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Abstract 

 
The inability of common benchmarks to gracefully scale to evaluate 
systems of various size and configuration contributes greatly to the 
incapacity usually shown in comparing varied systems under a common 
metric.  This paper looks at an older, self-scaling I/O benchmark whose 
results can be normalized using techniques of predicted performance for 
comparative evaluation of a diverse range of stand-alone computer 
systems.  We assert that there is no reason these comparisons need stop at 
local disk workstations and show the comparison to produce a valid 
evaluation of network file-system enabled computers using SUN’s NFS 
protocol. 

 
1. Introduction 
 

The history of performance evaluation is littered with benchmarks unable to stress the 
larger and more powerful computers that evolved in their aftermath.  This inability to 
scale greatly contributes to inaccuracies when evaluating and comparing varied systems 
under a common metric. 
 
In the discussion that follows, we examine what characteristics a benchmark need have so 
that it may be used to realistically evaluate modern and future computer systems.  We 
look at what we gain from each of these characteristics and why earlier proposed 
benchmarks lacking in them have grown obsolete.  We then turn to a proposed 
benchmark that meets all of our stated criteria.  Following this, we discuss the changes 
that were necessary to convert this benchmark for running over a distributed file system. 
 



The remainder of this paper is divided into the following sections:  section 2 sets the 
standards for an ideal benchmark, section 3 looks at related work, section 4 addresses our 
testing procedure, section 5 presents our results, section 6 considers future work, and in 
section 7 conclusions are drawn from the results. 
 
2. Ideal Benchmarks 

 
When attempting to evaluate systems, several questions naturally present themselves:  
What are common shortcomings among existing benchmarks?  Is there a benchmark that 
is not limited by these shortcomings; or, more generally, what would be our ideal 
benchmark?  Fortunately, the literature is rich with attempts to answer that question.  One 
such claim obliges that an ideal I/O benchmark should: 
 

• Increase understanding of the system:  This includes helping designers isolate 
points of poor performance as well as instructing users in optimal machine usage 
under different workloads, 

• Be I/O limited:  Intuitively, the facet of the system we are attempting to evaluate 
should be the bottleneck of our system, 

• Scale gracefully:  We cannot expect comparative information between diverse 
systems to be useful if our evaluation program is ineffective at measuring systems 
in the performance range of one or more of the platforms in question.  Further, we 
would like our evaluation to remain useful with the next generation of computers.  
Hence, scaling to stress more powerful systems is a must, 

• Allow a fair comparison across machines, 
• Relevant to many applications:  We would like to be able to comparatively 

evaluate systems under all types of workloads:  CAD, office automation, software 
development, and so on.  Though design decisions are arguably much easier when 
we target a specific application, there is obvious value in very general 
applicability, 

• Tightly Specified:  For benchmarks to have meaning, they must be well defined, 
reproducible and reported with rigor.  What optimizations, such as caching, are 
allowed?  How is the physical machine environment configured?  If we are going 
to hold our results as absolutely reliable, these questions become very important. 
[2] 

 
With this more thorough specification of the required characteristics, we search for our 
ideal benchmark.   
 
3. Related Work 

 
In the past, the benchmarking of various components of computers has invariably 
followed a trend towards one or two standards.  With NFS performance measurement, 
this hasn’t changed.  The computing industry has seen two distinct methods for judging 
NFS performance in two pieces of software, NFS/NHFSStone, and LADDIS. 
 



3.1. NFS/NHFSStone 
 
Barry Shein initially published NFSStone at the 1989 USENIX conference in a paper 
entitled "NFSSTONE - A Network File Server Performance Benchmark".  Legato 
Systems created NHFSStone, which was incorporated as a NFS load-generating program.  
Both share many features.  And while both may have been used in the past as a popular 
means of describing NFS performance, both also have many deficiencies.  We will speak 
in general of NHFSStone, though the references apply to NFSStone as well (unless 
otherwise noted).[7] 
 
First, both benchmarks utilized the synthetic duplication of an average user workload, on 
top of an average NFS resource utilization level.  While this may give us an indication of 
what might be the performance of our system under a median-level workload, it does not 
indicate any sort of performance measurement to the extremities.  Additionally, 
NHFSStone is limited in the number of clients it supports (one).  Any attempt to 
document the performance of a large-scale network wouldn’t find any help within 
NHFSStone.  Without any network contention, the main bottleneck to NFS couldn’t be 
accurately measured (that being the network infrastructure itself).  Even if control 
coordination software were implemented to maintain several client copies of NHFSStone, 
the results reported would lose reliability as additional levels of influence were 
introduced. 
 
Second, both NHFSStone and NFSStone are sensitive to the differences in NFS client 
implementation.  The generated NFS command and request sequence produced for any 
given test could vary (sometimes greatly) amongst clients, depending on how their 
manufacturer decided to implement the NFS protocol.  As the client workload increases, 
more inconsistencies are introduced into the results of the benchmark.  NHFSStone 
attempted to work around these inconsistencies by implementing various algorithms, 
depending on what client was used.  As can be expected, the effectiveness varied greatly, 
and the results produced weren’t reliable.  In fact, the only operating system that the 
benchmark truly worked well on (since it was written originally for that operating 
system) was SunOS.  The benchmark utilized several operating specific algorithms, along 
with a high level access to kernel data structures (file name information, attributes, 
caching policies, etc).  While this definitely simplifies use of the benchmark on a group 
of SunOS computers, it makes porting difficult unless entire libraries were ported as well.  
Even then inconsistencies abounded.  Since the computing industry is moving away from 
homogeneous networks, it becomes even more important that a standardized benchmark 
be widely applicable.[7] 
 
Finally, there hasn’t been a standard issued for running the benchmark and reporting the 
results.  Without a recognized standard, results can’t be compared without a concern for 
more inconsistencies.  Although there weren’t many variable arguments, results become 
meaningless amongst different configurations and vendor platforms. 
 



3.2. LADDIS 
 
In order to fix many of the deficiencies of NFS/NHFSStone, several companies 
developed a new benchmarking standard.  In 1992, Legato Systems, Auspex Systems, 
Data General, Digital Equipment, Interphase, and Sun Microsystems all contributed to 
the creation of LADDIS NFS.  In 1993, the benchmark was adopted into the System File 
Server benchmark suite version 1.0 (developed by the Standard Performance Evaluation 
Corporation).  They succeeded to a certain extent in fixing many of the NFS/NHFSStone 
deficiencies.[7] 
 
First, LADDIS decreased sensitivity to the client’s implementation of NFS because the 
NFS protocol is encapsulated and implemented in the benchmark itself.  This eliminated 
the reliance on customizations and tweaks to ensure (semi-)fair operating conditions 
amongst varying client implementations.  The request sequence generated by the 
benchmark was consistent amongst every instance that ran.  Since the reliance on the 
client was removed, a benchmark was finally created that could be used on a 
heterogeneous network without fear of incorrect results. 
 
Also, LADDIS is tunable to a certain degree.  NFS request packet sizes, file working set 
size, and other parameters were fully tunable to aid in the understanding of system 
operation.  However, while these parameters are fully tunable, they are also difficult to 
tune towards any significant result.  There hasn’t been a substantial documentation of 
how certain parameters should effect system operation.  And without knowing what 
changing these parameters is supposed to accomplish, a user is better off leaving the 
benchmark in its stock configuration in order to ensure meaningful results (and thus 
negating the benefit of tunable parameters).  The added benefit of being able to determine 
the effect of certain parameters on system operation is also lost.  In addition, LADDIS 
lacks the ability to change the workload behavior, creating yet another synthetic 
workload pattern. 
 
Finally, LADDIS is still only good at measuring the response time of an NFS server.  It 
gives no indication as to why certain results are reported.  If results are reported that seem 
inconsistent or incorrect, the user is left guessing as to whether it could’ve been due to 
the NFS server, the network infrastructure, or something else.  There also is a lack of 
client side benchmarking. 
 
3.3. A Self-Scaling I/O Benchmark 
 
In 1993, Peter M. Chen and David A. Patterson proposed a new self-scaling benchmark.  
This benchmark operates in two easy steps.  First, it explores the system and determines a 
workload that would properly stress the I/O subsystem of the system it runs on.  It then 
proceeds to run a set of workloads and use the results to produce a set of performance 
graphs.  This workload is characterized by five parameters: 
 



• UniqueBytes – in essence, the total size of the data being operated on, 
• SizeMean – the mean of the distribution over which the size of the I/O request 

ranges, 
• ReadFrac – the fraction of read operations (as opposed to writes), 
• SeqFrac – The fraction of requests that immediately follow the prior request on 

the disk, 
• ProcessNum – the number of processes simultaneously issuing I/O. [1] 

 
Looking at these five characteristics, processNum is least useful to us immediately.  The 
number of processes should have little impact, unless we are accessing a concurrent disk 
such as certain types of RAID disks (which was not a system in our set of tested 
systems).  However, taken broadly, we can now specify any number of user processes 
accessing as either read or write, and any number of any size of requests in any layout on 
the disk from any size working file set.  From this discussion, we argue two points.  First, 
this benchmark scales well.  Since it can adapt itself to produce as little or as much 
workload as is needed, this is fairly intuitive.  Second, this benchmark is I/O limited.  If it 
didn’t initially reach a limitation due to I/O, it could simply scale up to produce more I/O 
requests.  Since the requests move at processor speed and the responses move at disk 
speed, at some point, the requests must begin stressing the system.   
 
This however is a long way from establishing this as an ideal benchmark.  We have said 
nothing as to how this evaluation provides an increased understanding of system 
operation.  Further, the entire premise of self-scaling is that every system runs the 
benchmark under its own load.  This seems to go a long way toward removing the ability 
to produce a fair comparison between differing systems.  Finally, while we have stressed 
that this system is highly configurable, we have not shown that the parameters with 
which we work are either necessary or sufficient to model all relevant workloads.  Chen 
addresses all of these issues in his proposal of the benchmark.  [1] 
  
This only leaves the question of the care taken in specifying the benchmark.  The authors 
claim that flexibility in comparing diverse systems and tightness in specifications are 
competing processes.  To this end, it is our policy that configuration information and 
reporting procedure should not be built into the tool itself, but should be established as a 
standard outside of the benchmark.  Should this not be possible, the specification of the 
use of the program should be left to the user, granting them complete control over the 
comparison.  This meets head on two problems:  First, suppose the benchmark establishes 
a configuration for testing.  However, the system in question simply does not have the 
hardware or software to be put in that configuration.  We have effectively eliminated the 
benchmark’s ability to scale such that it can evaluate this system.  Second, an assessment 
of two base systems is often times artificial.  We might find use in evaluating two 
systems with full optimizations turned on.  We do not need to limit the cases where one 
system can be optimized further than the others.  
 
From this discussion, the Chen/Patterson benchmark meets our stated requirements.  
Having found a suitable local file-system benchmark, we can set about converting it to a 



network-based file-system benchmark.  First, however, it is instructive to consider how 
the benchmark itself runs. 
 
On execution, the program begins an exploration of the system.  Specifically, several 
tests are run varying each parameter slowly over the course of the runs.  The acceptable 
ranges of performance are made as narrow as possible.  Inside of those acceptable ranges, 
a point is selected at which the throughput is 75% of its maximum value for each 
parameter.  The collection of these all together is dubbed the focal vector.  The 
benchmark then makes a graph of uniqueBytes and identifies the plateaus on that graph.  
A plateau is defined as a region where performance is roughly the same across the entire 
range.  It is most common to have two performance regions, one where all of 
uniqueBytes fits into file cache and another where frequent disk accesses must be made.  
To allow cache to remain operational but make sure that it does not bias the data, cache is 
flushed in between individual runs by unmounting and remounting the file-system being 
evaluated. Once plateaus have been selected, the exploration phase is over, and the 
benchmark produces graphs depicting throughput versus the change in a characteristic 
(holding all other characteristics constant to the values in the focal vector).  There will be 
one graph for each characteristic for each plateau in uniqueBytes (i.e. the usual case 
produces 8 graphs).  For a more complete description of selecting focal vectors, see 
[1][2].  Note that each benchmark is run on a workload that gives its system 
approximately the same amount of stress, and then varies the same parameters.  While the 
scale and quantifiable results of each run should vary, the general shape of the resultant 
graph should not.  For a more complete description of the operation of the benchmark see 
[1]. 
 
4. Methodology 

 
Now we turn our attention to the steps required to port the selected evaluation software to 
a networked file-system and the pitfalls encountered in the process.  As a first step, we 
stress that our goal is not to produce a comparative evaluation of several systems, but to 
show that the techniques involved in the porting of this benchmark are valid.  
 
Our procedure can be divided into three phases: 

• Establishing a local disk baseline on our systems, 
• Running a “local NFS network” version, 
• Running a benchmark on a full-scale network installation. 

 
4.1.  Local disk machines 

 
Clearly, this serves as our control group.  It was run on an Intel PIII-667 with 128 MB of 
main memory running the RedHat Linux operating system, version 6.2 (kernel version 
2.2.14).  The complete results of these trials are included in the appendix. 
 
To begin trying to anticipate potential dilemmas, we consider how we would have to 
modify a program so that it works over NFS instead of from the local disk.  The answer 
to this is that there are very few considerations that need to be taken.  Great pains were 



taken with the NFS protocol to ensure an implementation transparent to the user.  The 
only really pressing issue comes with the fact that for performance improvement, we tend 
to cache everywhere we possibly can.  The question of how to flush the cache on a 
remote machine must now be decided.  Techniques for dealing with this problem are 
discussed later in this section.  
 
4.2.  Local NFS 
 
By this we mean a system running the NFS protocol such that the client machine is its 
own server.  The hardware for this test is identical to the hardware for the local disc 
machine.  This perturbation serves to isolate several possible points of trouble.  First, 
should there be a performance hit at this stage of our testing, it can only be due to the 
execution of the NFS protocol.  There is no possibility of network delay, as the request 
never leaves the local Network Interface Controller.  Note that even though the 
implementation may try and maintain both server and client cache, they are taken from 
the same memory system.  Hence the problem of flushing the cache is easily dealt with 
by modifying the script to umount both the server access to the block device and the 
client reference to the file system maintained on that device.  The full results from these 
runs can be found in the appendix. 
 
4.3.  NFS Networks 

 
Here we deal with the issue of moving the client and server to different machines.  We 
utilized an SGI Indy with one 150Mhz R5000 processor, 192MB of main system 
memory, running Irix 6.5 as our client machine connected via 10Mb/s Ethernet.  We 
utilized an SGI Origin 2000 with 32 300Mhz R12000 processors, 16GB of main system 
memory, running Irix 6.5 as our server machine connected via 100Mb/s Ethernet.  Note 
that while this will still scale to the system and remain I/O limited, the bottleneck could 
now be due to the network rather than the disk system.  The other issue of importance 
here is flushing the server cache.  The most straightforward solution found by the authors 
is to divide our script from the local NFS trials into two separate scripts: 
 

• Edit the one on the client so that it unmounts the client file system and invokes the 
script on the server via RPC.   

• Edit the server script so that it umounts the device and remounts it.   
• When the RPC call returns on the client side, have it remount the client file 

system.   
 

This is the natural solution, as NFS is written over RPC.  Thus we have a priori 
knowledge that all of the tools to carry out this task are in place on our system.  The full 
results from these runs can be found in the appendix. 
 
 
 
 
 



5. Results 

 
Figure 1 - Local File System UniqueBytes 

 
Figure 2 - Irix NFS UniqueBytes 



 
Figure 3 - Local File System ReadFrac 

 
Figure 4 - Irix NFS ReadFrac 



 
Figure 5 - Local File System SizeMean 

 

Figure 6 - Irix NFS SizeMean 
 
 



The graphs above are from the results of the benchmarks run on a local Linux ext2fs file-
system and an Irix network running NFS version 3 (NFS3).  Though requests over the 
network produce rougher results, you can see that the graphs all retain approximately the 
same shape.  Figure 1 shows the expected results with very high throughput until the edge 
of disk cache is reached, and then more modest results.  Figure two is a bit more 
problematic.  Irix will allow all of main memory to be used as the file cache.  This 
explains the dip just shy of 200 MB (since our client has 192MB of available memory).  
The spike on the low edge (<50 MB) is believed to be a spurious result due to lack of 
sampled data.  Note there are no data points between this small request and the next one 
where a steady state has been reached, so the cause of this is inconclusive.  However, the 
initial transmission could’ve been small enough that throughput was miscalculated.  
Throughput is consistent with 10 Mb/s Ethernet between 50 MB and 192 MB.  In figures 
3 and 4, we can compare the effects of readFrac on both systems.  Keeping in mind that 
reads are cached and writes are not, the results make a lot of sense.  As more reads than 
writes are requested, performance gradually increases.  When there is an intervening 
network (figure 4), the effects of cache are much less pronounced.  Notice again we have 
the same general shape.  Figures five and six show that as the average size of each 
request increases, the throughput increases.  Again, the overall performance is relatively 
low through the network, though the curves are basically the same shape. 
 
This idea of similar shaped graphs is a key idea in self-scaling benchmarks.  The 
performance graphs are produced from different workloads.  Hence, comparing them 
really does not tell us anything about how the two systems compare to one another in 
general.   
 
However, we can make the simplifying assumption that these similar shapes are due to 
the fact that the effects of the shape of one parameter are independent of the value of the 
other parameters.  This allows us to calculate values for workloads we did not actually 
measure.  We do this by selecting a set of parameters we would like to know the 
throughput for (say the value of the focal point on the other machine).  We can then look 
up the value of the throughput at each parameter in the focal point on the graph where 
that parameter is not held constant.  Multiply the throughput on the graph for which we 
are trying to generate the unmeasured value by the ratio of the values on the two graphs.  
This will give us an intercept from which we can extrapolate the new curve.  In this way, 
we have reclaimed the ability to compare systems on which we have measured different 
workloads.  For a more complete description on performance-prediction, see [1][5]. 
 
6. Future Work 
 
There are several interesting questions on this topic that are still unanswered.  Issues that 
have yet to be addressed include: 
 

• How is performance impacted by the presence of another server on the 
network?  Would the network competition between two servers and multiple 
clients significantly affect the performance of the protocol? 



• The entire experiment needs to be replicated for the Andrew File System 
(AFS).  The same can be said for the especially interesting cross-platform 
protocol SAMBA.  Further, there is the related possibility of benchmarking 
Network Attached Storage Devices (NASD), or any other distributed file 
system of your choosing. 

• Of course, now that a feasibility study has been completed, there is the 
question of doing the actual comparison of networked systems with local disk 
systems using this benchmark. 

 
7. Conclusions 
 
In the midst of the current push towards Networked File-Systems, the ability to evaluate 
the performance differences between networked and local file-systems becomes ever 
more desirable.  The implementers of NFS knew that there would be an inherent impact 
on performance involved with using a networked file-system.  The time for quantifying 
that decrease in performance has come, and as we have presented here, reliably carrying 
this out is not an unreasonable task. 
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