recreating and overwriting the files in the Ext2 case were inferior to the
corresponding raw writes despite the write-behind cache. We didn’t have enough time to
investigate the cause of this anomaly more.

Sequential Writes (1 MB) Sequential Writes (64 KB)

T T T T T T
—— EXT2 Overwrite || — RAW DISK
— EXT2 Write — EXT2
—— Raw Disk L -]

~

Rate in MB/sec
Rate in MB/sec
S w1 o

w

N

. PR o
100 200 300 400 500 600 700 800 900 1000 50 100 150 200 250 300 350 400 450 500

Write Size Write Size
Figure 8. Sequential writes on SCSI Figure 9. Sequential writes on SCSI with no

buffer cache

Sequential writes (64 KB) Sequential writes (64 KB)
35 : ; 35 : : :
— RAW — RAW
—— EXT2 Overwiite —— EXT2
30} 5 EXT2Create || 30 1
25 251
& 20 1 & 20
e e
£ w7 £ - .
& 151 P = — 1 g) ——
4 B e 4
o 1 10t
\
5 5¢
0 : : : 0 : : :
50 100 150 200 250 50 100 150 200 250
Write Size in MB Write Size in MB
Figure 10. Sequential writes on IDE Figure 11. Sequential writes on IDE with no

buffer cache

3.3.2. Buffer size effect on write performance

We studied the effect on varying the chunk size on the write performance. The settings
for this benchmark are similar to those in section 3.2.3. for both environments except that
we write a 200MB file for the SCSI machine. Fig(11) and fig(12) show the performance
of the SCSI and IDE drives respectively. The plots show that in the SCSI case, write
performance is almost unaffected with the increase in the buffer size. On the other hand,
the size of the buffer matters for the IDE case. Data rate almost doubles with doubling the

buffer size until it saturates around 20MB/s, which is the raw device performance. That is
true for the ext2 file system as well as raw disk.

Sequential Write of 200MB Sequential Write of 200MB

w
a

— EXT2 — EXT2
—— Raw Disk —— Raw Disk

~
W
S

)
N
a

o
N
=)

Rate in MB/sec
S
Rate in MB/sec
e
w1

w

N
=
S)

-
o

o

0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500 0 20 40 60 80 100 120

Buffer Size in KB Buffer Size in KB
Figure 11. Sequential writes on SCSI with Figure 12. Sequential writes on IDE with
varying buffer size varying buffer size

3.3.3. Simultaneous sequential writes

This benchmark measures the impact of simultaneous writes to two files in the Ext2 file
system. The setting for the experiment is identical to that of the one in section 3.2.4. The
only exception is that in the Ext2 case, the buffer cache effect is disabled. two plots have
the same trend according to their available physical memory. Fig(13) and fig(14) report
the results of the benchmark on the SCSI and the IDE machine respectively. The two
plots have the same trends. In both, the write performance of the two processes is almost
the same and slightly less than the corresponding raw performance of the same
experiment. What is significantly different in the two experiments is the data rate
observed compared to the raw write data rate in both settings. In the SCSI case, the data
rate is about 60% the corresponding raw write rate. In the IDE case, however, the rate is
about 2MB/s which is only 18% of the corresponding observed raw write performance
(see section 3.3.1). We have no hint on what could be the cause of this performance drop,
it might be worthy of further investigation.

Sequential Write to two files (1 MB) Sequential Write to two files (1 MB)
20 T T T T T T T 20 T T T
— Filel EXT2 — Filel EXT2
18} — File2 EXT2 |{ 18} —7 File2 EXT2 |{
—©— Raw #1 —©— Raw #1
161 —— Raw #2 161 —— Raw #2
14 14
8121 8121
2 2
o) o)
=10 =10
£ £
8 8
& 8 & 8
6 6
44 4
2t 2
ol— 0 . . .
100 200 300 400 500 600 700 800 900 1000 50 100 150 200 250
Write Size Write Size

Figure 13. Sim. sequential writes on SCSI Figure 14. Sim. sequential writes on IDE

4. Conclusion

In this paper, we investigated a claim about a performance problem in the Linux Ext2 file
system under streaming I/O. Our investigation was through a series of benchmarks that
compared the read and write performance of the Ext2 file system against the raw
performance of the underlying storage device. Our benchmarks were performed on two
different environments, a machine from the DB cluster of workstations in the CS
department of UW-Madison with 1GB of main memory and a SCSI interface and a PC
with 128MB of main memory and an IDE interface.

The results of our benchmarks did not show any significant difference in performance
between Ext2 and the raw device performance. In its worst case (i.e. without the help of
the buffer cache), Ext2 performed at 82% of the raw performance in its worst cases
(sequential writes on the IDE machine). Our benchmarks also show that there exists a
wide gap in raw throughput on the SCSI machine between reads and writes which is not
present on the IDE machine. The size of the buffer used to perform the reads or writes
appears to have no significant difference on the performance of the sequential read in the
SCSI case and the raw read performance on the IDE machine. In all other cases, the
performance increases with the increase of the buffer size until saturation at the rate of
the raw performance.

A side benefit of this paper is to serve as a report on the expected performance from the
two settings on which our benchmarks were performed.

Further investigation into some non-intuitive results is required, especially in the case of
the IDE machine.

5. References

[1] Remy Card, Eric Dumas, Franck Mevel. The Linux Kernel Book. Wiley, John &
Sons, April 1998.

[2] Rémy Card, Theodore Ts'o, and Stephen Tweedie. Design and Implementation of the
Second Extended Filesystem. Proceedings of the first Dutch international symposium
on Linux.

[3] Peter M. Chen, David A. Patterson. A New Approach to /O Performance Evaluation
— Self Scaling /O Benchmarks, Predicted I/O Performance. Conference on
Measurement and Modeling of Computer Systems , ACM SIGMETRICS, 1993

6. Linux References on The Web

[4] www.linux.com
[5] www.linolium.com
[6] www.kernel.org
[7] www.Ixr.linux.no
[8] www.ibiblio.org

http://www.ibiblio.org/
http://www.lxr.linux.no/
http://www.kernel.org/
http://www.linolium.com/
http://www.linux.com/

	Linux File Streaming
	Abstract
	1. Introduction
	2. The Linux Ext2 File System
	2.1. Ext2 Reads
	2.2. Ext2 Writes

	3. Benchmarks Description
	3.1. Environment Settings and parameters
	3.2. Read Benchmarks
	3.2.1. Sequential read
	3.2.2. Comparison with memory mapped I/O
	3.2.3. Buffer size effect on read performance
	3.2.4. Simultaneous sequential reads

	3.3. Write Benchmarks
	3.3.1. Sequential write
	3.3.2. Buffer size effect on write performance
	3.3.3. Simultaneous sequential writes

	4. Conclusion
	5. References
	[2] Rémy Card, Theodore Ts'o, and Stephen Tweedie. Design and Implementation of the Second Extended Filesystem. Proceedings of the first Dutch international symposium on Linux.
	[3] Peter M. Chen, David A. Patterson. A New Approach to I/O Performance Evaluation – Self Scaling I/O Benchmarks, Predicted I/O Performance. Conference on Measurement and Modeling of Computer Systems , ACM SIGMETRICS, 1993

	6. Linux References on The Web

